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Abstract

The brain is one of the most studied and highly complex systems in the biological world. While much research has
concentrated on studying the brain directly, our focus is the structure of the brain itself: at its core an interconnected
network of nodes (neurons). A better understanding of the structural connectivity of the brain should elucidate some of its
functional properties. In this paper we analyze the connectome of the nematode Caenorhabditis elegans. Consisting of only
302 neurons, it is one of the better-understood neural networks. Using a Laplacian Matrix of the 279-neuron ‘‘giant
component’’ of the network, we use an eigenvalue counting function to look for fractal-like self similarity. This matrix
representation is also used to plot visualizations of the neural network in eigenfunction coordinates. Small-world properties
of the system are examined, including average path length and clustering coefficient. We test for localization of
eigenfunctions, using graph energy and spacial variance on these functions. To better understand results, all calculations are
also performed on random networks, branching trees, and known fractals, as well as fractals which have been ‘‘rewired’’ to
have small-world properties. We propose algorithms for generating Laplacian matrices of each of these graphs.
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Introduction

Fractal theory has become an increasingly prevalent topic of

both debate and research in recent years. Beginning with

Mandelbrot’s discussion of Britain’s immeasurable coastline [1],

fractal analysis has found applications in both the mathematics

and scientific communities. In the geometric sense, fractals are

objects that contain self-symmetry: they exhibit the same pattern

on increasingly smaller scales.

More recently, fractal theory has found applications in the

biological realm. Kinetics of ion channels have been modeled with

fractal structures [2,3]. Fractal dimension has been used to analyze

human EEG signals [4] as well as the complex morphology of

living cells [5,6]. The applications of fractal theory in neuroscience

have been a particularly prevalent topic of research [7–9]. Glial

cells have been analyzed in-depth using fractal dimensions and

modeling [10–12]. Dendritic branching has been shown to exhibit

self-similarity [13,14], and three-dimensional fractal structures

have been used to approximate the white matter surface of the

human brain, based on MRI images [15]. Nevertheless, some have

warned against the possible misuses of fractal theory in neurosci-

ence [16,17]. In particular, calculations on fractal dimensions of

biological systems have been called into question, where some

studies have attempted to use this measurement as an overly-

generalized tool which lacks definite relation to actual biological

mechanisms.

In this paper we use a graph-theoretical approach to probe the

structure of the Caenorhabditis elegans neural network for self-

similarity. Similar work was done by Sporns in examining the

presence of fractal patterns in neuron connectivity: in [18], fractal

networks were generated and structural measures were calculated,

including small-world properties, complexity, and motif composi-

tion. Advances in graph theory have proven useful in analyzing

complex neural networks [19–21] as well as underlying motifs in

the brain [22,23]. In this paper we apply mathematical techniques

to a physical map of the C. elegans connectome. With a well-

connected component of only 279 neurons, it is an excellent

candidate for graph theoretical research on a complete-brain

model. While [24] presents a geometric structure of this system,

our research builds upon that of [25] in which Varshney et al.

propose a finalized schematic of the C. elegans neural network.

The C. elegans brain is composed of three types of neuronal cells:

sensory neurons, motor neurons, and interneurons. Two types of

connection exist between these neurons: chemical synapses and

gap junctions. The gap junction network, which sends electrical

signals via ion transport, is an undirected system. Conversely,

chemical synapses possess clear directionality [25]. In this paper

we study the overarching connectivity between neurons. In order

to analyze the fundamental network-structure of the C. elegans

neurons, we consider only the skeleton of the brain’s organization.

Although some neurons share multiple points of contact and

chemical synapses send directional signals, we only observe that

two neurons are connected. As a result, we study an undirected

and unweighted network combining the chemical and gap

junctions, representing only the framework of connections (See

Methods). In the process, this analysis loses many of the biological

details which correspond to functionality and neuron hierarchy.
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While such information is vital in understanding the mechanisms

acting within the brain, the goal of this study is to mathematically

analyze the system’s structural connectivity, whereby this simpli-

fied network is sufficient.

