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Abstract

Chaos should occur often in gene regulatory networks (GRNs) which have been widely described by nonlinear coupled
ordinary differential equations, if their dimensions are no less than 3. It is therefore puzzling that chaos has never been
reported in GRNs in nature and is also extremely rare in models of GRNs. On the other hand, the topic of motifs has attracted
great attention in studying biological networks, and network motifs are suggested to be elementary building blocks that
carry out some key functions in the network. In this paper, chaotic motifs (subnetworks with chaos) in GRNs are
systematically investigated. The conclusion is that: (i) chaos can only appear through competitions between different
oscillatory modes with rivaling intensities. Conditions required for chaotic GRNs are found to be very strict, which make
chaotic GRNs extremely rare. (ii) Chaotic motifs are explored as the simplest few-node structures capable of producing
chaos, and serve as the intrinsic source of chaos of random few-node GRNs. Several optimal motifs causing chaos with
atypically high probability are figured out. (iii) Moreover, we discovered that a number of special oscillators can never
produce chaos. These structures bring some advantages on rhythmic functions and may help us understand the robustness
of diverse biological rhythms. (iv) The methods of dominant phase-advanced driving (DPAD) and DPAD time fraction are
proposed to quantitatively identify chaotic motifs and to explain the origin of chaotic behaviors in GRNs.
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Introduction

In systems biology, gene regulatory networks (GRNs), a kind of

biochemical regulatory networks, are widely described by coupled

differential equations (ODEs) [1–9]. These ODEs are strongly

nonlinear and often high-dimensional. Meanwhile, gene regulato-

ry networks also share some common characteristics and network

structures. For instance, positive feedback loops (PFLs) and

negative feedback loops (NFLs) have been identified in various

biochemical regulatory networks and found to be important

control modes in GRNs. It has been demonstrated that NFLs can

act as noise suppressors [6–8], oscillators [4,6–9], and linearizers

[8], and PFLs can behave as switches and memory modules [7,10–

13]. Since multiple and coupled oscillators are likely to be

common companions in the intricate GRNs [4], complex

nonlinear dynamic behaviors, such as self-sustained oscillation,

birhythmicity, bursting oscillation and even chaos, are reasonably

expected for these objects [2,14–19].

According to our understanding on the theory of nonlinear

dynamical systems, strongly coupled high dimensional ODEs are

very likely to show chaotic behaviors. Especially, chaos has been

found in some chemical reactions both in experiments and

simulations, such as the Peroxidase-Oxidase reaction [20–23]

and the Belousov-Zhabotinsky reaction [23–26]. Therefore,

chaos may occur often in n-dimensional (nD) GRNs with

n§3. However, chaos is extremely rare in GRNs and have

seldom reported with n~3 [18,27]. These results are surely

beneficial from biological viewpoint, however, the reason for

this rareness has still not been fully understood [15–17,19].

Recently, the topic of motifs has attracted great interest in

studying biological networks [28–32]. Network motifs are sub-

graphs appearing in some biological networks far more often than

in randomized networks and they are suggested to be elementary

building blocks that carry out some key functions in the network.

Various types of motifs producing some simple functions have

been explored and studied, such as sign-sensitive accelerators or

delays of feed-forward loop [30], tunable biological oscillations of

coupled NFL and PFL [13], and so on.

Dynamical motifs (subnetworks with nontrivial dynamics) have

been presented as a new approach to the study of the dynamics in

networks [33]. We apply the concept of motifs to investigate the

chaotic dynamics in GRNs. Chaotic motifs are those minimal

structures with the simplest interactions that can generate chaos. It

has been demonstrated that complex oscillatory behavior, such as

birhythmicity, bursting and chaos, is due to the competition

between two oscillatory mechanism with a comparable importance

[2,4,17]. Chaos has also been found in a simple three-variable

biochemical system, which is only comprised of two feedback loops

[18]. However, it is still unclear that, in what degree network

structures can determine the existence of chaotic behaviors in

GRNs. In other words, there is no general conclusion on the

relationship between network structures and chaotic dynamics so

far.

In this paper, we concentrate on chaotic behaviors of

autonomous GRNs and address the above issues by answering
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the following questions: considering the crucial conditions for

chaos in GRNs, why chaos is so rare; and are there some simple

patterns namely chaotic motifs in complex GRNs serve as the

basic building blocks for chaotic motions. We extensively search

for chaos in low-dimensional GRNs (nD with n~3, 4 and 5) and
study the mechanism of chaos. The key results of our study are: we

do find various chaotic motifs which behave as the minimal

building blocks or subnetworks related to chaotic motions, where

competitions between different oscillatory modes serve as the

necessary condition for chaos. Based on the competition idea, we

reveal the conditions under which chaos can be easily found, even

we can readily explore some chaotic 3D GRNs where chaos has

never been reported in the previous investigations. Furthermore,

a number of special structures are discovered which can never

generate chaos, and these structures may be related to different

biological oscillators which bring some advantages on rhythmic

functions avoiding chaotic motions definitely. Finally, we apply the

methods of dominant phase-advanced driving (DPAD) [34,35]

and DPAD time fraction to give some quantitative measurements

explaining the above results on chaotic GRNs.

