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Abstract

The dendritic structure of river networks is commonly argued against use of species atlas data for modeling freshwater
species distributions, but little has been done to test the potential of grid-based data in predictive species mapping. Using
four different niche-based models and three different climate change projections for the middle of the 21st century merged
pairwise as well as within a consensus modeling framework, we studied the variability in current and future distribution
patterns of 38 freshwater fish species across Germany. We used grid-based (11611 km) fish distribution maps and
numerous climatic, topographic, hydromorphologic, and anthropogenic factors derived from environmental maps at a finer
scale resolution (250 m–1 km). Apart from the explicit predictor selection, our modeling framework included uncertainty
estimation for all phases of the modeling process. We found that the predictive performance of some niche-based models is
excellent independent of the predictor data set used, emphasizing the importance of a well-grounded predictor selection
process. Though important, climate was not a primary key factor for any of the studied fish species groups, in contrast to
substrate preferences, hierarchical river structure, and topography. Generally, distribution ranges of cold-water and warm-
water species are expected to change significantly in the future; however, the extent of changes is highly uncertain. Finally,
we show that the mismatch between the current and future ranges of climatic variables of more than 90% is the most
limiting factor regarding reliability of our future estimates. Our study highlighted the underestimated potential of grid cell
information in biogeographical modeling of freshwater species and provides a comprehensive modeling framework for
predictive mapping of species distributions and evaluation of the associated uncertainties.
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Introduction

Predicting future distribution patters of species following climate

change projections becomes increasingly important in environ-

mental management, species conservation and restoration plan-

ning at global, regional and local scales. Studies dealing with

future species distribution patterns generally relay on niche-based

species distributions models (SDMs) which relate the current

conditions to the current species distributions and project these

using climate change models (e.g., [1]–[4]).

Recent studies on methodological aspects of SDMs have

shown that application of consensus methods reduce model

based uncertainty and increase reliability of the projections [1],

[5]–[7]. In particular, Marmion et al. [5] have shown that

consensus methods based on averaging of all methods provide

robust projections and significantly increase the accuracy of

species distribution forecasts. Additional important aspects of

the predictive modeling process include a well substantiated

predictor selection methodology and the investigation of the

general predictability of future changes using the information

on current conditions. Despite the overall high relevance of

future projections, there is a general lack of studies com-

prising all these uncertainty aspects of the predictive modeling

process.

Species distribution patterns are affected by a combination of

environmental factors acting at different spatial and temporal

scales [4], [8]–[10]. Climate is widely acknowledged as primary

factor at the continental scale whilst topography, the land use and

habitats become important at regional to local scales [11]. Because

dendritic river network structures constrain species dispersal

ability, describing spatial distribution patterns of freshwater species

is inseparable from describing hierarchy, heterogeneity and lateral

connectivity of river systems [12]. The dendritic river network

structure is commonly argued against grid cell related data in

biogeographical modeling of freshwater species such as fish (e.g.

[2], [9]). However, most studies on fish distribution patterns are

void of an explicit predictor selection process and combine

detailed river and fish data at the site scale with the global

environmental data (20 km grid cells) resulting in serious scale

mismatches and biased data samples.

Freshwater biodiversity is particularly vulnerable to climate

change not only because temperature is climate dependent, but

also because other pressures on freshwater biodiversity such as

human consumptions of ecological assets, nitrogen deposition and
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species invasions show increasing trends over recent decades [13]–

[][][16]. Since the combined effect of climate and human stressors

is likely to be amplified in the future compared to their individual

effects, it is expected that there will be a considerable change in

species composition and diversity loss [17].

Here, we faced the challenge of modeling distribution patterns

of 38 freshwater fish species across Germany at the scale grain

used for the national fish records (11 km611 km grid cell). Grid

cell related species distribution maps are common in presenting

species occurrence information. Such data have already proven

their potential to describe current and future distribution patterns

of plant and terrestrial vertebrate species (e.g. [18], [19]). To our

knowledge, the potential of fish occurrence maps in predictive

biogeographical modeling at a comparable resolution has not been

exploited. As the initial step we identified factors affecting species

distributions. At the landscape to regional scale previous studies

indicated the position along the upstream–downstream gradient,

mean temperature and site elevation as major predictors of species

distributions [2], [9], [20]. Across river basis at continental to

global scale fish species distributions were commonly described by

discharge, climate, topography, net primary productivity, dam

characteristics, land use properties and population density [3], [8],

[16]. In a fish species traits study based on literature data

Goldstein and Meador [21] showed that fish distribution patterns

vary according to stream size and substrate type. Consequently,

we collected information on the substrate and stream size

properties of each cell as well as information on climatic,

hydromorphologic, topographic and anthropogenic properties.

The main objective of our study was the investigation of the

potential of grid-cell data (atlas data) in biogeographical modeling

of current and prediction of future distribution patterns of

freshwater fish species. Our comprehensive modeling framework

involved grid cell related fish and environmental data at a regional

scale resolution, explicit predictor selection, different SDMs and

different climate change projections. The potential of climate as a

single factor describing current species distributions has been

studied, as well as the importance of climate as a factor acting

together with other properties of the studied cells. To ensure

prediction reliability we restricted our analyses within the

predictive modeling stage to only those SDMs considered in the

validation process as good to excellent. We investigated variability

in the estimated effects of climate change for the middle of the 21st

century emerging from different stages of the modeling process for

the consensus model and for all combinations of the different

climate change models and the selected SDMs. Analysis of the

variability in the predicted effects of climate change revealed

important sources of uncertainty, some of which limit the

possibility of providing reliable estimates of future changes in

freshwater fish species distribution patterns.

Methods

Species distribution data
The German society for ichthyology (GFI, www.fishartenartlas.

de) and the Federal Agency for Nature Conservation (BfN, www.

bfn.de) have kindly provided actual fish species occurrence data in

form of actual presence indicators for grid cells of the topographic

map of Germany at scale of 1:25 000 (TK25). Each TK25 cell

covers an area of approximately 11611 km size, forming a mesh

of 2945 cells. The analyses have been reduced to 2935 cells due to

missing environmental information for nine coastal cells. The grid

cell based fish occurrence data are a result of merging presence/

absence information from expert-verified surveys and catch

reports of recreational and commercial fisheries across each of

the German Federal States over the last two to three decades. We

modeled only those fish species with sufficient reliable positive

occurrences (more than 50), resulting in a set of 38 fish species (see

Table 1).

Environmental data
Baseline data. The baseline data consist of approximately 50

climatic, hydromorphologic, topographic and anthropogenic

predictors considered potentially relevant for general physiological

Table 1. Fish species included in the analyses and their
occurrence frequency.

