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Abstract

Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current
plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing
precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation
experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition
enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N
addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain
in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N
addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field.
The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness
and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability.
The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that
water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results
support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species
change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain
and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change.
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Introduction

Species turnover directly determines changes in species richness

across time, and reflects the dynamic stability of a community [1–

4]. Effects of changed precipitation regimes and increased

atmospheric nitrogen (N) deposition on species composition and

diversity of plant communities are crucially important and have

increasingly been studied [5–11]. However, the temporal patterns

of species turnover leading to changes in species composition and

diversity are less understood. Species turnover has been found to

be strongly dependent upon water [12] and nutrient status [13,14]

in grasslands. It has been previously predicted that the rate of

changes for dominant species and life forms is faster on nutrient-

rich sites than on nutrient-poor sites [15–17]. Nutrient enrichment

tends to delay species replacement during a succession from

annual to perennial herbaceous species [18,19]. Most of such

findings are based on theoretical models [2,12] or investigations

using natural experiments without environmental manipulation

[3,15–17]. Direct manipulative experimental evidences for effects

of water and N availability on species turnover are still lacking.

Temperate grasslands in northern China are suitable sites for

manipulative experiments since the summer precipitation [20] and

the atmospheric N deposition [21] are predicted to increase in the

coming decades. These grasslands support diverse species of plants

and animals and play important roles in servicing the ecological

environment and socio-economics of the region [22]. These

grassland ecosystems are sensitive to N enrichment and increased

precipitation in terms of plant traits, community structure, species

composition, biodiversity, and ecosystem functioning [11,23–26].

To our knowledge, however, no studies have experimentally

investigated the effects of water and N addition and their

interaction on plant species turnover in these grasslands. Hence,

we carried out an experiment with N and water manipulations in

two typical types (a steppe and an old field) of that temperate

grassland from 2005 to 2009, to explore how water and N

enrichments and their interaction affect plant species gain, loss,

turnover, and the rate of species change. Given positive effects of

water addition on species richness [6,7,9,27,28] and negative

effects of N addition on diversity [5,8,29,30], we hypothesized that

water addition enhances plant species richness through increase in

the rate of species gain and decrease in the rate of species loss,

while N addition has opposite effects on species changes in the

temperate grasslands. This study will provide direct experimental

evidence for effects of water and N availabilities on dynamic
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change in species richness, and contribute to predicting the effects

of global changes on grassland ecosystems across scales.

Methods

Study Sites and Experimental Design
The study sites were located near the Restoration Ecological

Research Station (116u179 E and 42u029 N, elevation 1324 m

a.s.l.) of Institute of Botany, Chinese Academy of Sciences

(IBCAS), in Duolun county, Inner Mongolia. Mean annual

precipitation is 379.4 mm and mean annual temperature is

2.1uC, with mean monthly temperature ranging from 217.5uC
in January to 18.9uC in July. Soil is classified as Calcis-orthic

Aridisol according to the US Soil Taxonomy classification. All

necessary permits for the described field study have been obtained

from the IBCAS at the beginning of the experiment.

Over-grazing and intensive farming in the region for the last 50

years have resulted in severe land degradation and desertification

[31,32]. Within that area, two existed typical types of grasslands,

i.e. a steppe and an adjacent old field, were selected for the present

study. Both grassland systems were similarly grazed before the old

field was converted to farmland in early 1980 s. Sesamum indicum L.,

Avena chinensis (Fisch. ex Roem. et Schult.) Metzg., Triticum aestivum

L., and Fagopyrum sagittatum Gilib. were common crops in the old

field until 2000. The steppe was overgrazed and severely degraded

until it was fenced in 2000, and the old field was abandoned and

fenced in the same year, when the local government started to

protect the environment from over-grazing and further degrada-

tion [33]. Both grasslands have not been used in any form since

2000. At the beginning of the present experiment, the dominant

plant species were Agropyron cristatum (L.) Gaertn., followed by

Artemisia scoparia Waldst. et Kit. in the old field, and Artemisia frigida

Willd., A. cristatum (L.) Gaertn., and Stipa krylovii Roshev. in the

steppe.

A split-plot experimental design was employed in this study.