In order to index each of these connections we use the graph

Laplacian matrix, L~½li,j �. For a graph, G, we define dv as the

degree of vertex v: the number of total connections. If vertex u is

connected to vertex w then lu,w~{1 and lw,u~{1, where li,j

corresponds to the entry in the ith row and jth column.

Furthermore, lv,v~dv, and all other entries of matrix L are 0.

The original goal of this study was to examine the structure of the

C. elegans neural network for self-similarity, and results were

compared to identical calculations on other graphs. One should

note that although fractal theory has repeatedly been applied in

neuroscience, in studying the structure of a network the results are

not as simple as saying ‘‘fractal’’ or ‘‘not-fractal.’’ Instead we

search specifically for self-similar structures in the network’s

organization.

Results and Discussion

For the C. elegans model, we derived a Laplacian matrix from the

adjacency matrices used in [25]. Algorithms were developed to

produce similar matrices representing random graphs, branching

trees, and rewired fractal geometries. These graphs were generated

with similar properties as the C. elegans neural network, including

number of vertices and probability of connection. Details on

matrix generation can be found in Methods.

The Eigenvalue Counting Function
The eigenvalue counting function is a cumulative distribution

function on the spectrum of a matrix, in this case the Laplacian

(see Methods). Plotting this function gives an expedient way to

analyze the spectrum of the graph Laplacian [26]. It is known that

this function exhibits spectral ‘‘gaps’’ when applied to fractal

geometries, corresponding to sections of slope-zero in the plot

[27]. The asymptotics of this function have also been shown to be

linked with heat dissipation in networks [28]. Figure 1 shows plots

of the eigenvalue counting function on the Laplacian matrices.

There is a clear presence of step-like portions of those graphs

corresponding to known fractals. These sections of slope-zero

correspond to spectral gaps, consistent with expected results. The

eigenvalue counting function plot of the C. elegans connectome

(Fig. 1 (a)) does not show definitive spectral gaps, indicating that

the nematode brain is not strictly fractal in structure. This,

however, does not eliminate the possibility of some degree of self-

similarity. Figure 1 (c) contains the graph corresponding to a

random-branching tree. The large vertical jump at x~1, with a

change on the y-axis of approximately 200, indicates that the

eigenvalue 1 occurs with extremely high multiplicity. This is

caused by the nature of the tree’s organization. There is a large

number of endpoints: vertices at which no further branching

occurs, connected only to the ‘‘parent’’ vertex. As the highly

interconnected neural network is not tree-like, dissimilarity in

observed eigenvalue counting patterns is consistent with expected

results. Although the eigenvalue counting function of the C. elegans

neural network does resemble those of the random network (Fig. 1

(e)) and the rewired Sierpinski Gasket (Fig. 1 (f)), this cannot

conclusively point to similar structural organization, whereas

drastic dissimilarity would point to fundamental differences.

Weyl Ratios
The Weyl ratio of a graph is defined as

W (x)~N(x)=xa

where N(x) is the eigenvalue counting function. a is determined

by the logarithmic asymptotics of the eigenvalue counting

function. One way to determine this a is via a linear regression

on N(x) when plotted on logarithmic axes. Log-log periodicity of

Weyl ratios is present in fractal geometries, and has been observed

in graph-approximations of fractals. Similar periodicity in Weyl

ratio patterns of other networks can point to self-similarity in these

graphs. For more on Weyl ratio analysis on fractals, see [29].

As expected, the Weyl ratios of known self-similar fractals show

a high degree of organization. That of the Sierpinski gasket in

particular (Fig. 2 (b)) shows unmistakable periodicity. It should be

noted that the Weyl ratio graph of the branching-tree (Fig. 2 (c)) is

again different from those of other networks, arising from a lack of

what we call ‘‘looping.’’ In highly interconnected networks, many

cyclic paths exist, allowing a signal to arrive back at a starting

vertex by traveling through a series of other vertices. Trees, on the

other hand, lack this feature: only one path exists between any two

points, helping to create a unique Weyl ratio pattern.