Species code Species name Occurrence frequency

Abrarama Abramis brama 0.385

Albuatus Alburnoides bipunctatus 0.076

Alburnus Alburnus alburnus 0.278

Anguilla Anguilla anguilla 0.658

Aspipius Aspius aspius 0.120

Barbrbus Barbus barbus 0.279

Barbtula Barbatula barbatula 0.482

Blicrkna Blicca bjoerkna 0.283

Caraelio Carassius gibelio 0.189

Carasius Carassius carassius 0.274

Chonasus Chondrostoma nasus 0.098

Cobienia Cobitis taenia 0.183

Cottobio Cottus gobio 0.420

Cyprrpio Cyprinus carpio 0.406

Esoxcius Esox lucius 0.523

Gastatus Gasterosteus aculeatus 0.523

Gobiobio Gobio gobio 0.616

Gymnrnus Gymnocephalus cernuua 0.244

Lampilis Lampetra fluviatilis 0.085

Lampneri Lampetra planeri 0.337

Leucatus Leucaspius delineatus 0.206

Leucidus Leuciscus idus 0.181

Leucscus Leuciscus leuciscus 0.384

Lotalota Lota lota 0.165

Misgilis Misgurnus fossilis 0.145

Percilis Perca fluviatilis 0.576

Phoxinus Phoxinus phoxinus 0.248

Pungtius Pungitius pungitius 0.253

Rhodarus Rhodeus amarus 0.159

Rutiilus Rutilus rutilus 0.648

Salmutta Salmo trutta 0.597

Salvalis Salvelinus fontinalis 0.104

Sanderca Sander lucioperca 0.248

Scarlmus Scardinius
erythrophthalmus

0.334

Siluanis Silurus glanis 0.124

Squaalus Squalius cephalus 0.447

Thymllus Thymallus thymallus 0.319

Tincinca Tinca tinca 0.481

doi:10.1371/journal.pone.0040530.t001
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and behavioral properties of studied species. To minimize the

effect of spatial redundancy in the environmental information, we

used only those data sets with scale grains #1.1 km, i.e., at least

ten times smaller than the scale grain of our study. For calculation

of the TK25 cell specific values we used ArcView, version 3.2

(ESRI).

Climate related predictors were based on the 30 arc-seconds

resolution (approx. 1 km) of the WorldClim (www.worldclim.org)

data set. The WorldClim data set consist of 19 bioclimatic

predictors, monthly mean, minimum and maximum temperature

and monthly total precipitation derived from the station time series

data for the second half of the 20th century [22]. The bioclimatic

predictors summarize the effects of annual trends, seasonality and

potentially limiting environmental factors on the species distribu-

tions. Actual evapotranspiration is estimated using the Turc’s

formula [23] while the cell runoff resulted from the general water

balance equation in which the groundwater storage is neglected

due to the fact that the calculation period is several decades.

Temperature averages for March–May and May–July were added

to the climate related predictor data set to account for pronounced

temperature requirements of fish during reproduction and early

development stages.

The initial set of hydromorphological predictor variables

considered the following TK25 cell indicators: maximum cumu-

lative length of the upstream flow network, maximum and

minimum basin area, dominant river type category and the

maximum Strahler order. All listed indicators except the river type

category were based on the CCM River and Catchment Database,

version 2.1 (CCM2, [24]). Predictors related to basin area and

upstream flow network length indirectly reflect basin heterogeneity

and thus potential species diversity. The river type was derived

from the German national typology classifying all flowing waters

according to their morphological, geological, hydrological and

biological properties into 24 river types [25]. For the purposes of

our study, the categories were merged with focus on the major

substrate type into following classes: (1) alpine streams; (2) boulder

and gravel dominated large streams in the alpine foothills; (3) fine

to coarse substrate dominated siliceous highland streams; (4) fine

to coarse substrate dominated calcareous highland streams; (5)

gravel dominated streams; (6) sand dominated streams; (7) organic

substrate dominated streams; (8) loess and loam dominated

streams; (9) marshland streams of the coastal plains; (10) small

streams in riverine floodplains without dominant substrate type.

Germany has a pronounced North-South altitudinal gradient,

with Alps in the South and the North- and the Baltic Sea in the

North and North-East, respectively, wherefore the topographical

predictor set included the average TK25 cell altitude as well as the

mean and maximum slope as surrogates for the water velocity at a

resolution of 250 m.

The anthropogenic predictor set included the population

density data and the Corine Land Cover data (CLC) of the

European Environment Agency (www.eea.europa.eu) at a resolu-

tion of 250 m. The initial 44 land use types were summarized into

following ecologically meaningful land use categories: urban/

commercial, agriculture, forest, grassland, freshwater, marine and

other. For each TK25 cell dominant land use type as well as TK25

cell surface percentages covered by each category were estimated.

Future climate predictions. For evaluation of the potential

future species distributions we used the downscaled climate

projections for the middle of the 21st century (2040–2069, referred

further as 2050s) from the CIAT data portal (www.ccafs-climate.

org) at 30 arc-seconds spatial resolution. The CIAT data set is

based on the general circulation models (GCMs) from the IPCC

Fourth Assessment Report. Since the statistical downscaling

framework is fixed to the baseline climate as defined by the

WorldClim data set, consistency between our ‘‘baseline’’ and

‘‘future’’ climate datasets is assured. The most commonly used in

the ecological studies are the projections of the HadCM3 model

[26] for the IPCC’s A2 and B1 storylines developed at the Hadley

Centre for Climate Prediction (e.g. [1], [2], [4]. A2 storyline

describes a very heterogeneous world with continuously increasing

global population and regionally oriented economic growth [27].

B1 storyline describes a world characterized with global

population that peaks in mid-century and declines thereafter,

and introduction of clean and resource-efficient technologies [27].

As energy requirements are highest for the scenarios from the A1

family, we selected the A1b scenario of a world with continuously

increasing global population, very rapid economic growth and

maximum energy requirements that are balanced across all energy

sources. In addition to HadCM3 we used projections of the

ECHAM5 [26] model (Max Planck Institute for Meteorology,

Germany) and the IPSL-CM4 [26] model (Institute Pierre Simon

Laplace, France).

Analysis framework
Statistical analyses and model building were carried out using

various own MATLAB (version 6.0.0.88) and R (version 2.14)

codes combined with the BIOMOD library [28] (version 1.1–5)

and the ME package [29] (version 3.3.3a).

Predictor variables selection. In order to avoid multi-

collinearity, for each of the predictor categories (climate,

hydromorphology, topography and anthropogenic influences)

using the principal component analysis (PCA) and the univariate

analysis we selected a representative predictor set which satisfied

the condition of pairwise correlations below 0.75. Further

reduction of the predictor number was an iterative process

supported with the univariate analysis of the relevance of each

individual predictor and analysis of the predictor relevance within

the multivariate model setup. Thereby, we used three selection

criteria: (1) average univariate area under the receiver operating

characteristic $0.65; (2) average permutation importance $5%;

(3) at least for half of the considered species the respective

parameter should be selected by the SDM’s. If at least two out of

these three criteria were fulfilled, the predictor was considered as a

relevant factor affecting fish species distribution across the studied

area at the studied scale.

Modeling current fish species distributions. Species

distribution patterns across Germany were modeled using

Generalised Linear Models (GLM), Generalised Additive Models

(GAM), Random Forest (RF) and the Maximum Entropy

Approach (ME). GLM is one of the best established techniques

[10] and is an extension of the linear models that deal with the

non-normal error distributions. GAM is a non-parametric

extension of GLM widely used for analyses and description of

the distribution patters of fish species (e.g. [7], [30]). Here, cubic

spline smoothers with four degrees of freedom were used for fitting

the GAM models. RF is a classification method which creates a

certain number of trees (here 500) constructed using a different

bootstrap sample from the original data [31]. This technique has

shown to have a good ability to predict observed fish species

distributions. In the ensemble modeling experiment by Grenouillet

et al. [7] among eight tested statistical methods, RF came closest to

the average model. Unlike the GLM, GAM and RF that use

species presence and absence data, ME uses presence data only.