Results

Rareness of Chaos
We search chaotic motions extensively in low dimensional

GRNs described by ODEs (refer to Materials and Methods for the

detail of the model and searching). Each case (nD with n~3, 4 and

5, respectively) has 1|106 samples from random network

structures, parameter distributions and initial variable conditions.

The asymptotic states are finally recorded. The states are classified

into three different types: steady states, periodic oscillations and

chaotic motions. The results are presented in Table 1. It is

observed that while most of the tests approach to steady states,

much less (but still many) tend to periodic oscillations. The

asymptotic chaotic states are extremely rare indeed.

Now, our next task is to enlarge the chaotic samples for detailed

investigation of chaotic GRNs. The following strategies are

applied: (i) Some period-m (called mp) states with mw1 are

discovered in the above periodic oscillations. With the clues of all

these mp states, chaotic solutions can be easily obtained by

continually varying parameters (various bifurcation sequences to

chaos). Therefore, all the mp states with mw1 will be simply

classified as chaotic solutions in the following investigations. (ii)

Since the existence of oscillation is a necessary condition for chaos,

much more effective searching can be made among all these

periodic GRNs. In Table 2, we search for chaos in the way exactly

the same as in Table 1 by randomly choosing parameters and

initial conditions but within the classes of periodic networks in

Table 1. In Table 2, considerably richer chaotic behaviors are

observed than that of Table 1, and all these samples can be used

for studying the mechanism of chaos in GRNs.

It can be inferred from Table 2 that oscillations in our model

are rather robust against parameter sets. More than forty percent

of the samples from periodic network structures in Table 1 remain

in oscillatory states by randomly varying parameters and initial

variable conditions.

Introduction to Chaotic Motifs
We analyze the chaotic behaviors of some chaotic samples in

Table 2 to study the mechanism of chaos. A 3-node GRN is

plotted in Fig.1A which can exhibit chaos by varying parameters

shown in Fig.1B. A chaotic attractor of this GRN is presented in

Fig.1C. Let us consider a biologically relevant problem which

interactions in Fig.1A are crucial for chaos, or in other words,

what is the minimal structure of Fig.1A to produce chaos. In order

to do this, different interactions are deleted in different tests and

the structure of Fig.1D is found finally by deleting a single

interaction 3?1 from Fig.1A (solid (dashed) arrows denote active

(repressive) interactions), in which chaos can be still maintained.

Further deleting any cross coupling (cross refers to interaction

between different nodes) from Fig.1D can definitely suppress chaos

no matter how to vary system parameters, initial conditions and

self-regulations. It is interesting that the two GRNs in Figs.1A and

1D show similar types of bifurcation sequences to chaos

(Figs.1B and 1E) and persist alike chaotic attractors (Figs.1C and

1F). These observations illustrate that the deleted interaction from

Fig.1A to Fig.1D is not essential for the chaotic behaviors of

Figs.1B and 1C. Conversely, the remaining cross interactions (the

two feedback loops) in Fig.1D are all crucial for chaotic motion.

Therefore, we consider all the minimal structures of cross

interactions similar to Fig.1D as 3-node chaotic motifs of GRNs,

in which removing any single cross interaction can surely destroy

chaos.

Similar concept can be also defined for 4-node GRNs. In Fig.2,

we do exactly the same as Fig.1 with three 4-node GRNs (Figs.2A-

2C) considered. From Fig.2A to Fig.2B and from Fig.2B to Fig.2C,

we delete two interactions 1?2 and 3?2 and another interaction

1?3 (blue lines in the GRNs). All the three GRNs display similar

bifurcation sequences to chaos (Figs.2D22F) and persist alike

chaotic attractors (Figs.2G22I). These observations demonstrate

again that the deleted interactions are not essential for chaos. It is

found further that all the cross interactions in Fig.2C are crucial

for chaos, and removing any of them can entirely suppress chaos.

We consider the cross interacted structure of Fig.2C and all similar

minimal 4-node subnetworks as 4-node chaotic motifs.

Table 1. Attractor distributions in random GRNs.