While several cases of slight periodicity could be argued for, this

evidence is not definitive enough to indicate self-similarity in the C.

elegans neural network (Fig. 2 (a)). However, there exists similarity

between the Weyl ratio patterns generated by the spectrum of the

C. elegans neural network, the random network (Fig. 2 (e)), and the

rewiring of the Sierpinski Gasket (Fig. 2 (f)). The significance of

examining a ‘‘rewired’’ fractal structure will become clear later in

this paper. It is important to note that this likeness in Weyl ratio

patterns can suggest some structural similarity.

The Eigen-Projection Method
We replicated the network visualization performed in [25] and

extended this technique to our other networks. This was done in

Euclidean space via the eigen-projection method explained in

[30], similar to those processes described in [31,32]. This spectral

approach to visualizing graphs utilizes the eigenfunctions of

degree-normalized Laplacian matrices (see Methods). The eigen-

projection method, also known as ‘‘plotting in eigenfunction

coordinates,’’ plots the vertices of a graph using the eigenfunctions

of its Laplacian matrix as a coordinate basis. See Methods for a

more rigorous description.

After embedding each vertex in either 2- or 3-dimensional

space, neuronal or network connections were represented with line

segments between the appropriate points. In the case of the C.

elegans diagram, the same color-coding as [25] was utilized: where

red represents sensory neurons, green are motor neurons, and blue

indicates interneurons. Lastly, points were labeled with the

corresponding neuron abbreviations. This was done using a slight

variation of the VISUALIZE program used by Chklovski and

Varshney, available at [33].

The eigen-projection visualizations (Figure 3) allow us to make

further qualitative distinctions between the C. elegans brain and

other networks. In support of previous observations, it is again

clear that the nematode connectome is not strictly fractal in

structure. On the contrary, the eigenfunction graphs of the

Sierpinski Gasket once again display characteristics expected of

self-similar fractals: a high degree of ordering and self-symmetry.

While the eigenvalue counting function and Weyl ratios showed

little distinction between the C. elegans brain and a random graph,

eigen-projections provide differentiation between the two. The

Self-Similarity and the C. elegans Neural Network
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random graph appears, as expected, more or less a scatter of

points. The C. elegans brain, however, shows a definite structure

with organized connectivity, suggesting that the C. elegans neural

network is not a randomly connected system of neurons. On the

other hand, the C. elegans neural network maintains its resemblance

to a rewired Sierpinski gasket when plotted in eigenfunction

coordinates. While there is no effective way to quantify this

heuristic similarity in a relevant manner, it sustains its interest

experimentally and continues to suggest the presence of some

structural parallels.

The eigen-projections display some of the functional organiza-

tion of the C. elegans neural network. It is clear that the neurons are

arranged roughly by neuron type. There is a distinctive cluster of

motor neurons (green), a larger sub-component of sensory neurons

(red), and interneurons interspersed throughout the network (blue).

This indicates that although the brain may not posses the strict

self-similarity of a fractal structure, it is indeed highly organized as

one would anticipate, developed for entirely functional purposes.

Small-World Network Properties
We consider two functions defined on graphs: average clustering

coefficient and average path length. The clustering coefficient of a

vertex v, cv, is the probability that any two vertices neighboring v

are also connected to each other. The path length between two

vertices u and v is the shortest path along the graph’s edges

connecting u and v (Note that this path usually travels through a

number of other vertices). Using Djisktra’s algorithm, it is possible

to rigorously determine the shortest path between a given vertex

and each other vertex on the graph. By repeating the algorithm for

each node on the graph, it is possible to determine the shortest

path between each pair of vertices. The average path length, l, is

Figure 1. Weyl Ratios (a) C. elegans neural network (b) Sierpinski Gasket, Level 5 (c) Random Tree n~279,m~10 (d) Hexacarpet Level 3 (e) Random
Network n~279,p~0:07 (f) Sierpinski Gasket Rewiring p~0:15.
doi:10.1371/journal.pone.0040483.g001

Self-Similarity and the C. elegans Neural Network
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calculated by finding the arithmetic mean of the shortest paths

between each pair of vertices on the graph. Small-world networks

are (generally) defined as networks which have a much higher c

value than random networks, but maintain a value of l only

slightly larger than that of a random network [34].