Seven 107 m68 m blocks were set up within each of the two

homogeneous grasslands (30 ha for the steppe, and 15 ha for the

old field) in 2005. Each block was divided into two main plots with

water treatment (ambient precipitation and water addition). Each

main plot was divided into six subplots. Nitrogen treatment (N

addition vs. control without N addition) was randomly assigned to

each subplot within each main plot. One meter buffer zone

between any two subplots was remained. In the middle growing

season from June to August, the water addition plots received

15 mm of precipitation weekly by sprinkling irrigation. A total of

180 mm precipitation, approximately 50% of mean annual

rainfall, was added yearly during the growing season from 2005

to 2009. Each subplot treated with N addition received 10 g N

m22 yr21 in the form of urea, half of which was applied in early

May and the other half was applied in late June from 2005 to

2009.

Plant Community and Litter Biomass Measurements
In May 2005, a permanent quadrat of 1 m61 m was

established in each subplot. Plant survey was conducted

consistently within each quadrat in mid-July from 2005 to

2009, to record the plant species and to determine species

richness. Percentage of plant-covered and bare ground was

measured in each quadrat using a 1 m61 m metal pane with

100 equal grids (10 cm610 cm each), by counting the grid

junctions whose vertical projections overlapped with plant species

or bare ground. Plant coverage was visually carefully estimated

for species that did not present at the junctions or presented at

the junctions but occupied only very small area in the quadrat.

To identify the functional group composition of plant commu-

nity, species were classified into grasses and forbs according to

their life forms. We also counted the annuals and biennials (AB)

and perennials for documenting species replacement during the

experiment period of 5 years. In early September from 2007 to

2009, plant litter accumulation was collected within

a 2 m60.15 m quadrat in each subplot, and dry litter mass

was determined after oven-drying to a constant weight. To

describe the rate of changes in species composition, we calculated

percentage species gain rate (Gp), loss rate (Lp) and turnover rate

(Tp), according to Anderson [2]:

Gp ~ 100|G=½(1=2)(S1zS2)�

Lp ~ 100|L=½(1=2)(S1zS2)�

Tp ~ 100| (GzL)=½(S1zS2)�

where G and L are the number of new species gained and old

species lost between any two investigation dates, respectively, and

S1 and S2 are the total species number recorded in the beginning

and the end of that investigation, respectively. We calculated

interannual Gp, Lp, and Tp, using species data recorded from

2005 to 2009. Because of the frequent instances of no net

changes in species gained or lost in interannual data as reported

in a study in boreal forest in Australia [34], we also presented the

species change rate across 5 years, using data collected in 2005

and 2009. A species that disappeared and later reappeared was

excluded in Gp, Lp and Tp calculations [2].

Statistical Analysis
To determine the plant coverage of each functional group

(grass and forb) for each quadrat, plant coverage values for

species belonging to the same functional group were summed.

Total community cover was calculated as 100 minus value of the

bare ground cover within each subplot. Temporal stability of

a community was computed as mean total community cover

across the study period of five years divided by its standard

deviation [35].

Repeated measures ANOVAs with a split-plot design were

performed to test the effects of block, water, N, year, and their

interactions on species richness, litter biomass, and cover of grasses

and forbs. Between-subject effects were evaluated as block, water,

N, and their interactions, and within-subject effects were year and

its interactions with water and N. Univariate process of General

Linear Model with a split-plot design was executed to determine

the main effects of block, water and N addition and their

interactions on rates of changes in species number, and numbers of

grasses and forbs gained and lost. The statistical significance of the

observed divergence between the steppe and the old field and

between grasses and forbs was investigated by the t-test at the 5%

level. Simple linear regression analysis was used to determine the

contribution of individual species cover to variations in the cover

of functional group in each grassland, and to examine the

relationships between rates of changes in species number and the

temporal community stability. Regression statistics used square

root transformed data to meet the assumptions of normality and

homogeneity. All statistical analyses were conducted using SPSS

13.0 (SPSS, Inc., Chicago, IL, U.S.A.).