Each site is assigned a probability value whereas the probability

distribution itself is constrained by the properties of the original

data [29]. Among all probability distributions which satisfy the

given constraints, ME chooses the one with the maximum entropy.

Predictability of Freshwater Biodiversity
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For all SDMs except the ME, searching for a parsimonious

model involved analyses of the model improvement based on the

Akaike Information Criterion (AIC) through stepwise adding of

new variables and leaving those out which do not significantly

improve the fit. Estimates of the variable contributions in the

individual models were based on the normalized correlations

between the predictions using the original data and the predictions

using the data in which the variable of interest is randomly

permutated. The modeling process involved a random splitting of

the data samples into the calibration (70%) and the validation data

set (30%) repeated 10 times for each SDM. Species occurrence

probabilities were transformed to the presence/absence informa-

tion using the SDM specific thresholds which maximize both,

sensitivity (the true positive rate) and the specificity (the true

negative rate). The modeled presence/absence results were

merged to a single model within a consensus modeling framework

involving averaging across all SDMs including their replications

(see [5]). Within the averaging procedure, a particular cell is

assigned the presence indicator ‘‘1’’ only if the same indicator was

estimated for more than 50% of the considered models.

Agreement between the observed and modeled species distribution

patterns was quantified by sensitivity, specificity and the coinci-

dence rate. The later describes the ratio of the number of

‘‘correctly’’ predicted cells (presences and absences) to the total

number of cells. General performance of the calibrated models

was classified using the area under the receiver operating

characteristic curve (ROC score) [e.g. 30]: 0.5–0.6 (‘‘fail’’), 0.6–

0.7 (‘‘poor’’), 0.7–0.8 (‘‘fair’’), 0.8–0.9 (‘‘good’’), 0.9–1 (‘‘excel-

lent’’).

Patterns in the species’ environmental responses.

Identification of species groups according to their responses to

different environmental predictors was performed using Fuzzy c-

mean clustering technique (see [32]). Environmental responses

were calculated as a ratio of the group based sum of predictor

importance estimates and the sum of all importance estimates. In

order to compare the variation of the environmental responses

across different SDMs the clustering was applied to the results of

each considered technique separately.

Future species distributions and associated uncertainties.

For the species identified in the previous step as climate sensitive,

potential future distribution maps for the period 2040–2069 under

A1b scenario have been created according to different climate

models and the SDMs identified as suitable for modeling fish

species distribution at the particular scale resolution. A joint future

consensus pattern was estimated through averaging of all pairwise

combinations of SDMs (including repetitions) and climate models.

Within the averaging procedure, species are considered to occur in

a given cell if more than 50% of the models predicted species

occurrence for the particular cell. The scope of our study involves

not only derivation of future fish species distribution patterns, but

also estimation of uncertainties and projections variability

associated with the predictor variable selection, SDM, selected

future climate projection and a relationship between the predictor

ranges for the baseline and the future situation. We studied

differences in the spatial distribution patterns of selected fish

species in terms of distribution coincidence rates, differences in the

estimated ‘‘habitat’’ losses and gains as well as percentages of study

area where the future projection is unreliable due to mismatches

between the predictor calibration and future range. Thereby, the

‘‘loss’’ (‘‘gain’’) is defined as the ratio of grid cell number where the

species is currently present (absent) but predicted to be absent

(present) in the future to the total number of currently occupied

cells. The coincidence rate between e.g. projections of two

different climate models correspond to the ratio of coinciding

presence and absence cells for these two models and the total

number of TK25 cells.

Results

Predictor variables selection
From the baseline data set consisting of approximately 50

environmental predictors, through synthesis of the PCA, univar-

iate and the correlation analysis we selected the major factors

representing the climatic, hydromorphologic, topographic and

anthropogenic properties of the studied grid cells (see Table 2 and

Figure S1). Exemplarily, the first two PCA’s of the precipitation

related data set describing 74% and 24% of the joint variability

were correlated most with annual mean precipitation (AnnPMean)

and the precipitation seasonality (PSeason). Consequently, only

these two precipitation related predictors were considered for

further analysis. Also, due to high correlations with the mean

annual temperature (AnnTMean) and AnnPMean, both evapo-

traspiration and runoff had to be excluded from the analysis scope.

Within the subsequent analysis step we quantified the overall

performance of the selected factors in describing spatial distribu-

tion patterns of the selected fish species and performed the final

predictor selection. The results summarized in Table 2 indicate

that mean temperature of wettest (TWetQuart) and driest quarter

(TDryQuart) have lowest predictive power compared to other

climatic factors and, also, that none of the considered anthropo-

genic factors hold significant predictive power. The univariate

regression has additionally enabled us to identify the key factors of

species’s distributions. In particular, as shown in Figure 1, the

mean altitude (AltMean) describes the spatial patterns of Lampetra

fluviatilis (ROC score of 0.85), AnnTMean is the dominant factor

in describing the spatial pattern for Silurus glanis (ROC score of

0.73) and habitat selection of Barbus barbus can be described

using the Strahler stream order (ROC score of 0.8).

Finally, the ‘‘basic set of predictors’’ affecting spatial distribution

of studied fish species entails the following characteristics of the

studied grid cells (see Table 2 for abbreviation explanations):

climatic (AnnTMean, Isotherm, TSeason and AnnPMean),

topographic (AltMean) and hydromorphologic (CumLenkm,

Strahler and RtypMost).

Modeling current fish species distributions
The model calibration process was initiated using the above

described ‘‘basic set of predictors’’. Due to the stepwise predictor

elimination in a search for the most parsimonious model, the final

number of model predictors was commonly between four and six.

Summary of the average statistical performance of the calibrated

models per individual fish species is given in Table 3. The

calibration ROC score for the RF based SDMs indicated

‘‘excellent’’ models (ROC score.0.9) for all 38 species, but the

average validation score of 0.84 emphasized that there is a

considerable performance drop when it comes to the validation

sample. For GAM and GLM based SDMs, both average

calibration and validation scores were around 0.8. ME had lowest

average calibration and validation score (0.76 and 0.72, respec-

tively) and, additionally, ME’s performance has shown to be

dependent on species’s occurrence frequency. Namely, deviation

of the ME based ROC validation score from the average

validation ROC score (calculated as an average per species for

all methods and all repetitions) was positively correlated with the

occurrence frequency (Figure 2). For all SDMs applied, standard

deviations of the ROC score estimates were #0.02 whereas

sensitivities and specificities were .90 for RF and between 70 and

80 for all other SDMs (Table 3). Within the applied modeling

Predictability of Freshwater Biodiversity
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approach both, percentage of presence and absence correctly

predicted were simultaneously maximized, resulting in equal

specificity and sensitivity estimates. Because our intention was to

use the model results to investigate the potential influence of future

changes, to align with assumption that species niches are stable

over time, the model representations of those niches have to be

robust and stable. Due to above described performance pitfalls,

ME was considered inappropriate for the predictive modeling of

the fish species distributions at the particular scale resolution and

was not included in the consensus model building. The average

performance of the consensus models (based on GAM, GLM and

RF and their repetitions) is 0.83 (‘‘good’’, see Table 3). To ensure

robustness and reliability of our forecast, only those species with

average GAM, GLM and RF based validation ROC score $0.8

(Table 3) were analyzed within the subsequent steps.