Small-world networks arise quite often in the natural sciences, as

they allow for the efficient transfer of information while

maintaining a certain level of complexity. There is a great deal

of research which suggests that neural networks possess small-

world properties [35,36]. In fact, [25] and [34] have previously

demonstrated that the C. elegans neural network is small-world in

nature. Our calculations of clustering coefficient and average path

length confirm these findings. As Table 1 shows, the C. elegans

neural network has an average path length only slightly larger than

that of its associated random network (see Methods for how these

‘associated random networks’ were constructed). At the same time,

the clustering coefficient for C. elegans is six times larger than that of

its associated random network, meaning the neural network of C.

elegans satisfies the small-world properties as defined by [34].

This motivated our work with network-rewiring, related to that

done by Watts and Strogatz. In [34] they showed that moving

connections in an ordered network, with a certain probability p,

led to some interesting changes in graph structure. Namely, when

p is small, a slight increase in p causes a large drop in l but does

not change c appreciably: the network takes on small-world

characteristics. Intuitively this can be explained by the fact that

these sparse random connections don’t change a graph’s strong

localized structure, but it becomes easier to travel long distances

via these new connections which can span large gaps. It is clear

from Table 1 that the Sierpinski Gasket does not possess small-

world characteristics. This supports the propositions of [37], which

describes the existence of a dichotomy between fractal structures

Figure 2. Weyl Ratios (a) C. elegans neural network (b) Sierpinski Gasket, Level 5 (c) Random Tree n~279,m~10 (d) Hexacarpet Level 3 (e) Random
Network n~279,p~0:07 (f) Sierpinski Gasket Rewiring p~0:15.
doi:10.1371/journal.pone.0040483.g002

Self-Similarity and the C. elegans Neural Network
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and small world networks. As a result, the Laplacian matrix of a

small-world rewiring of the Sierpinski Gasket was included

throughout this study. Sporns used a similar method in [18] by

generating fractal connections and ‘‘rewiring’’ such networks for

small-world properties in studying complexity and self similarity in

neuron connectivity.

Figure 3. The Eigen Projection Method (a) C. elegans neural network, (Q2,Q3) (b) C. elegans neural network, (Q2,Q3,Q4) (c) Sierpinski Gasket, Level
5, (Q2,Q3) (d) Sierpinski Gasket, Level 5, (Q2,Q3,Q4) (e) Random Network n~279,p~0:07, (Q2,Q3) (f) Random Network n~279,p~0:07, (Q2,Q3,Q4) (g)
Sierpinski Gasket Rewiring p~0:15, (Q2,Q3) (h) Sierpinski Gasket Rewiring p~0:15, (Q2,Q3,Q4).
doi:10.1371/journal.pone.0040483.g003

Self-Similarity and the C. elegans Neural Network
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Energies and Spacial Variances
Using an eigenfunction of a graph’s Laplacian, Q, one can

calculate a graph energy specific to Q. Knowing the resistance

between any two vertices and a constant c, these can be used to

calculate the spacial variance of Q (See Methods). Variance is a

measure of how localized a function is, and functions which

possess a low spacial variance are said to be localized. In

particular, localization occurs when an eigenfunction is approx-

imately zero except for in a a small (localized) region: that is, the

eigenfunction takes on most of its values inside a small number of

connected regions on the graph. Localized eigenfunctions are

known to be present in fractals but not in Euclidean or other

smooth spaces [38]. Figure 4 shows distributions of the spacial

variance of all eigenfunctions on the graphs used previously.

Of the four graphs considered here, the eigenfunctions of the

random network possess the largest spacial variances. As this

system was designed to lack general organization, non-localized

eigenfunctions were both expected and observed. The eigenfunc-

tions of the Sierpinski Gasket possess both highly concentrated and

low-valued spacial variances. Such trends correspond to a high

degree of localization, as anticipated in approximations of fractal

geometries. Eigenfunctions of the rewired Sierpinski Gasket

demonstrate a similar concentration pattern with slightly higher

spacial variance, indicating a slightly lower degree of eigenfunction

localization.