Water and Nitrogen Influence Species Turnover
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Results

Changes in Species Richness
There were significant interannual variations in species richness

for both the steppe and the old field site (both P,0.001) during the

study period (Table 1). Across the treatments, the mean species

richness decreased from 14.9 to 12.6 in the steppe, and from 12.5

to 9.8 (with the smallest richness value of 7.7 in 2007) in the old

field from 2005 to 2009 (Fig. S1A). Species richness was

significantly higher in the steppe than in the old field (t-test,

P,0.001; Fig. 1, S1A,B). During the study period of five years,

water addition increased species richness from 13.2 to 14.5

(P,0.1) in the steppe and from 8.6 to 11.4 (P,0.05) in the old field

(Table 1; Fig. S1B). N addition did not affect species richness in

both grasslands (Table 1; Fig. 1A). The effect of water addition on

species richness was marginally significant (P,0.1) depending on

N treatments in the steppe but independent of N treatments in the

old field (Table 1). The species richness of annuals and biennials

(AB) in the steppe was much less than that in the old field (t-test,

P,0.001; Fig. S2A). In both the steppe and the old field, AB

richness showed a significant decline (P,0.001) with time during

the experimental period except for 2007 (Fig. S2A). The extremely

dry year of 2007 resulted in a marked decrease in AB species

richness. For the perennials, a weak trend of increase in richness

existed in the old field, but no consistent pattern was found in the

steppe (Fig. S2B).

Variation in Rate and Number of Species Change
Inter-annual changes in the rates of species gain and loss (Gp

and Lp) were affected by water and N addition for both grasslands

(Table 2). Water addition significantly influenced inter-annual Gp

and Lp in the steppe (except for 06–07 Gp and 08–09 Lp) and in

the old field (except for 05–06 Gp) (Table 2). Compared to water

availability, N affected only 05–06 Gp (P,0.05) and 05–06 Lp

(P,0.1) in the steppe, and 05–06 Gp (P,0.1), 08–09 Gp and 08–

09 Lp (both P,0.01) in the old field (Table 2). Water addition did

not affect Tp at a P,0.05 level in the steppe, but significantly

(P,0.05) influenced Tp for 07–08 (P,0.01) and 08–09 (P,0.05) in

the old field (Table 2). N addition had no effect on Tp in both

grasslands (Table 2). However, overall trend showed that the rate

of interannual changes in species was very small, with the maximal

rate of interannual Gp of ,0.9% yr21, Lp of ,1.0% yr21, and Tp

of ,0.6% yr21 (Fig. 2). Interannual Gp, Lp and Tp were

consistently greater (P,0.05) in the old field than in the steppe

expect for Lp for 2007–2008 (t-test, P.0.1).

Species changes calculated using data investigated at the end of

the experiment (2009) versus data surveyed at the beginning of the

experiment (2005) indicated that effects of water and N addition

on rates of changes in species differed significantly between the

steppe and the old field (Table 3). Gp, Lp and Tp in the old field

were consistently greater than those in the steppe (t-test, all

P,0.001; Fig. 3). Water addition significantly increased Gp in the

steppe (P,0.05) and in the old field (P,0.01) but decreased Lp

(P,0.001) and Tp (P,0.01) in the old field (Table 3; Fig. 3). N

addition significantly enhanced Lp and Tp (both P,0.05) in the

steppe but decreased Gp (P,0.05) in the old field (Table 3; Fig. 3).

Further analyses indicated that responses of species changes at

the functional group level to water and N addition differed

between the two grassland types (Table 4). Water addition resulted

in significant increases in the species number of grasses and forbs

gained (both P,0.05; Fig. 4A) and, significant decreases in the

species number of grasses and forbs lost (P,0.01 & 0.05,

respectively) (Fig. 4B) (Table 4), and therefore a significant net

increase in the species number of grasses (+1.9 species; P,0.01)

and forbs (+5.0 species; P,0.001) in the old field (Fig. 4C). For the

steppe, water addition did not affect grasses gain and forbs loss but

influenced forbs gain and grasses loss at a P,0.1 level (Table 4;

Fig. 4A,B). N addition significantly suppressed numbers of forbs

gained (P,0.05) in the old field, but stimulated numbers of grasses

(P,0.1) and forbs (P,0.05) lost in the steppe (Table 4; Fig. 4A,B).

Significant interaction of water and N addition was found only for

grasses loss in the steppe (P,0.05; Table 4). An overall trend

indicated that N addition led to a net decrease in numbers of

grasses and forbs in both grassland types (Fig. 4C). However, the

Figure 1. Species richness (mean 6 SE) in relation to water and nitrogen addition in a steppe and an old field from 2005 to 2009. C:
control, N: nitrogen addition, W: water addition, WN: combination of water and nitrogen addition.
doi:10.1371/journal.pone.0039762.g001

Water and Nitrogen Influence Species Turnover
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Table 1. Results (F-value) of repeated measures ANOVA with a split-plot design on the effects of block (B), year (Y), water (W) and
N addition on species richness, litter biomass and plant cover of grasses and forbs in a steppe and in an old field grassland studied
from 2005 to 2009.