In order to identify which fish species out of those selected in the

previous step are particularly sensitive to climate, we additionally

ran all models using only climatic predictors. Again, RF based

average ROC score was highest for both, calibration and the

validation data set (0.97 and 0.80 respectively) whereas GAM and

GLM had a similar performance with ROC scores around 0.75.

Interestingly the average validation score based on GAM, GLM

and RF for Aspius aspius, Chondrostoma nasus, Cobitis taenia,

Cottus gobio, L. fluviatilis, Misgurnus fossilis, Pungitius pungitius

and S. glanis was $0.8 suggesting that climate is an important factor

that affects spatial distributions of these species. However, a

comparison between the model performances using all considered

factors (Table 3) and using climatologic factors only (Table 4) reveals

a significant performance drop for the latter, except for C. gobio

and S. glanis, which appeared as particularly climate sensitive.

Figure 1. Lorenz Curve and the empirical probability distributions. (A, D) L. fluviatilis, (B, E) S. glanis (b, e) and (C, F) B. barbus. The ROC score
of 0.85 for AltMean (L. fluviatilis), 0.73 for AnnTMean (S. glanis) and 0.8 for Strahler (B. barbus) indicate high discriminatory power of the individual
predictors in describing species presence (shaded bars) and absence patterns.
doi:10.1371/journal.pone.0040530.g001
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Table 2. Environmental predictors and their discriminatory power.

Predictor Description ROC score PI No

AnnTMean Annual mean temperature (uC) 0.66 7.6 26

DiuTRange Mean diurnal temperature range (uC) 0.58 8.1 23

Isotherm Isothermality (-) 0.58 7.7 21

TSeason Mean temperature seasonality (uC2) 0.58 9.9 23

Tmax Maximum temperature of warmest month (uC) 0.61 3.0 18

TWetQuar Mean temperature of wettest quarter (uC) 0.66 1.8 18

TDryQuar Mean temperature of driest quarter (uC) 0.55 2.6 20

AnnPMean Annual mean precipitation (mm) 0.65 6.1 29

PSeason Mean precipitation seasonality (-) 0.56 3.6 19

AltMean Mean altitude (m) 0.66 17.8 27

CumLenkm Maximum cumulative length of the upstream flow network (km) 0.65 3.9 24

Strahler Maximum Strahler order 0.64 12.9 36

RtypMost Dominant river type 0.61 11.3 32

Lusemax Dominant land use type 0.55 1.7 26

Popmean Mean population density (Inhabitants/km2) 0.57 2.0 24

‘‘ROC score’’ is the mean ROC score based on the univariate analysis; ‘‘PI’’ is the mean permutation importance of each individual predictor for GLM, GAM, RF and ME
based multivariate SDMs; ‘‘No’’ is the number of species for which the respective predictor variable was identified as statistically significant (the total number of
considered species is 38).
doi:10.1371/journal.pone.0040530.t002

Figure 2. Relationship between species occurrence frequency and the ROC score. The ROC score difference is calculated as the absolute
deviation of the average validation ROC score for the particular method from the total average validation ROC score for all applied SDMs (GLM, GAM
and RF). The trend line is based on locally weighted scatterplot smoothing: ME (solid line), GAM (dotted line), GLM (dashed line), RF (dot-dash line).
doi:10.1371/journal.pone.0040530.g002
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Figure 3 shows the current species distribution patterns and

their GAM, GLM and RF model representations for Alburnus

alburnus, C. gobio, Lota lota, Sander lucioperca and S. glanis.

Sensitivies and specificities were highest for the RF based models

(Table 3 and Figure 3) implying that for this particular SDM, the

modeled species distribution patterns are closest to the observed

ones. The average difference between the observed and the

estimated species’ occurrence frequency was highest for GLM

(+0.12), slightly lower for GAM (+0.11) and lowest for RF (+0.02),

but all methods agreed that the currently occupied habitat is

probably smaller that the potentially suitable habitat. Pairwise

comparison of the model outputs revealed that GAM and GLM

have a high agreement in terms of the average coincidence rate

(9361%) whereas between GAM and RF and between GLM and

Table 3. Summary of the model performance for the current conditions.