Random 3-node 4-node 5-node

Oscillation 1.233% 1.775% 2.432%

Chaos 1 20 42

Asymptotic states reached by 106 tests with random network structures,
parameter distributions and initial variable conditions for nD GRNs with n~3, 4
and 5. The asymptotic states are classified into three types: steady, periodic
oscillatory and chaotic states. Most tests tend to stable steady states and much
less periodic oscillations. The probability of oscillations is computed out, and

the amount of chaotic samples is counted out of every 106 tests. The
asymptotic chaotic states are extremely rare indeed.
doi:10.1371/journal.pone.0039355.t001

Table 2. Attractor distributions in oscillatory networks in
Table 1.

Periodic 3-node 4-node 5-node

Oscillation 41.157% 40.158% 39.310%

Chaos 195 1158 1591

The same as Table 1 with all data measured within the network structures of
periodic oscillations in Table 1. Since the existence of oscillation is a necessary
condition for chaos, much more effective searching can be made among all the
periodic GRNs. Obviously, we do observe considerably richer chaotic behaviors
than that of Table 1. The amount of chaotic samples is also counted out of
every 106 tests, and all these chaotic samples will be used in the following for
studying the mechanism of chaos.
doi:10.1371/journal.pone.0039355.t002

Chaotic Motifs
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Conditions for Chaotic Motifs

It is of special importance to investigate what kinds of GRNs

can serve as chaotic motifs. We define chaotic motifs as those

irreducible chaotic subnetworks which have the fewest feedback

loops and the least cross interactions (such as GRNs of Figs.1D

and 2C). In each chaotic motif, the cross interactions are all crucial

for chaotic behaviors, in another words, chaos would be lost by

removing any of the cross interactions, no matter how to vary

system parameters, initial conditions and self-regulations. There-

fore, a basic motif is just defined as the structure of the cross

interactions.

Some necessary conditions for chaotic motifs can be reasonably

expected. The first crucial requirement of chaos is the competition

between two or more oscillatory modes [2,4,19]. It is more or less

known that feedback loops may represent different oscillatory

modes in GRNs [6,8,9,12,18,36]. Therefore, the existence of at

least two feedback loops in GRNs, generating different oscillatory

modes in competition, must be fulfilled by chaotic GRNs.

Moreover, self-sustained oscillation is also a basic condition for

chaos. Since the absolutely necessary condition for self-sustained

oscillation of GRNs is existence of, at least, a NFL [4,7,9], and this

is the second condition for chaos.

Therefore, all the chaotic motifs may possess the following two

characteristic features: (i) All these motifs have two feedback loops

(the fewest feedback loops for chaotic motifs); (ii) At least one of the

two loops is NFL. We exhaustively search all 3-node and 4-node

GRNs with minimal (irreducible) interactions satisfying the above

two conditions, and eventually find 19 distinct 3-node and 86

distinct 4-node candidates of chaotic motifs. Fig. S1 shows

a complete list of all these 105 two-loop structures (TLSs).

With all the 105 TLSs, we can do the same as in Table 1 to

search for chaos. A number of chaotic motifs are discovered after

1|106 tests for each TLS by varying system parameters, initial

Figure 1. A 3-node chaotic motif. A, D: Two 3-node chaotic GRNs.
Solid (dashed) lines denote active (repressive) regulations. B, E:
Bifurcation diagrams of A and D, respectively (peak values of p1 plotted
as functions of K with h~3:00). C, F: Chaotic attractors (C for A with
K~0:102, F for D with K~0:165). From A to D, we discard a single
interaction (3?1, blue line in A). The removal does not essentially affect
the chaotic motion. The bifurcation diagrams and the chaotic attractors
of the two GRNs in A and D are similar. On the other hand, all the cross
interactions in D (cross refers to interaction between different nodes)
are irreducible, and removal of any of them can surely suppress chaos
no matter how to adjust the parameters, initial conditions and self-
regulations of different nodes. The cross interaction structure of D is
identified as a 3-node chaotic motif.
doi:10.1371/journal.pone.0039355.g001

Figure 2. A 4-node chaotic motif. The same as Fig.1 with three 4-
node GRNs considered. A-C: The GRNs under investigations. D2F: Their
corresponding bifurcation diagrams (D for A with h~2:00; E for B with
h~2:35; F for C with h~2:50). G-I: The corresponding chaotic attractors
(G for A with K~0:053; H for B with K~0:0354; I for C with K~0:134).
From A to B the interactions 1?2 and 3?2 are removed, and from B to
C the interaction 1?3 is deleted. These deletions do not essentially
affect the chaotic motions. All bifurcation diagrams to chaos (D2F) and
chaotic attractors of the three GRNs (G2I) are similar. Network C is
irreducible for chaos in the sense that removal of any cross interaction
of it can absolutely terminate chaos. The cross interaction structure of C
is thus considered as a 4-node chaotic motif.
doi:10.1371/journal.pone.0039355.g002

Chaotic Motifs
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conditions and self-regulations of the structure randomly. Asymp-

totic state distributions of the chaotic motifs in the random tests are

shown in Table 3. Besides, some significant chaotic motifs are

shown in Fig.3 which show, among 106 random tests, more than

100 chaotic realizations in Table 3.