Of particular interest are the spacial variances of eigenfunctions

of the C. elegans neural network. Although these spacial variances

do not show the same degree of concentration as those of the

Sierpinski Gasket, the values of these variances are a power of 10

less than those of the fractal network. Whereas spacial variances on

eigenfunctions of the Sierpinski Gasket are concentrated around

5|10{3 the majority of eigenfunctions of the neural network lie

below 5|10{4. These comparatively lower spacial variances

indicate a high level of localization in the eigenfunctions. Such

highly localized eigenfunctions can indicate the presence of self-

similarity in the network, although further tests would be required

to determine the absolute origin of this localization.

In [25] sparsity of eigenfunctions suggests the presence of

subcircuits with a specific function. As localization suggests that

the value of of an eigenfunction is concentrated on a few vertices, it

is reasonable that localized eigenfunction may be used in place of

sparse ones. In light of this, the existence of localized eigenfunc-

tions is not entirely unexpected. However [25] looks for sparsity in

eigenfunctions of the gap junction network only.

Table 1. Clustering coefficient and path length.

Graph Clustering Coefficient Average Path Length

Sierpinski Gasket, Level 5 0.4495 17.3721

Random(Sierpinski Gasket) 0.0104 5.748

Sierpinski Gasket Rewire p~0:15 0.2843 7.3833

Random(SG Rewire) 0.0104 5.748

C. elegans Neural Network 0.3371 2.5377

Random(C. elegans Neural Network) 0.0581 2.3458

doi:10.1371/journal.pone.0040483.t001

Figure 4. Spacial Variance (a) C. elegans neural network (b) Random Graph (n~279,p~0:07) (c) Sierpinski Gasket, Level 5 (d) Sierpinski Gasket
Rewiring (p~0:15).
doi:10.1371/journal.pone.0040483.g004
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Conclusions
In this paper we used a variety of graph theoretic and

mathematical techniques to probe the structural framework of

the C. elegans connectome. To better understand results, calcula-

tions were also performed on random networks, finite approxi-

mations of fractal geometries, and small-world ‘‘rewired’’ graphs.

This study confirmed previous results, demonstrating that the

neural network exhibits small-world characteristics. Furthermore,

the network has highly localized eigenfunctions, which could

suggest the presence of self-similar structural motifs. Further

research would be required to determine the nature of this

localization. Although the C. elegans neural network is not random,

tree-like, nor fractal in structure, it is certainly highly ordered,

aiding in functional efficiency of the system. Although C. elegans has

proven to be a useful model organism, with a well-defined map of

its neural network, this network consists of only 279 nodes. While

this makes the system fairly efficient to study computationally, this

small number of nodes makes network-analysis rather limited.

Although ideally a much larger map would be used, due to the

difficulty in determining the exact layout of each neuron in a

network, few consistent complete-brain maps exist at this time. In

the end, this paper presents a type of analytic ‘‘toolbox,’’ offering

many mathematical techniques which can be used to search for

structural self-similarity within networks. In particular, the tools

presented here can be used to study higher-order brains as more

complex neural networks become well-understood.

Methods

In order to analyze only the framework of the C. elegans neural

network, we constructed a Laplacian matrix derived form the

adjacency matrices in [33]. The network of chemical synapses

sends signals in one direction only, resulting in a non-symmetric

adjacency matrix, C. To disregard this directionality, we added

this matrix to its own transpose, C’, creating a symmetric matrix

indexing all chemical connections. We added this matrix to the

adjacency matrix of the gap junction system, G (already symmetric

as these connections are bidirectional).

B~½bi,j �~(CzC’)zG such that i,jƒ279

All non-zero entries of this combined matrix, B, were normalized

to be 1, avoiding multiplicity of connection, resulting in matrix A.