Calibration ROC score Validation ROC score Sensitivity & Specificity ROC

Species code GAM GLM RF ME GAM GLM RF ME GAM GLM RF ME CM

Abrarama 0.79 0.78 0.97 0.72 0.78 0.77 0.82 0.68 71 70 92 69 0.82

Albuatus 0.90 0.85 0.98 0.90 0.88 0.83 0.90 0.85 81 76 93 86 0.85

Alburnus 0.83 0.81 0.98 0.78 0.81 0.80 0.86 0.74 75 74 93 75 0.84

Anguilla 0.74 0.73 0.97 0.62 0.73 0.73 0.78 0.58 67 67 91 61 0.80

Aspipius 0.92 0.90 0.99 0.89 0.91 0.88 0.93 0.86 84 82 95 86 0.89

Barbrbus 0.90 0.88 0.98 0.80 0.89 0.87 0.90 0.77 83 80 95 76 0.88

Barbtula 0.78 0.75 0.97 0.69 0.77 0.75 0.82 0.64 70 68 92 67 0.80

Blicrkna 0.81 0.80 0.97 0.76 0.81 0.80 0.84 0.72 73 71 92 73 0.83

Caraelio 0.78 0.77 0.97 0.76 0.77 0.76 0.80 0.72 72 71 90 73 0.83

Carasius 0.76 0.75 0.97 0.72 0.75 0.75 0.79 0.69 68 68 91 69 0.81

Chonasus 0.92 0.87 0.99 0.89 0.90 0.85 0.92 0.85 84 78 94 88 0.88

Cobienia 0.91 0.90 0.98 0.85 0.89 0.88 0.90 0.83 83 82 94 81 0.89

Cottobio 0.88 0.86 0.98 0.74 0.88 0.86 0.91 0.71 80 78 95 70 0.86

Cyprrpio 0.74 0.73 0.96 0.68 0.72 0.71 0.77 0.64 68 67 91 66 0.79

Esoxcius 0.77 0.75 0.97 0.66 0.74 0.74 0.79 0.62 70 69 91 64 0.81

Gastatus 0.79 0.77 0.97 0.68 0.78 0.77 0.83 0.64 72 71 92 66 0.82

Gobiobio 0.78 0.76 0.97 0.64 0.76 0.75 0.79 0.60 70 69 92 63 0.80

Gymnrnus 0.84 0.84 0.97 0.80 0.83 0.83 0.87 0.76 76 76 93 76 0.85

Lampilis 0.92 0.90 0.98 0.91 0.90 0.89 0.92 0.88 85 82 94 88 0.89

Lampneri 0.79 0.76 0.97 0.72 0.77 0.75 0.82 0.68 72 70 92 69 0.82

Leucatus 0.76 0.75 0.96 0.77 0.74 0.74 0.78 0.70 70 69 91 75 0.81

Leucidus 0.85 0.81 0.97 0.83 0.83 0.81 0.86 0.78 76 75 92 79 0.84

Leucscus 0.79 0.76 0.97 0.70 0.78 0.75 0.82 0.66 72 68 92 68 0.81

Lotalota 0.83 0.81 0.97 0.82 0.82 0.80 0.86 0.77 75 74 92 80 0.84

Misgilis 0.88 0.87 0.98 0.84 0.86 0.86 0.87 0.81 80 79 93 80 0.87

Percilis 0.76 0.75 0.97 0.65 0.75 0.74 0.79 0.61 70 68 92 63 0.81

Phoxinus 0.83 0.79 0.98 0.78 0.81 0.78 0.84 0.74 74 71 92 75 0.83

Pungtius 0.89 0.89 0.98 0.83 0.88 0.88 0.90 0.81 82 81 95 79 0.89

Rhodarus 0.81 0.80 0.97 0.78 0.78 0.78 0.81 0.75 74 73 91 73 0.84

Rutiilus 0.75 0.74 0.96 0.63 0.73 0.73 0.77 0.59 68 67 91 62 0.79

Salmutta 0.84 0.81 0.97 0.67 0.83 0.80 0.85 0.64 77 73 93 63 0.84

Salvalis 0.79 0.77 0.97 0.80 0.76 0.76 0.80 0.74 71 69 90 79 0.80

Sanderca 0.82 0.81 0.97 0.78 0.82 0.81 0.85 0.74 74 73 93 76 0.83

Scarlmus 0.75 0.74 0.96 0.71 0.73 0.72 0.77 0.66 67 66 91 69 0.80

Siluanis 0.88 0.86 0.98 0.86 0.86 0.85 0.89 0.82 79 77 93 84 0.86

Squaalus 0.81 0.78 0.97 0.70 0.79 0.77 0.82 0.66 73 70 92 67 0.82

Thymllus 0.84 0.81 0.98 0.76 0.83 0.81 0.86 0.72 76 73 93 72 0.83

Tincinca 0.73 0.72 0.96 0.66 0.71 0.71 0.76 0.62 66 65 91 64 0.79

Mean 0.82 0.80 0.97 0.76 0.80 0.79 0.84 0.72 74 73 92 73 0.83

The table values indicate averages over all model repetitions. Standard deviation of the ROC score estimates for the calibration and the validation data sets is less than
0.01, 0.02, respectively, for all methods. ‘‘ROC CM’’ is the ROC score of the consensus models.
doi:10.1371/journal.pone.0040530.t003
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RF, the agreement was considerably lower (7963% and 7762%,

respectively). Consequently, for the species distribution patterns

shown in Figure 3 the average sensitivity and the specificity of the

consensus model was lower (8062%) than that of the RF model

(9861%) but higher than that of the GLM and GAM (7662%).

Patterns in the species’ environmental responses
Four distinct fish species groups have been identified according

to their responses to climatic, hydromorphologic and topographic

factors using the Fuzzy c-means clustering (see Table 5). Group 1

is mainly determined by altitude (e.g. P. pungtius, C. taenia, L.

fluviatilis), group 2 by the hydromorphologic factors (e.g. Salmo

Trutta, Phoxinus phoxinus, Thymallus thymallus), group 3 by a

combination of hydromorphologic and climatic factors (e.g. S.

lucioperca, S. glanis, A. alburnus, C. gobio), and group 4 by a

rather equal contribution of all factors (e.g. C. nasus, A. aspipius,

Gymnocephalus cernuua). Surprisingly, there was no group of

species primarily determined by climatic factors.

Future species distributions and associated uncertainties
The average annual temperature across the studied TK25 grid

cells for 2050s under A1b is according to the ECHAM5 model

slightly lower (10.8uC) than the projections for the HadCM3 and

IPSL-CM4 models (11.1uC, see Table 6) which is however, 2.4uC
higher than AnnTMean of the second half of the 20th century

(8.4uC). Regarding Isotherm, all climate models predict similar

values and the variation is in almost the same range as that for the

20th century climate. The ECHAM5 model, unlike the other two

models, predicts lower TSeason than that of the 20th century.

AnnPMean was predicted to decrease by a similar amount for all

climate models. Although PSeason and Tmax were shown to be

not significant overall, they might have an effect for some of the

selected species. Therefore, we added these to the ‘‘basic set of

predictors’’ within this part of our analyses. Tmax was predicted to

increase by 2.8uC (ECHAM5) to 4.1uC (HadCM3), while PSeason

has lower (ECHAM5 and HadCM3) as well higher (IPSL-CM4)

values then the average 20th century value for the study region.

Estimation of the future distribution patterns was performed for

species from group (3), because for these species climate was more

important than for all other species groups. From group (4), whose

species are affected in general by all three studied factors (climatic,

hydromorphologic and topographic), future distribution of the

stenothermal L. lota was also assessed. Figure 4 shows potential

future habitat suitability maps for C. gobio for different statistical

approaches and different climate models. The apparent decrease

in the habitat suitability is congruent with predicted temperature

increase for all climate models (see Figure 3 (e–h) and Figure 4).

However, Figure 4 and Figure 5 indicate significant variability for

different statistical approaches as well as for the different climate

models. In terms of the occurrence frequency, future projections

for C. gobio vary from 0.10 (GAM & HadCM3) over 0.24

(consensus model merging all projections) to 0.47 (GLM &

ECHAM5).The previous imply changes from a tremendous drop

to a slight increase compared to the current occurrence frequency

(0.42), and consequently underline the high uncertainty of the

future projections. In terms of the coincidence rates, the situation

is much more positive. Average coincidence rates and the

corresponding standard deviations between the GAM and GLM,

Table 4. Summary of GAM, GLM and RF models based on AnnTMean, Isotherm, TSeason and AnnPMean.

Validation ROC score ROC score change Sensitivity & Specificity

Species code GAM GLM RF GAM GLM RF GAM GLM RF

Albuatus 0.78 0.74 0.86 20.09 20.08 0.07 71 68 91

Alburnus 0.76 0.76 0.81 20.04 20.04 0.11 69 69 91

Aspipius 0.81 0.79 0.87 20.1 20.09 0.05 73 71 92

Barbrbus 0.75 0.74 0.81 20.13 20.12 0.07 71 68 92

Blicrkna 0.76 0.74 0.80 20.04 20.05 0.13 69 67 91

Chonasus 0.82 0.78 0.86 20.07 20.07 0.05 75 72 91

Cobienia 0.81 0.74 0.88 20.08 20.15 0.08 74 66 93

Cottobio 0.83 0.78 0.88 20.05 20.08 0.07 74 70 94

Gymnrnus 0.79 0.77 0.82 20.03 20.06 0.1 71 69 92

Lampilis 0.82 0.76 0.85 20.07 20.13 0.05 75 67 91

Leucidus 0.73 0.68 0.80 20.09 20.13 0.11 68 61 91

Lotalota 0.72 0.69 0.80 20.09 20.11 0.1 66 65 90

Misgilis 0.80 0.76 0.84 20.05 20.09 0.1 73 70 91

Phoxinus 0.72 0.65 0.80 20.08 20.13 0.13 67 60 91

Pungtius 0.81 0.78 0.86 20.06 20.09 0.08 75 71 93

Salmutta 0.78 0.71 0.82 20.05 20.09 0.12 71 66 93

Sanderca 0.77 0.75 0.81 20.04 20.05 0.12 70 70 91

Siluanis 0.83 0.81 0.85 20.03 20.04 0.08 75 73 92

Thymllus 0.76 0.72 0.82 20.07 20.09 0.11 70 66 92

Mean 0.75 0.72 0.80 20.07 20.09 0.09 69 67 91

ROC score, sensitivities and specificities indicate averages over all model repetitions. Standard deviation of the ROC score estimates for the validation data sets ranges
from 0.01 to 0.03 for GLM and GAM based models and from 0.01 to 0.02 for RF. The ‘‘ROC score change’’ is the difference between the mean ROC for the models based
on climatic factors and the mean ROC for models considering climatic, topographic and hydromorphologic predictors (see Table 3).
doi:10.1371/journal.pone.0040530.t004
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GAM and RF and GLM and RF projections for species from

group (3) were 9267%, 8866% and 8766%, respectively.