Source Species richness Litter biomass Grasses cover Forbs cover

Steppe Old field Steppe Old field Steppe Old field Steppe Old field

B 1.97ns 0.87ns 2.12ns 2.99ns 1.56ns 8.62* 0.69ns 9.31*

W 3.56L 11.48* 2.15ns 6.77* 0.53ns 11.24* 35.71*** 23.73**

N 0.97ns 0.00ns 12.53* 3.78L 34.73** 26.07** 3.53 ns 2.2ns

W6N 4.21L 0.43ns 0.61ns 5.46ns 0.08ns 0.05ns 8.08* 2.5ns

Y 7.43*** 18.98*** 2.06ns 12.71** 19.6*** 40.27*** 27.67*** 18.04***

Y6W 6.08** 15.11*** 6.54* 4.50* 6.7*** 8.29*** 3.3L 2.87*

Y6N 2.36ns 1.89ns 1.23ns 0.55ns 1.75ns 3.78* 4.92* 0.79ns

Y6W6N 2.42ns 1.50ns 1.62ns 1.08ns 1.05ns 0.73ns 0.93ns 0.54ns

*, **, *** indicate statistically significant difference at P,0.05, 0.01, and 0.001, respectively;
Lmarginally significant difference at P,0.1;
ns: P.0.1.
doi:10.1371/journal.pone.0039762.t001

Figure 2. Responses of interannual rate of species change (Gp = gain rate, Lp = loss rate, Tp = turnover rate) (mean 6 SE) to water
and nitrogen addition in a steppe and an old field from 2005 to 2009. See Fig. 1 for treatment abbreviations.
doi:10.1371/journal.pone.0039762.g002

Water and Nitrogen Influence Species Turnover
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combination of water addition and N addition tended to increase

the number of grass species and to decrease the number of forb

species for both grassland types (Fig. 4C). In both the steppe and

the old field, the numbers of species gained, lost and net change for

forbs were significant greater than for grasses irrespective of water

and N addition treatments (t-test, P,0.001; Fig. 4).

Responses of Functional Group Cover and Litter
Accumulation to Water and N Addition

Water and N additions altered the functional group cover of the

community in both the steppe and the old field (Fig. 5). Water

addition increased forbs cover by 73.2% (P,0.001) in the steppe,

and increased both grasses and forbs cover by 20.6% (P,0.05) and

33.8% (P,0.01) in the old field, respectively (Table 1; Fig. 5). N

enrichment enhanced grasses cover by 84.0% in the steppe

(P,0.01) and by 24.4% (P,0.01) in the old field (Table 1; Fig. 5).

Linear regression analyses showed that A. cristatum (L.) Gaertn. and

S. krylovii Roshev. accounted for 31.9% and 69.6% of the

variations in grasses cover, respectively (both P,0.001), and A.

frigida Willd. for 60.9% of the variations in forbs cover (P,0.001)

in the steppe. In the old field, the variations in grasses cover were

mainly caused by A. cristatum (L.) Gaertn. (85.1%; P,0.001), while

A. scoparia Waldst. et Kit. and Medicago sativa L. contributed to

21.2% and 35.6% of the variations in forbs cover, respectively

(P,0.001). N addition increased litter biomass both in the steppe

and the old field (P,0.05 & 0.1, respectively; Table 1). Water

addition markedly promoted litter biomass in the old field

(P,0.05) but not in the steppe (Table 1).

Table 2. Results (F-value) of three-way ANOVAs with a split-plot design on the effects of block (B), water (W) and N addition on
interannual species change rate (Gp = gain rate; Lp = loss rate; Tp = turnover rate) in a steppe and in an old field studied from
2005 to 2009.