A~½ai,j � where ai,j~1 if bi,jw0,otherwise ai,j~0 when bi,j~0

It is then simple to produce a Laplacian matrix, L, as shown

below:

dj~
Xi~279

i~1

ai,j for each jƒ279

Note that dj is the degree of each vertex j. The degree matrix, D, is

now defined as:

D~½di,j � where di,j~djwhen i~j otherwise di,j~0

Then the Laplaican matrix, L, is given by:

L~D{A

Generating Random Graphs and Trees
In order to generate a Laplacian matrix representation of the

random graphs, we used the following algorithm:

First, fix the number of vertices, n, and the probability of

connection, p, and construct an empty n|n matrix, R~½ri,j �.
For each ri,j such that ivj assign a random value ai,j such that

0ƒai,jƒ1 for all i,jƒn. If ai,jƒp then ri,j~1, otherwise ri,j~0.

To produce an adjacency matrix of this graph, A, add R to its

own transpose:

A~RzR’

Using this adjacency matrix, construct a Laplacian matrix using

the method described previously.

The algorithm used for producing the Laplacian matrix of a

random-branching tree is more involved. Again, fix the number of

vertices, n, and also specify the maximum number of ‘‘children’’

from any given branch-point, m. Create an empty n|n matrix,

T~½ti,j �
Begin by generating a random integer a1 such that 0va1ƒm,

and take t1,1~a1. This corresponds to the first vertex having Da1D
branches. To represent these branches in the matrix, take

t1,j~{1 for j~2, � � � ,a1z1 and ti,1~{1 for i~2, � � � ,a1z1.

Next move to all subsequent vertices. Because no ‘‘looping’’

exists in the structure of the tree, each node can only be connected

to its parent vertex and its ‘‘children’’ vertices. We take

S~fj : ti,j~0 for all iƒng Then k, where k~min(S) is the

smallest-labeled node which does not have a parent vertex, i.e. the

first column with all 0 entries corresponds to the first point not yet

connected. (Note in the case of vertex 2, k~a1z2). This vertex k

is the first ‘‘offspring’’ from the next branch-point.

Now, as above, for each remaining vertex v we choose another

random integer, av, such that 0vavƒmin(m,n{kz1) and take

tv,v~avz1. (Note that vertex v has DavD children, however avz1 is

the degree of node v, taking into account its parent-connection).

To represent the ‘‘offspring’’ branches of this vertex v, use the

following:

ti,v~{1 for i~k,kz1, � � � ,kz(av{1)

and

tv,j~{1 for j~k,kz1, � � � ,kz(av{1)

Use min(m,n{kz1) when choosing av to avoid adding more

vertices than the n which was originally fixed.

The Eigenvalue Counting Function and Weyl Ratios
For a given graph Laplacian matrix, L, the eigenvalue counting

function, N(x) is a cumulative frequency function on the spectrum

of the matrix where:

N(x)~#fljƒxg where each lj is an eigenvalue of L

The growth of N(x) is approximately xa, thus the relevant portion

of each graph, when using a logarithmic scale, appears linear. A

linear regression was found for each relevant interval, and the

slope, a, calculated. Using this a, we plotted the Weyl ratio, W (x),
such that:

W (x)~N(x)=xa:

Self-Similarity and the C. elegans Neural Network
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These Weyl ratios allow us to examine the spectrum of each

matrix, looking for elements such as symmetry and periodicity

[29].

Normalizing a Laplacian Matrix
We used two different forms of the graph-Laplacian matrix: the

standard Laplacian and the degree-normalized Laplacian. In the

case of eigen-projections, we utilize the degree-normalized matrix.

We define the degree matrix, D, as before: a diagonal matrix

whose non-diagonal elements are 0, and each entry dj,j is the

degree of the jth vertex. Using both the standard Laplacian, L and

its corresponding degree matrix, D, produce the degree-normal-

ized Laplacian, Q:

Q~D{1=2LD{1=2

Using the degree-normalized Laplacian has many aesthetic

advantages, as shown in Figure 5. The normalized matrix also

has all eigenvalues lj such that 0ƒljƒ2.