Differences in the projections of HadCM3 and IPSL-CM4 were

rather negligible (average coincidence rate of 9762%) whereas

ECHAM5 projects slightly different patterns then the previous two

models with lowest coincidence rate with the HadCM3 model

(8966%). Overall, differences among climate models were much

less than differences among statistical methods.

Comparisons between the consensus models for the current

and future situation calibrated using species specific predictor

variables selected from the ‘‘basic set of predictors’’ indicated

that the coldwater adapted species L. lota and C. gobio are

expected to lose 45% and 71%, respectively of currently

suitable cells (Table 7). The warm water adapted species A.

alburnus, S. lucioperca and S. glanis are expected to significantly

expand their distribution ranges. Including two additional factors

in the model building process (PSeason and Tmax) for the

coldwater adapted C. gobio resulted in a significant change of

predicted distribution pattern from losing about 45% of the

currently suitable cells to gaining about 29%. Thereby, RF

estimates were considerably unproportional to that based on GAM

and GLM.

Analysis of the current ranges of the model predictors and those

predicted for 2050s revealed that AnnTMean is outside the

calibration range for 82% of the study area (Table 8). For all other

factors, the mismatch between the calibration and the future

predictor range was lower than 2%. However, due to the

multivariate model setup, on average, for more than 90% of the

study area future estimates were based on at least one extrapolated

species environmental responses.

Discussion

Methodological aspects
Overall, our study showed a high potential for the use of grid

cell related information in biogeographical modeling of fish

distribution patterns.

ME has shown to be excellent for modeling distribution patterns

of species with low occurrence frequency, however, due to

performance dependence on occurrence frequency it is considered

inappropriate for biogeographical modeling at the particular scale

resolution. Although RF was clearly outperforming GAM and

GLM in the model calibration phase, all three methods had

similar performance in the validation phase indicating that for

Figure 3. Current species distributions and their model representations. Each row shows species specific results: (A–D) A. alburnus, (E–H) C.
gobio, (I–L) L. lota, (M–P) S. lucioperca and (Q–T) S. glanis. The first column indicates current species distribution and is followed by the model
representations using GAM, GLM and RF, respectively. Gray dots indicate centroids of the grid cells across the whole study area (Germany).
doi:10.1371/journal.pone.0040530.g003
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predictive purposes, they are all equally suitable. However, since

GAM and GLM are both additive species distribution models,

when used for conservation and restoration planning, the

projections require a thorough revision. Due to the additive

consideration of the contributing factors, one could calculate a

high probability of species occurrence in a region where all factors

except one are within the species environmental tolerance range.

However, if this one factor points to the water temperature above

species ultimate lethal limit, then it is obvious that the model will

fail to give a reasonable estimate of the habitat suitability. A simple

solution to this problem is adding an additional algorithm in the

probability estimation, which reduces the species occurrence

probability or the habitat suitability to zero for all locations where

the species existential tolerance limits are exceeded for at least one

factor.

The importance of using consensus methods among different

SDMs towards assessment of the model inherent uncertainty is

already addressed in recent studies (e.g. [1], [6], [7]). However,

consensus methodology neither mitigates projection uncertainty

due to a weak predictor selection nor projection uncertainty due to

poor performing SDMs. To assure reliability of our future

projections, explicit parameter selection was supplemented with

application of the consensus methodology for only those species

with ‘‘good’’ to ‘‘excellent’’ average validation ROC score. The

Table 5. Mean permutation importance of the predictor groups, cluster id’s and the corresponding cluster membership grades.

GAM GLM RF

Species code C H HY Fc MG C H HY Fc MG C H HY Fc MG

Albuatus 0.5 0.4 0.1 2 0.5 0.3 0.3 0.4 3 1.0 0.4 0.3 0.2 3 0.8

Alburnus 0.4 0.1 0.5 3 1.0 0.4 0.0 0.6 1 0.6 0.5 0.1 0.4 4 0.4

Aspipius 0.3 0.3 0.4 1 0.9 0.3 0.3 0.4 3 1.0 0.3 0.2 0.4 2 0.9

Barbrbus 0.2 0.3 0.5 1 0.8 0.3 0.1 0.6 1 0.9 0.2 0.2 0.6 2 0.5

Blicrkna 0.4 0.2 0.4 3 0.4 0.3 0.1 0.6 1 0.7 0.5 0.2 0.3 2 0.4

Chonasus 0.4 0.3 0.3 1 0.6 0.4 0.2 0.4 3 1.0 0.4 0.2 0.4 2 0.8

Cobienia 0.2 0.6 0.2 2 0.9 0.2 0.6 0.2 4 1.0 0.2 0.6 0.2 1 0.9

Cottobio 0.5 0.1 0.4 3 0.8 0.3 0.0 0.7 1 0.9 0.5 0.2 0.2 4 0.6

Gymnrnus 0.2 0.4 0.4 1 0.8 0.1 0.3 0.5 3 0.5 0.4 0.3 0.3 3 0.7

Lampilis 0.3 0.5 0.2 2 0.9 0.1 0.5 0.3 4 0.7 0.2 0.6 0.2 1 1.0

Leucidus 0.2 0.4 0.4 1 0.6 0.2 0.5 0.3 4 0.7 0.3 0.4 0.3 1 0.4

Lotalota 0.3 0.3 0.4 1 0.9 0.2 0.1 0.7 1 0.6 0.4 0.3 0.3 3 1.0

Misgilis 0.3 0.5 0.2 2 0.9 0.3 0.5 0.2 4 0.9 0.3 0.3 0.3 3 0.8

Phoxinus 0.2 0.2 0.6 4 0.8 0.1 0.0 0.9 2 1.0 0.4 0.3 0.3 3 1.0

Pungtius 0.1 0.8 0.1 2 0.7 0.1 0.8 0.1 4 0.9 0.3 0.6 0.1 1 0.9

Salmutta 0.3 0.1 0.6 4 0.9 0.1 0.0 0.9 2 1.0 0.5 0.2 0.3 4 0.4

Sanderca 0.4 0.0 0.6 3 0.8 0.4 0.0 0.6 1 0.9 0.6 0.1 0.4 4 0.9

Siluanis 0.5 0.0 0.5 3 0.9 0.5 0.1 0.5 1 0.6 0.7 0.1 0.2 4 0.8

Thymllus 0.3 0.1 0.7 4 0.9 0.0 0.0 1.0 2 0.9 0.4 0.2 0.4 2 1.0

Mean 0.3 0.3 0.4 - - 0.2 0.2 0.5 - - 0.4 0.3 0.3 - -

Table values indicate average permutation importance in percent of each predictor group: climate (C), altitude (H) and hydromorphology (HY). Members of the C group
are AnnTMean, Isotherm, TSeason and AnnPMean, in the HY group are Strahler, CumLenkm and RtypMost while H is based on the permutation importance of AltMean.
Degree to which each species belong to a Fuzzy cluster Fc is indicated by the membership grade MG.
doi:10.1371/journal.pone.0040530.t005

Table 6. Major characteristics of the bioclimatic predictor variables for the 20th century climate and for the future climate
projections (2050s).