With further investigation on the network structures of the

chaotic motifs in Fig.3 and Table 3, two additional characteristic

features for chaotic motifs are discovered: (iii) If a motif contains

one NFL and one PFL, the PFL must contain at least one node not

included in the NFL. (iv) In most of the chaotic motifs in Fig.3 and

Table 3, there is one node which is regulated by joint cross

interactions of both active and repressive couplings.

Extensive numerical simulations with these 105 TLSs show that

items (i)2(iii) are necessary conditions for chaotic motifs (1|108

random tests have been made, none of these chaotic samples

violates any of the three conditions). Condition (iv) is not the

necessary condition for chaotic motifs. Specifically, we can

distinguish all the TLSs which satisfy all conditions (i)2(iii) into

three types, type 1: satisfy condition (iv) with a node regulated

jointly by an active and repressive interactions; type 2: violate
condition (iv), with two NFLs; type 3: violate condition (iv), with

one NFL and one PFL. Within all the chaotic subnetworks

discovered in Table 3, we found that type 1 has 74:17%
probability; type 2, 25:28%; while type 3, v0:6%. We found

numerically that conditions (i)2(iv) comprise the sufficient

conditions for 3-node and 4-node chaotic motifs, in other words,

all the TLSs which satisfy the four conditions (i)2(iv) can generate

chaotic motions with suitable self-regulations, parameter sets and

initial variable conditions.

The reason for condition (iii) can be intuitively understood

based on the the competition between different oscillatory modes.

It is known that NFLs can support self-sustained oscillations while

PFLs alone can not [3,4,9]. If there are one PFL and one NFL in

a TLS and all the nodes of the PFL are included in the NFL, the

PFL is completely controlled by the NFL. Therefore, the PFL can

not essentially influence the oscillation of the NFL, and the TLS

can not yield effective oscillatory competition to generate chaos.

All 3-node and 4-node TLSs which satisfy conditions (i) and (ii)

while violate condition (iii) are listed in Fig.4. For these 20 TLSs,

above 108 random tests are made for each one by changing self-

regulations, initial conditions and all the parameters. Chaos is not

observed among any of them. The regular rhythmic subnetworks

of Fig.4 may permit some advantages on various important

biological functions. Some of these structures may appear in

certain biological processes to keep the rhythmicity regular, and it

is worthwhile introducing to biological experimental scientists the

structures of Fig.4 in which chaos is entirely avoided.

The mechanism underlying condition (iv) is not yet clear.

Competition between the two loops of chaotic motifs is essentially

determined by the dynamics of the dual-input nodes (e.g., node 2

in Fig.1D, node 1 in Fig.2C, and so on). An interesting

observation is that in all the 105 TLSs, each structure has only

a single node regulated by two neighbor nodes, called as center

node (all the other nodes in the structure receive only single

inputs from cross interactions). We guess that the active and

repressive regulations of center nodes may be favorable to

strengthen the competition between the two loops, especially

when the chaotic motifs contain one PFL and one NFL. It is

emphasized that TLSs with two NFLs may generate two self-

Table 3. Attractor distributions in chaotic motifs.

Motif (1) (4) (7) (8) (9) (11) (12) (15)

Oscillation 0.119% ,0.10% ,0.10% 0.127% 3.891% 1.963% 4.062% 5.375%

Chaos 16 1 1 2 10 373 103 7

Motif (16) (17) (19) (20) (21) (23) (24) (25)

Oscillation 4.414% 4.512% 8.105% 4.915% 2.634% 4.370% 5.366% 0.158%

Chaos 1145 20 12 11 1 469 252 16

Motif (26) (28) (29) (30) (32) (34) (35) (39)

Oscillation 8.091% 1.926% ,0.10% ,0.10% 0.153% 4.735% 3.254% 3.844%

Chaos 15 12 1 1 4 73 49 65

Motif (40) (41) (44) (46) (48) (52) (54) (56)

Oscillation 3.242% 3.848% 5.006% 5.703% 4.552% 9.295% 10.164% 11.016%

Chaos 1 54 158 198 928 1 1 32

Motif (58) (59) (61) (63) (65) (67) (70) (72)

Oscillation 2.204% 1.469% 4.570% 3.634% 9.760% 10.321% 6.316% 5.283%

Chaos 111 41 12 283 3 19 123 1

Motif (73) (74) (77) (78) (79) (80) (82) (83)