Steppe Old field

05–06 06–07 07–08 08–09 05–06 06–07 07–08 08–09

Gp B 6.90* 1.45ns 0.36ns 1.37ns 1.39ns 1.23ns 2.57ns 0.75ns

W 10.88* 0.13ns 14.22** 6.41* 0.25ns 4.40L 39.64*** 36.56***

N 10.52* 0.13ns 0.96ns 0.56ns 4.81L 0.17ns 0.84ns 15.68**

W6N 0.05ns 0.87ns 10.21* 3.13ns 1.16ns 0.01ns 1.81ns 0.00ns

Lp B 6.70* 0.60ns 2.06ns 1.02ns 3.65L 1.85ns 0.60ns 6.79*

W 17.22** 9.60* 7.82* 0.06ns 5.68L 16.48** 17.45** 129.99***

N 4.56L 0.80ns 0.03ns 0.11ns 0.00ns 1.92ns 0.20ns 14.94**

W6N 0.70ns 0.62ns 0.56ns 1.53ns 0.08ns 0.85ns 4.82L 1.93ns

Tp B 12.19** 0.92ns 1.13ns 0.56ns 4.35L 0.31ns 3.90L 2.40ns

W 3.13ns 4.43L 0.18ns 1.56ns 4.21L 2.05ns 24.08** 11.26*

N 0.08ns 0.82ns 0.00ns 0.29ns 1.88ns 1.11ns 0.76ns 0.00ns

W6N 0.07ns 0.00ns 6.30* 0.01ns 0.13ns 0.38ns 0.01ns 0.70ns

*, **, *** indicate statistically significant difference at P,0.05, 0.01 and 0.001, respectively;
Lmarginally significant difference at P,0.1;
ns: P.0.1.
doi:10.1371/journal.pone.0039762.t002

Figure 3. Responses of species gain rate (Gp), loss rate (Lp), and
turnover rate (Tp) (mean 6 SE) to water and nitrogen addition
in a steppe and an old field from 2005 to 2009. See Fig. 1 for
treatment abbreviations.
doi:10.1371/journal.pone.0039762.g003

Table 3. Results (F-value) of three-way ANOVAs with a split-
plot design on the effects of block (B), water (W) and N
addition on species change rate (Gp = gain rate; Lp = loss
rate; Tp = turnover rate) in a steppe and in an old field in
North China between 2005 and 2009.

Source Steppe Old field

Gp Lp Tp Gp Lp Tp

B 1.82ns 1.29ns 2.61ns 0.47ns 8.02ns 1.90ns

W 10.89* 2.21ns 0.04ns 23.59** 247.14*** 16.61**

N 0.94ns 7.78* 9.47* 7.23* 2.74ns 0.04ns

W6N 7.37* 1.60ns 0.01ns 0.38ns 0.01ns 0.10ns

*, **, *** indicate statistically significant difference at P,0.05, 0.01, and 0.001,
respectively;
ns: non-significant (P.0.05).
doi:10.1371/journal.pone.0039762.t003

Water and Nitrogen Influence Species Turnover
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Relationships Between Species Change Rate and
Community Temporal Stability

Results from linear regression analyses demonstrated that the

temporal stability of community was a declining function determined

by both species loss rate (r2 = 0.24, P,0.001; Fig. 6B) and species

turnover rate (r2 = 0.10, P = 0.019; Fig. 6C). The relationship

between species gain rate and temporal stability was not significant

(P.0.10; Fig. 6A).

Discussion

During the 5-year study period, both the steppe and the old field

suffered from diversity loss with marked interannual variations

(Fig. 1; Table 1). The interannual variations of species richness

(Fig. S1A) might have been resulted from the substantial variations

in the amount of precipitation during the growing season in these

semi-arid ecosystems. Precipitation from May to July varied from

338.3 mm in 2006 to 78.0 mm in 2007, with a mean value of

176.0 mm for the study period of five years. Tilman [36] proposed

that the durative climatic change may modify both plant life

history and competitive abilities of species, leading to loss of

equilibrium of community composition and change in species

richness, and alteration of plant succession trajectory.

The increase in species richness in water addition plots in our

study is similar to previous studies carried out in a steppe in the

same region [11], in an annual grassland in California [7] and in

a secondary grassland in Kansas in the USA [27]. However, there

are greater differences in natural precipitation and/or grassland

Figure 4. Influences of water and nitrogen addition on
numbers of species gain (A), loss (B), and net change (C) of
grasses and forbs (mean 6 SE) in a steppe and an old field
treated for 5 years. See Fig. 1 for treatment abbreviations.
doi:10.1371/journal.pone.0039762.g004

Table 4. Results (F-value) of three-way ANOVAs for the effects of block (B), water (W) and N addition on numbers of species gain
and loss for grasses and forbs in a steppe and in an old field in North China between 2005 and 2009.