Predictor Unit
Mean and range 20th
century Worldclim

Mean and range for
2050s ECHAM5

Mean and range for
2050s HADCM3

Mean and range for
2050s IPSL-CM4

AnnTMean uC 8.4 (2.5–10.4) 10.8 (4.8–12.9) 11.1 (5.1–13.2) 11.1 (5.0–13.1)

Isotherm uC 3.1 (2.3–3.5) 3.2 (2.4–3.5) 3.1 (2.3–3.5) 3.1 (2.2–3.5)

TSeason uC2 63.7 (54.5–76.8) 62.7 (52.7–73.6) 66.8 (58.2–79.2) 65.3 (57.4–77.8)

AnnPMean mm 732.1 (482.4–1414.1) 716.3 (473.3–1323.1) 715.3 (467.0–1363.6) 713.4 (473.6–1374.4)

Tmax uC 22.7 (19.4–25.5) 25.5 (21.3–28.7) 26.8 (22.4–30.1) 25.9 (22.2–28.6)

PSeason - 20.7 (9.5–37.1) 15.0 (9.9–27.4) 17.2 (11.0–26.9) 22.5 (12.3–36.6)

See Tableô 2 for abbreviation explanations.
doi:10.1371/journal.pone.0040530.t006
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need for a well-grounded predictor selection process and detailed

model validation was confirmed by the fact that RF provided

‘‘excellent’’ models for all calibration samples independent of the

predictor data set used as well as with a significant change in the

estimated future ‘‘losses’’ and ‘‘gains’’ following a change in the

predictor setup. Namely, with including two more parameters in

the modeling, due to low to moderate predictive power of the

initially considered predictors, predictor hierarchical importance

was significantly rearranged followed with changes in their

contribution to the probability of occurrence. Consequently,

estimates of climate change effects were significantly different

from those of the initial model.

Uncertainties associated with the estimates of the climate

change effects on fish distribution patterns across the TK25 grid

cells are high and have multiple sources. Consistent with the

results of Buisson et al. [6] we have shown that SDMs contribute

to higher variability in future projections than the climate change

models. Since most ecological studies on climate change effects

were based on the combination of GAM with the HadCM3 model

we outline that our results show that this particular combination

led to the most pessimistic estimates of future habitat suitability,

whereas the most optimistic one was the combination of GLM and

ECHAM5 model.

As the most concerning uncertainty source we identified a

mismatch between the current and future ranges of factors

affecting species distributions. On average, for more than 90% of

the studied area at least one factor is expected to be beyond the

range considered in the model calibration, implying that this effect

has to be necessarily included in the process of evaluation of the

projection uncertainty, independently of the study grain (site,

catchment or grid cells). We outline that in order to obtain reliable

estimates of future changes, not only parameter-, SDM- and

climate model selection should be performed with care but also

selection of the study area. Extending the study area to regions

with high overlap of current environmental conditions with the

future expected conditions in the area of interest is a potential

solution for avoiding the above described pitfall.

Species’ environmental responses
Despite the uniqueness of our scale resolution, our results with

respect to the type of climatic and topographic factors affecting fish

species distributions were in accordance with recently observed

general trends (see [2], [3], [9]). For instance, using GAM models

calibrated on site data for 30 fish species from major French rivers

Buisson et al. [2] have shown that the upstream-downstream

gradient accounts for the major portion of the variability in species

niche separation. The previous comply with our results as well as

the conclusion that the mean annual temperature should be

considered for both cold and warm water species. Our analyses

indicate that neither human population density nor land use have

considerable predictive power with respect to the distribution

patterns of the analyzed fish species. The fact that Germany has

Figure 4. Potential distribution patterns for 2050s under A1b scenario for C. gobio. Each row shows the results of the particular climate
model: (A–D) ECHAM5, (E–H) HADCM3 and (I–L) IPSL-CM4. The first column shows the result of the mean consensus model based on all repetitions of
GAM, GLM and RF, followed by the mean future projections using all repetitions of the individual models: GAM, GLM and RF, respectively. Gray dots
indicate centroids of the grid cells across the whole study area (Germany).
doi:10.1371/journal.pone.0040530.g004
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low population density variations as compared with other

European countries might be the reason for the low predictive

power of population density. Regarding land use, we assume that

the size of our analysis unit was on one hand too small to catch the

accumulated effects of the land use in the basin (e.g. agricultural

land use and consequent nutrient loads) and on the other hand,

too coarse to catch the local effects (e.g. shadow effects caused by

trees). The necessity of describing basin heterogeneity when

describing fish species distribution patterns is confirmed by the

predictive power and the importance of the cumulated upstream

river length and the Strahler order. The cumulated upstream river

length describes the general biodiversity potential whereas the

Strahler order describes the complexity level of the stream, and,

consequently, the habitat heterogeneity level regarding the flow

regime. Strahler order provided a suitable proxy for the upstream-

downstream gradient and river type by integrating over all hydro-

physical characters along the river network. Our result that the

Strahler order alone describes a large portion of spatial

distribution pattern of B. barbus is not surprising considering that

this species generally occupy middle stream reaches. Also,

significant univariate ROC score and high predictive importance

for the factor describing dominant substrate type underlined the

importance of this factor in biogeographical modeling of fish

species and confirmed substrate preference as an important fish

trait [21].

Through analysis of the species’ environmental responses we

have shown that P. pungitus, C. taenia and L. fluviatilis occupy similar

environmental niche well described by the TK25 cell altitude.

Actually, all of these species tend to occupy stream reaches close to

the river mouth [33]. Lassale et al. [4] have shown that the spatial

distribution pattern of L. fluviatilis across Europe is mainly

dependent on the longitude at the mouth. Considering that

Germany has a pronounced North-South altitudinal gradient, this

is comparable to our finding that the average altitude of the

studied region is the most important environmental predictor.

Salmo trutta, P. phoxinus and T. thymallus were found strongly related

with the hydromorphologic factors. They all require clean gravel

substrates [34] and tend to occupy the upstream basin parts

characterized by fisheries as ‘‘trout zone’’. S. lucioperca, S. glanis, A.

alburnus and C. gobio showed to be driven by climatic and

Figure 5. Current and the potential future distribution patterns of selected species for 2050s under A1b scenario. Each row shows
species specific results: (A–E) A. alburnus, (F–J) C. gobio, (K–O) L. lota, (P–T) S. lucioperca and (U–Y) S. glanis. The first column is the consensus model of
current species distribution based on all repetitions of GAM, GLM and RF, the second shows the result of the ensemble forecasting based on the
combination of all SDM’s (including repetitions) and all climate projections, followed by the maps showing the mean consensus model based on all
SDM’s (including repetitions) and ECHAM5, HADCM3 and IPSL-CM4 climate projections, respectively.
doi:10.1371/journal.pone.0040530.g005
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hydromorphological factors occurring in stream middle reaches,

but the first three tend to occupy deeper, low flowing waters in

large streams, while C. gobio is restricted to fast-flowing water of

small stream to medium-sized rivers [33]. Within the analyses of

the potential of climate as a single factor describing fish species

distribution both, C. gobio and S. glanis have been identified as

particularly climate sensitive wherefore the finding on the

importance of hydromorphology for these two species adds

significant information with regard to the potential conservation

pathways.