Oscillation 5.730% 2.137% 10.803% 6.704% 1.321% 2.530% 10.925% 12.067%

Chaos 15 5 33 2 5 9 1 29

Motif (87) (92) (95) (100) (103) (104) (105)

Oscillation 5.487% 5.825% ,0.10% 0.448% ,0.10% ,0.10% 0.158%

Chaos 16 182 15 22 1 1 6

Classifications of asymptotic states reached by 106 tests for each of the 105 TLSs in Fig. S1 with random parameter distributions, initial variable conditions and self-
regulations. TFLs which can produce chaos (chaotic motifs) in the above tests are listed in the Table. More motifs can be found with more extensive searching among

the rest of TFLs, however, their probability is extremely low. The amount of chaos is counted out of every 106 tests. The indexes of the motifs are given in Fig. S1.
doi:10.1371/journal.pone.0039355.t003

Chaotic Motifs
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sustainedly oscillatory modes which can more strongly compete

to produce chaos, even if the double inputs of center nodes have

same signs (motifs (11), (23) in Fig.3, and so on).

Quantitative Analysis of Chaotic Motifs
In the above section, we explored chaotic motifs and explained

heuristically the mechanism and structure underlying the char-

acteristics of chaotic motifs. In this section, some quantitative

analysis and description are made on chaotic GRNs. The basic

idea is that: since chaos is due to the complicated competitions

among various oscillatory modes and the intricate drivings among

different nodes, it is crucial to explore the driving relationships in

GRNs quantitatively. Therefore, we apply the concept of

dominant phase-advanced driving (DPAD) [34,35] and extend

the method of DPAD to DPAD time fraction (DTF ). DPAD is

a dynamical method that can find the strongest cross driving of the

target node at any time instant when a system is in an oscillatory

state, and DTF (ranged from 0 to 1) describes the driving

contributions of all cross interactions to the target node during

some given long period. The max value of DTF is one, which

corresponds to there is only a single cross interaction to the target

node; if the value is nearly zero, it means the driving effect of the

given interaction to the target node is very weak. For the detail of

these concepts, please refer to DPAD and DTFs in Materials and

Methods.

Chaotic Motifs Described by DTFs
It is remarkable that all the chaotic motifs discovered in Figs.1, 2

and 3 can be well explained by the driving relationships where the

cross interactions are quantitatively described by DTFs. We

reproduce the chaotic states of Figs.1C and 1F respectively, and

calculate the DTFs for all cross interactions which are depicted in

Figs.5A and 5B. Two interesting features are observed: the inter-

action 3?1 (blue line in Fig.5A) has nearly zero DTF and the

other cross interactions of Fig.5A (i.e., all the interactions in

the chaotic motif of Fig.5B) have nearly 1:0 or comparable DTFs.

The comparable DTFs of the interactions 1?2 and 3?2 in

Fig.5B represent the competition between the two NFLs of

2?1?3?2 and 2?1?2 in the chaotic motif of Fig.5B, the key

reason for chaos generation. The observations of Figs.5A and 5B

quantitatively explain why the interaction 3?1 is not crucial for

the chaotic behaviors of Figs.1B and 1C and why all the

interactions in the chaotic motif of Fig.1D are irreducible for

chaotic motions.

In Figs.5C25E, we do exactly the same as Figs.5A and 5B

with the chaotic states of Figs.2G22I considered. The deleted

interactions from Fig.5C to Fig.5D (1?2 and 3?2, blue lines

in Fig.5C) possess near zero DTFs, therefore, they have little

effect on the chaotic motion of Fig.2G. Note that, the two

interactions 1?3 and 2?3 in Fig.5D have comparable DTFs.

The chaotic motif of Fig.5E (i.e., motif (67) in Fig. S1) is

obtained by removing the interaction 1?3, while another motif

(motif (22) in Fig. S1) can be also found after removal of 2?3.
Conversely, the interactions of 2?1 and 3?1 in Fig.5D are

both important for chaos (for yielding competition between two

loops), and discarding any of them can definitely destroy

competition and thus suppress chaos. The reasons are: there is

only one loop in the GRN after removal of 3?1 (breaking

condition (i)), and all the nodes of the PFL are included in the

NFL after deleting 2?1 (breaking condition (iii)). Chaotic

motions can be thus definitely destroyed in both cases.