Graphing in Eigenfunction Coordinates
We found all eigenvalues, lk, and their corresponding

eigenfunctions, Qk, for each matrix. Given two eigenfunctions Qi

and Qj , (such that i=j) we then plotted the ordered pair

(Qi(n),Qj(n)) for each n from 1 to 279, as described in [39]. The

first eigenvalue of any Laplacian matrix is always 0, corresponding

to a constant eigenfunction. Thus we only consider Qi and Qj with

i,j§2. Edges were then added between points to represent

relevant connections, and the same color-coding as [25] was used.

The same process was then repeated in three dimensions, plotting

(Qi(n),Qj(n),Qk(n)) for some i,j,k§2, such that i=j=k.

Clustering Coefficient
The clustering coefficient measures the probability that two

neighbors of a given vertex are also connected to one another. For

a graph G and a given vertex v, let ev denote the number of

connections that exist between the neighbors of v. Take dv as the

number of neighbors of v (the degree of vertex v). Then the

clustering coefficient of vertex v, cv, is given by:

cv~
2ev

dv(dv{1)

Note that total number of possible connections among neighbors

of v is
dv(dv{1)

2
.

For a graph G with n vertices, the average clustering coefficient,

c, is defined as:

c~
1

n

Xn

v~1

cv

Generating a Related Random Graph for Small-World
Analysis

In order to analyze our networks for small-world properties, it

was useful to compare these graphs to those of similar networks

with randomly assigned edges. Small-world networks are nearly as

well-connected as random graphs, but possess a well-localized

structure. We developed the following algorithm for this process:

For a graph G with n vertices, let k be the number of edges on

G. The average number of edges per vertex is k=n. Furthermore,

the probability that any two random vertices are connected, p, is

given by the number of existing connections divided by the total

possible connections:

p~
k

n(n{1)

2

~
2k

n(n{1)

Next we generate a random graph, Rand(G), with n vertices and a

p probability of connection between two vertices (See Methods).

We then compute c and l for G and Rand(G).

Graph Rewiring
First number each vertex in G from 1 to n, the total number of

vertices. If there is a connection between vertices u and v in G, we

generate a random number between 0 and 1. If this random

number is less than a given probability p, then the connection will

be rewired. Without loss of generality assume uvv. We then fix

the connection to vertex u, and move the connection to another

vertex, k, such that u and k are now connected whereas they were

not previously.

Graph Energy
For a graph G~(V ,E) where V is the set of vertices and E is the

set of edges, one can define an arbitrary scalar function u : V?R.

The energy of u associated with G, E(u) is defined as:

E(u)~
X

x,y[E

(u(x){u(y))2:

We analyzed the energies of the Laplacian matrix eigenfunctions,

thus u~Q.

Spacial Variance
In order to discuss spacial variance, we must first define the

resistance between two vertices on a graph. Let G~(V ,E) be a

graph and x,y[V . Then the resistance between x and y, d(x,y), is

given by:

d(x,y)~E(h(x,y)){1

Where h(x,y) is a harmonic function defined as follows:

Let G~(V ,E) be a graph and x,y[V . Then the harmonic

function corresponding to (x,y) is a scalar function h(x,y) : V?R

such that:

1. h(x,y)(x)~0

2. h(x,y)(y)~1

1. E(h){1,where h is anarbitrary scalar function on V ,
maximized at h(x,y).

Finding the harmonic function is equivalent to finding a vector

h such that Lh~z, where z is a vector whose entries are all 0

except for those entries corresponding to x and y. This is

analogous to what ‘‘harmonic’’ means in Euclidean space. This

changes the maximization problem in condition 3 to solving a

system of linear equations.
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Using these we can now define the spacial variance of a graph.

Again, let G~(V ,E) be a graph with n vertices and u be a scalar

function on V . Let c be a constant. Then the cth spacial variance

of u over G is given by:

Varc(u)~
1

n

X

x,y[E

d(x,y)c(u(x){u(y))2

In this paper, the spacial variances of eigenfunctions of Laplacian

matrices were evaluated at c~1.

Figure 5. Normalizing the Laplacian C. elegans neural network: (a) Un-normalized Laplacian, (Q2,Q3) (b) Normalized Laplacian (Q2,Q3).
doi:10.1371/journal.pone.0040483.g005
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