Source Steppe Old field Steppe Old field

Grasses gain Forbs gain Grasses gain Forbs gain Grasses loss Forbs loss Grasses loss Forbs loss

B 0.46ns 2.43ns 1.68ns 0.60ns 1.36ns 1.38ns 1.62ns 0.99ns

W 0.66ns 4.28L 9.48* 11.11* 4.45L 0.30ns 16.62** 9.75*

N 0.07ns 0.48ns 0.19ns 6.03* 4.45L 8.68* 0.46ns 0.61ns

W6N 0.66ns 1.90ns 0.77ns 0.03ns 7.36* 0.58ns 0.46ns 0.00ns

*, **, *** indicate statistically significant difference at P,0.05, 0.01, and 0.001, respectively;
Lmarginally significant difference at P,0.1;
ns: P.0.1.
doi:10.1371/journal.pone.0039762.t004

Figure 5. Plant cover (mean 6 SE) of grasses and forbs in
relation to water and nitrogen addition in a steppe and an old
field treated for 5 years. See Fig. 1 for treatment abbreviations.
doi:10.1371/journal.pone.0039762.g005

Water and Nitrogen Influence Species Turnover
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types between our experiment and the other three studies. N

addition had no effects on species richness in the present study,

which was inconsistent with majority of previous studies but in line

with the findings gained from four artificial communities in the

UK [37]. The absence of statistical significance of N addition on

species richness (Table 1; Fig. 1) may be partly resulted from the

relatively short study period of 5 years. Species richness was

stimulated by N addition during the first two years, and then

decreased for the following years (data not shown). The effect of N

addition on species richness was not significant when analyzing the

pooled data across the 5-year treatment period (Table 1). These

observations suggest that the response of species richness to N

addition in semi-arid grasslands may require relatively long-term

studies, but the effects of water addition on species richness

occurred much more rapidly. Alternatively, the effects of N on

species richness are also likely dependent upon soil water

conditions and species composition. The lower species richness

in the old field than in the steppe is probably because the more

competitive exclusion of A. cristatum to other species and the

shortage of diverse propagules in the old field.

Changes in environmental conditions may cause changes in

species turnover [2,38]. Using natural experiments without water

manipulation, Anderson [3] did not investigate the relative

contributions of species gain and loss to changes in species

richness but found that there was a close relationship between

species turnover and dry season rainfall in grasslands. In our study

sites, water addition affected the rate of interannual species gain,

loss and turnover in both the steppe and the old field. However,

there were significant differences among year-to-year dynamics

and no consistent pattern was found (Table 2; Fig. 2). The short-

term dynamics may be controlled, in great degree, by environ-

mental fluctuations, especially precipitation. Relative long-term

observation may provide more reliable information for the impacts

of treatments. Water addition alleviates the limitation of soil

moisture on species, leading to coexistence of more species

(Table 1; Fig. 1, S1B) and reduction in species loss (Table 4;

Fig. 4B). Hence, the Gp increased and the Lp decreased in the

water addition plots (Table 3; Fig. 3).

Our study showed that N addition enhanced grasses cover but

reduced forbs cover (Table 1; Fig. 5). Most of the grasses are taller

than forbs in these grasslands, and therefore, can produce greater

living biomass (Xu ZW, unpublished data) and litter biomass

compared to forbs. The increased litter biomass in N addition

plots may limit the establishment of new species [7,39], resulting in

decreased Gp and increased Lp (Table 1,3; Fig. 3). In line with our

results, previous studies found only few new species gained but

more existed species lost under N enrichment in a herb-rich

woodland in Australia [14] and in four grasslands in Minnesota

[40]. Indeed, previous studies have already documented that N

enrichment reduced species richness due to the suppressive effects

of increased litter biomass on the seedling establishment [39,41].

The greater species changes in forbs than in grasses (t-test; Fig. 4),

irrespective of grassland types and treatments, indicated that the

species richness and composition in the semi-arid grasslands are

mainly determined by the response of forbs.

Overall, either water or N can act independently as driver of

plant community dynamics, and water condition also inuenced

community sensitivity to N, and vice versa [42,43]. The significant

interactions between water and N on species richness, forbs cover,

and species turnover indicated that the effects of N on plant

community are strongly mediated by water availability in the

temperate grasslands (Table 4; Fig. 4B). This may be explained by

(1) N transformation controlled directly by soil water conditions

[44], and (2) reduced water availability caused by increased growth

rate of plants under N addition [7,45]. These findings suggest that

predicting the responses of grasslands to global change drivers

should take into account the interactions among environmental

factors.