Figure 3. Significant chaotic motifs. By chaotic motifs, we mean that these GRNs can produce chaos with certain parameters, initial conditions
and suitable self-regulations, and removal of any cross interaction in these GRNs can definitely terminate chaos. Chaotic motifs are the minimal and
irreducible building blocks for chaotic motions in GRNs. Some significant motifs are shown with amount of chaotic realizations more than 100 in
Table 3. There are four conditions (i)2(iv) for chaotic motifs. All these motifs possess two feedback loops (i), and at least one of them is NFL (ii). In all
the motifs which contain one PFL and one NFL, the PFL must have at least one node not included in the NFL (iii). In most of the chaotic motifs, there
is a node regulated by both repressive and active regulations (iv). If not, the motifs more often contain two NFLs.
doi:10.1371/journal.pone.0039355.g003

Chaotic Motifs
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Differences of DTF Distributions between Chaotic Motions
and Limit Cycles
Besides, it is also interesting to study some distinct differences

between simple periodic oscillations and chaotic motions by

applying the method of DTF . We have a large amount data of

limit cycle solutions and chaotic states in TLSs. In Figs.6A and

6B, we show two 4-node TLSs exhibiting simple periodic

oscillations in Figs.6E and 6F. The DTFs of the two states are

depicted in Figs.6A and 6B. Obviously, the interactions with

large DTFs form single loops (1?4?2?1 in Fig.6A and

1?2?4?1 in Fig.6B) and dominate other nodes and the

whole networks. Since single strong oscillatory circuit can never

produce chaos, the DTF structures of Figs.6A and 6B well

explain the periodic behaviors of Figs.6E and 6F. In contrast,

the other two 4-node TLSs of Figs.6C and 6D show chaotic

motions in Figs.6G and 6H. In Figs.6C and 6D, it is observed

that there exist two effective loops with comparative DTF
intensities and some common nodes (node 4 in Fig.6C and

node 2 in Fig.6D) are driven by two competitive cross

interactions (one positive and the other negative). These

competitions lead to chaotic motions in Figs.6G and 6H.

Statistics of Chaotic Motifs in Chaotic GRNs
In the above discussion, chaotic motifs are defined as the

minimal and irreducible building blocks for chaotic motions in

GRNs. By analyzing the structures of the chaotic GRNs in Table 2,

we discover that all the chaotic GRNs have at least one chaotic

motif listed in Table 3 and often coupled by multiple chaotic

motifs, which together determine dynamics of the networks.

Therefore, in the perspective of functional dynamics, a chaotic

motif is the necessary condition for chaotic GRNs. Then, we

suspect that some optimal motifs may cause chaos with atypically

high probability. To confirm this conjecture, we do the following

statistical analysis.

For any given GRN, we can find all the TLSs embedded in it.

An example of such computation is shown in Fig.8 in Materials

and Methods. Accordingly, for a given set of many GRNs, we can

sum up the frequency of each embedded TLS, and can compute

Figure 4. Regular rhythmic TLSs. All 3-node and 4-node TLSs, which fulfill conditions (i) and (ii) while violate condition (iii), can never produce
chaos. The competition between the two feedback loops in each GRN does not work for chaos due to the fact that the PFLs are completely controlled
by the corresponding NFLs. Therefore, all these TLSs can never produce chaos. For each of these TLSs, more than 108 random tests are made by
varying self-regulations, parameter sets and initial conditions, and none of these tests yields chaos. These structures may bring some advantages on
rhythmic functions, avoiding the chaotic disturbances definitely.
doi:10.1371/journal.pone.0039355.g004

Chaotic Motifs
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the relative frequencies of all the 3-node and 4-node TLSs, defined

by.

Fi~
Ni

Naverage
~

Ni

Ntotal
M

, ð1Þ

where Ni represents the frequency of the ith TLS appearing in the

given set of GRNs, Ntotal is the total frequency of all TLSs in the

set (for 3-node case, Ntotal~
P105

i~87 Ni, M~19; and for 4-node

case, Ntotal~
P86

i~1 Ni,M~86). It should be noted that the Fi is 1

for each TLS in randomly constructed n-node GRNs with n$4.

By the above definition, we can get different F statistics for all

TLSs by selecting different sets of GRNs. First, we choose all the

chaotic samples of 4-node and 5-node GRNs in Table 2 as given

sets, and get the relative frequencies under the original topologies

of the chaotic samples, which is denoted byFT
i . Then, we define

dynamically reduced networks, which are obtained by deleting all

the unimportant interactions with DTFsv0:10 in original

topologies of the chaotic samples. The corresponding relative

frequencies are defined as FD
i . The results of FT

i and FD
i of

chaotic GRNs discovered in Table 2 are shown in Figs.7A (4-node

chaotic GRNs) and 7B (5-node chaotic GRNs), where black

squares denote FT
i while red cycles FD

i . FT
i w1 represents that the

ith TLS appears in chaotic GRNs more frequently than the

average, and the larger FT
i is, the more significantly relevant to

chaotic dynamics the ith TLS is. The results of FD
i play more

important role in characterizing the relevance of given TLSs with

chaotic dynamics.