Expected changes in fish distribution patterns with
climate change

Climate change is expected to cause alterations in both

temperature and precipitation in Germany. We have shown that

the climate alterations are likely to affect fish distribution ranges,

manifested as narrowing of ranges of cold water fish (C. gobio and

L. lota) and expansions for warm water species; however, the extent

of these changes is highly uncertain.

Analogous to marine fish populations (e.g. [35]) we expect that

as an implication of the climate change effects, freshwater

organisms will face complex changes at organismal-, individual-,

population and ecosystem levels of biological organisation, which

will vary in magnitude and area among the different regions.

Individual-level changes will involve movement into more suitable

areas and consequently change species composition along the

upstream-midstream-downstream gradient. Such a tendency has

already been observed for the Upper Rhône River [36] where the

increase of average water temperature in the last quarter of the

20th century by about 1.5u was followed by the replacement of

cold water, northern species by thermophilic, southern species.

Population level changes might be caused by local climatic

changes. For example, Borgstrøm et al. [37] have shown that little

or no snow, accumulated snow depth and summer temperatures

have considerable effects on the population recruitment of brown

trout in high mountain areas of Norway. Further, physiological

and ecologic changes in populations of Atlantic salmon and brown

trout involving time of spawning, egg survival rate, longevity and

age and size at smelting are strongly affected by temperature [38],

[39]. At the ecosystem level it is expected that the strength of

trophic interactions between consumers and resources may

become weakened or broken [15]. Also, increased temperatures

have shown to lead to rejuvenation and increase of small fish

abundance [40], [41], implying that higher temperatures might

affect processes related to nutrient cycling. The importance of fish

in nutrient cycling may be most pronounced during dry periods

when external inputs are reduced [42], and drier periods are

predicted to be more frequent, or of longer duration in many areas

(ref to climate model). Woodward et al. [15] also noted that

summer drought may lead to general habitat degradation through

increase of pollutant concentrations. In addition, ecosystem

Table 7. Summary of the mean expected loss and gain.

GAM GLM RF ECHAM5 HADCM3 IPSL-CM4 Mean

Code loss gain loss gain loss gain loss gain loss gain loss gain loss gain

Alburnus 0 160 0 159 9 125 0 142 0 161 0 160 0 158

Alburnus* 0 140 0 161 13 53 0 122 0 141 0 157 0 145

Cottobio 67 0 25 2 46 4 32 3 61 0 50 0 45 0

Cottobio* 13 6 5 15 0 109 1 45 3 22 6 8 0 29

Lotalota 60 0 77 0 65 9 80 0 60 0 66 0 71 0

Lotalota* 16 23 67 0 4 132 42 5 15 18 14 20 21 8

Sanderca 0 166 0 157 0 169 0 147 0 170 0 166 0 166

Sanderca* 0 137 0 159 0 165 0 138 7 168 0 163 0 162

Siluanis 0 261 0 269 2 257 0 208 0 283 0 275 0 269

Siluanis* 0 227 0 277 2 220 0 178 11 276 0 267 0 262

Table values indicate mean expected loss and gain (percentage of suitable cells) as compared to the consensus model for the 20th century climate. Asterisk in the
species code (*) indicate that the predictor data set was extended by Tmax and PSeason. Model specific values (GAM, GLM and RF) are based on averaging across all
future projections of the three climate models. Climate model specific values (ECHAM5, HADCM3 and IPSL-CM4) are based on averaging across all corresponding
projections of the three SDMs. ‘‘Mean’’ indicates loss and gain resulting from comparison between the consensus future projection merging all SDMs and all climate
change models and the consensus model for the 20th century climate.
doi:10.1371/journal.pone.0040530.t007

Table 8. Uncertainty estimation of the future species distributions.

scenario AnnTMean Isotherm TSeason AnnPMean Tmax PSeason total

ECHAM5 74.0 0.1 3.6 0.3 50.0 0.0 84.0

HADCM3 85.6 0.1 0.4 0.6 83.1 0.0 96.3

IPSL 85.1 0.1 0.1 0.4 63.4 0.0 90.5

mean 81.6 0.1 1.4 0.4 65.5 0.0 90.3

Table values indicate percentage of cells with projected values outside the species calibration range (either lower than observed minimum or higher than the observed
maximum). The column ‘‘total’’ is the total number of cells where for at least one model parameter the projected values are outside the species calibration range.
doi:10.1371/journal.pone.0040530.t008
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changes will vary among ecosystem types. For example, small

streams, due to greater temperature and flow sensitivity, are

expected to be more vulnerable than large streams to the future

climate changes.

Secondary effects of the individual level changes, manifested as

species establishments outside their current native spatial ranges

and the subsequent invasions, might be even higher than direct

temperature effects. For example, for common carp, currently

non-native persistent but not established in England and Wales, it

has been shown that the combination of temperature increase and

carp invasion will result in habitat destruction, macrophyte loss

and increased water turbidity [43]. Expansion of invasive species

will modify biotic interactions by altering competitive dominance,

increased predation rates, as well as enhancement of disease

virulence [44].

Study limitations and recommendations
Despite high predictive performance of the SDMs based on grid

cell related species information, we underline that the grid cell

data should be seen only as an alternative in cases where stream

network related data are not available. Especially in regions where

the major factors affecting species distributions are dispersal

limitations and local environmental peculiarities acting at spatial

scales much smaller than the grid cell size, the stream network

related data (site or river reach) have the primacy over the grid cell

data. One of the major limitations of SDMs in general are the

assumptions that species are in equilibrium with their environment

and that there is no limitation to dispersal (see [45]). Fish species

generally require different habitat properties for different life stages

implying that a critical criterion for completing their life cycles is

accessibility of functionally required habitats along the river

systems [12]. For example, dams can block access to the historical

spawning places and also induce habitat changes such as retention

of nutrients and sediments, and can even lead to the genetic

fragmentation of populations [46]. Also, possible adaptive shifts in

environmental tolerances, especially when the species ability to

disperse or migrate is limited, are ignored by the common SDMs

[10]. However, even if all of the above listed SDM limitations have

been carefully taken into account, the spatial study extent that

covers only a fraction of species’ realized niches [47] or a fraction

of possible environmental characteristics of freshwater systems

would seriously affect the prediction reliability of the effects of

future ecosystem changes.

The previous considerations imply that, in order to account for

the whole spectrum of climate change effects on fish populations, a

multi-faceted approach is needed, including appropriate long term

field data at a sufficiently broad spatial scale, information from

experimental studies designed to understand species’ environmen-

tal responses, establishment of a robust analysis framework and

thorough evaluation of the uncertainties associated with estimates.

Only with these major steps, will we achieve confidence in the

ability of the methodology to model the current and predict the

future effect of environmental changes.

Supporting Information

Figure S1 Predictor maps: annual mean temperature

(AnnTMean), mean diurnal temperature range (DiuTRange),

isothermality (Isotherm), mean temperature seasonality (TSeason),

maximum temperature of warmest month (Tmax), mean temper-

ature of wettest quarter (TWetQuar), mean temperature of driest

quarter (TDryQuar), annual mean precipitation (AnnPMean),

mean precipitation seasonality (PSeason), mean altitude (Alt-

Mean), maximum cumulative length of the upstream flow network

(CumLenkm), maximum Strahler order (Strahler), dominant river

type (RtypMost), dominant land use type (Lusemax) and mean

population density (Popmean).

(TIF)
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