The present study showed that the species richness of annuals

and biennials declined from 2005 to 2009 in both the steppe and

the old field (Fig. S2). This finding indicated that the replacement

of short-lived species by perennials is a common trend in natural

ecosystems over time. During the succession of plant communities,

pioneer species will be replaced by later successional species with

longer life cycles [46]. Rate in replacement of plant species is

higher during the early successional stages than the late stages

[2,47], which is supported by our results that species change rate

in the old field was greater than in the steppe since plant

community in the abandoned old field was at an earlier stage of

succession than that in the steppe. It is expected that life history

strategies and traits of plants will shift from r-strategy colonizers to

competitively superior k-strategists during succession series [48–

50]. In line with this expectation, the present study found that the

majority of the plant species in the steppe were the k-strategy

colonizers (i.e. perennial species) with high efficiency for habitat

exploitation. These species are relatively stable and can sustain for

Figure 6. Relationships between temporal stability of commu-
nity and species gain rate (Gp) (A), loss rate (Lp) (B), and
turnover rate (Tp) (C). Data were square root transformed, unit of
species change rate prior to transformation was % yr21.
doi:10.1371/journal.pone.0039762.g006
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long term under fluctuating environmental conditions. But in the

old field, there were relatively more annuals and biennials which

are mainly opportunists and r-strategists with high dispersal

abilities and high stress tolerance. The different strategies in life

history also partly resulted in divergence in rate of species change

between the two grassland types (Fig. 3, S2). Differences in

responses of plant functional groups and differences in rates of

species change between the steppe and the old field suggest that

the grassland ecosystems with different land use history in

northern China may develop with different processes or trajecto-

ries under future environmental changes.

The present study found negative relationships between

temporal stability of community and rate of species loss and/or

turnover (Fig. 6), which is supported by findings of Hillebrand et al.

[51] that the temporal stability of biomass production significantly

decreased when community species composition showed higher

temporal turnover. Anderson [2] and McIntyre and Lavore [52]

suggested that community stability increased as rates of species

change decreased with time. Our results also indicated that water

addition increased the temporally compositional stability, while N

addition decreased the stability.

The present results support our initial hypothesis and provide

direct experimental evidence for opposite effects of water and N

addition on species turnover rate in temperate semi-arid grasslands

in northern China. Both increased rate of species gain and

decreased rate of species loss contributed to the enhanced species

richness when water availability was improved. In contrast, N

addition caused a decrease in the rate of species gain and an

increase in the rate of species loss. However, effects of water and N

availabilities on plant diversity and species turnover also depend

on grassland types and/or land-use history. Our results demon-

strated the relative contributions of species gain and loss to the

dynamic change of species richness in semi-arid grasslands under

future climate change, and highlighted the complexity of the

ecological consequences of concurrent increases in precipitation

and N deposition in the temperate grasslands in North China.

Supporting Information

Figure S1 A, Interannual variations of mean species richness

across treatments; B, Treatment effects on mean species richness

across the study period of 5 years. C: control, N: nitrogen addition,

W: water addition, WN: combination of water and nitrogen

addition.

(TIF)

Figure S2 Species richness of annuals and biennials (AB) and

perennials (PE) from 2005 to 2009 in a steppe and an old field. C:

control, N: nitrogen addition, W: water addition, WN: combina-

tion of water and nitrogen addition.

(TIF)

Acknowledgments

We thank Guilin Zhu, Mingming Fu, Ruzhen Wang, Jinming Wei, Haijun

Yang, Guangquan Wang, and Zhiqiang Yan for providing assistance in

carrying out field experiment. Thanks also go to Xiaotao Lv for providing

suggestions for manuscript revision.

Author Contributions

Conceived and designed the experiments: XH SW YJ. Performed the

experiments: ZX HR. Analyzed the data: ZX. Contributed reagents/

materials/analysis tools: ZX HR MHL. Wrote the paper: ZX SW MHL

WXC.

References

1. MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography.
Princeton: Princeton University Press.

2. Anderson KJ (2007) Temporal patterns in rates of community change during
succession. American Naturalist 169: 780–793.

3. Anderson TM (2008) Plant compositional change over time increases with

rainfall in Serengeti grasslands. Oikos 117: 675–682.
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