There are usually many feedback loops (far more than two

loops) in chaotic GRNs, and the competitions among these loops

to produce chaos turn out to be very complicated. The significant

motifs effectively producing chaos (shown in Fig.3) are remarked in

Fig.7. It is shown clearly that most of the motifs have significant

FT
i and FD

i . These observations indicate that these significant

motifs can most frequently appear in chaotic GRNs and function

as the driving sources of chaos. Besides, most of these motifs

contain two NFLs. Motifs with two NFLs may easily produce at

least two self-sustainedly oscillatory modes in their networks,

therefore, the competition between them may easily yield chaos.

It is remarkable that among all the TLSs with FD
i w1:5 in

Figs.7A and 7B, 88:5% (84.6%) of them are chaotic motifs in

Table 3. While among the ones with FD
i v1:0, 37:5% (34:4%) of

them are chaotic motifs. All these show the importance of the

chaotic motifs in Table 3 to chaotic motions in GRNs.

Figure 5. Chaotic motifs described by DTFs. DTF distributions of
the chaotic GRNs of Figs.1 and 2. A for Fig.1A; B for Fig.1D; C for Fig.2A;
D for Fig.2B; E for Fig.2C. The numbers associated to all cross
interactions indicate the DTFs of Eq.(7). The total period of
measurement is about 100 cycles of chaotic orbits. It is shown that
most of the interactions reducible for chaos have almost zero DTFs,
while all the interactions irreducible for chaos in the chaotic motifs in
Fig.1D and Fig.2C have sufficiently large DTFs. Note that, the two
interactions 1?3 and 2?3 in D have comparable DTFs. Discarding
different one of them can construct different chaotic motifs (motifs (22)
and (67) in Fig. S1 by discarding 2?3 and 1?3, respectively). On the
other hand, both the interactions of 2?1 and 3?1 in D are important
for the competition between the two loops and thus essential for
chaos. There is only one loop in the GRN after removal of 3?1
(breaking condition (i)); and the PFL is included in the NFL after deletion
of 2?1 (breaking condition (iii)), and both of the two operations can
securely suppress chaotic motions.
doi:10.1371/journal.pone.0039355.g005

Figure 6. Different DTF distributions in chaos and limit
cycles. A ,B: Two periodically oscillatory TLSs. C ,D: Two 4-node chaotic
motifs. E, F: limit cycle solutions of A and B. E with K~0:185,h~4:00 for
A; F with K~0:050,h~5:00 for B. G, H: Chaotic solutions of C and D. G
with K~0:065,h~5:50 for C; H with K~0:095,h~1:35 for D. DTFs of
the corresponding states are labeled on all the cross interactions of the
GRNs A-D. It is demonstrated that, there are single effective loops
(1?4?2?1 in A and 1?2?4?1 in B) which dominate the oscillation
of limit cycles while the two feedback loops possess comparable DTFs
to common nodes (node 4 in C and node 2 in D) in chaotic states.
doi:10.1371/journal.pone.0039355.g006
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Discussion

In conclusion, we studied chaotic behaviors in genomic

regulatory systems, and found rich chaotic states in few-node

GRNs and TLSs. The rareness of chaos in GRNs is due to the fact

that chaos can appear only through competitions among different

oscillatory modes under a number of strict conditions. Usually,

GRNs do not construct effective oscillatory feedback loops, or

build only single strong feedback loops dominating their dynamics

[34,37], resulting in stable steady states and periodic oscillations,

respectively. Therefore, no chaos can be generated in these

situations. For generating chaos, competitions among different

oscillatory modes must fulfill some strict conditions on topological

structures, parameter sets and initial conditions. With the clues of

these conditions, chaotic behaviors can be easily found in nD

GRNs with n§3.

Chaotic motifs are explored as the minimal and irreducible

building blocks satisfying some conditions for chaotic motions

(three necessary conditions (i)2(iii) and sufficient conditions (i)2(iv)

on the structures of cross interactions) and serve as the intrinsic

source of chaos of random few-node GRNs. Some motifs show

atypically high probabilities of chaos. Methods of DPAD and DTF

are proposed to explain quantitatively the effects of chaotic motifs.

Moreover, we discover that a number of special structures can

never produce chaos, and this conclusion may be also important

for biological understanding and designment.

Chaotic GRNs usually have very complex structures and

contain various regulatory circuits much more than TLSs. It is

our future work to recognize the few dominant oscillatory

modes essentially determining the chaotic motions from

probably large numbers of topological feedback loops in GRNs.

DPAD and DTF may be very helpful in this research. We

discover also that chaotic GRNs are often coupled by multiple

chaotic motifs which together determine rich variety of chaotic

attractors. Some attractors belong to phase coherent oscillators

which have the property of Uniform Phase evolution and

Chaotic Amplitudes (UPCA), while some others are not in strict

phase-locking (funnel attractor). Some other spiral and screw

chaotic attractors are also found. The chaotic attractors we find

are nonhyperbolic. Most of the roads to chaos in GRNs are

through period-doubling to chaos; intermittency to chaos; and

quasi-period to chaos. It will be another task of our research to

pursue the topological origins of different classes of chaotic

attractors and roads to chaos. We expect to attack this target by

applying the methods of DPAD and DTF .

We find a large set of chaotic TLSs (chaotic motifs) and the

topological conditions for chaos in GRNs by simulations. It is

interesting whether these indeed make sense in real GRNs. For

example, the P53 system, a crucial complex GRNs for

regulating cell cycle and suppressing tumor, has many feedback

loops. The core regulative structure of P53 system has been

pointed out by a recent study [38], it is a four-gene network,

containing three NFLs and two chaotic motifs we defined.

These indicate that the P53 system could produce chaotic

behaviors and is sensitive to initial conditions. Actually, P53

protein (the tumor suppressor) is not robust enough to prevent

cancer and conserve stability. Although chaos has never been

reported by any genetic experiment, we speculate this may be

due to three factors. One may be that the competitions between

oscillatory modes is not strong enough. Another may be that

chaotic behaviors can appear but can not be sustained for a long

time, because the beginning of chaos could induce the

activation of other external regulatory pathways (such as the

cell-to-cell communication [39]). Some researchers consider that

the appearance of chaos is an indication of a diseased state, and

is most often connected with the beginning of cancer [40]. The

last may be that biochemical noise appears often in living cells,

and if the noise on gene expression is strong enough, then it

would destroy the chaotic state of a noise-free genetic system.

Figure 7. Statistic analysis of chaotic GRNs. A, B: Relative
frequency distributions (FT

i and FD
i ) of the 105 TLSs embedded in all

chaotic GRNs observed in Table 2 (A for 4-node chaotic GRNs and B for
5-node ones). Black squares represent FT

i and red cycles denote FD
i ,

which are computed by Eq.(1) in original topological chaotic GRNs (FT
i )

and in dynamically reduced chaotic GRNs by deleting all interactions
with DTFv0:10 (FD

i ), respectively. The significant chaotic motifs in
Fig.3 are labeled out with corresponding indexes. Most of them have
atypically high FT

i and FD
i , and they more often contain two NFLs.

Existence of two independent and competitive oscillatory modes
guarantees strong competitions in these subnetworks, leading to
chaotic motions.
doi:10.1371/journal.pone.0039355.g007

Figure 8. A detailed demonstration of statistical method
counting the frequencies of TLSs. A randomly constructed GRN A
is considered as an example to show how to compute all the TLSs
contained in a GRN. Obviously, there are two 4-node TLSs (B and C) and
three 3-node TLSs (D2F) embedded in A. All the 105 TLSs in Fig. S1 are
taken into account in our counting. Similar analysis can be applied to all
chaotic samples in Table 2 to obtain the results of Figs.7A, 7B.
doi:10.1371/journal.pone.0039355.g008
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By simply considering Gaussian white noise on above motifs, we

find that all the oscillatory and chaotic phenomena observed in

the paper are robust against small noise. However, relatively

large noise may induce some interesting and unexpected results.

Increasing noise may totally suppress chaos and result in noisy

steady state. In particular, the effects of same noise on different

nodes can be different, depending on the network structures or

something else (still not fully understood). Moreover, limit cycles

are much more robust against noise than chaotic attractors.

However, we still can not declare that there is no chaos in

GRN, because it is not easy to evaluate the strength of noise. In

the next step, we will systemically investigate the effects of

noises on dynamical behaviors of GRNs, and combine some

experimental data to find whether chaotic motifs have realistic

effects on the function of living systems.

We hope that the findings in the present work may give some

impacts on the investigation of extremely rich behaviors of

nonlinear dynamics and pattern formation in various bio-

chemical systems, and contribute to exploring mystery biological

functions and effects caused by chaotic regulatory networks.

Materials and Methods

Model
In this paper, we discuss the chaotic dynamics of few-node

autonomous GRNs by using a model of ODEs. The main

conclusions of this article do not depend on the detail of the model,

and can be extended to a class of models with monotonic

regulatory functions. We use the following simplified genomic

regulatory model [12,13,34,41,42].

dpi

dt
~fi(p){pi,

fi(p)~

Ai(p) Active regulation only,

Ri(p) Repressive regulation only,

Ai(p)Ri(p) Joint regulation,

8><
>:

(p)~(p1,p2, � � � ,pN ),

Ai(p)~
acthi

acthi zKh
,Ri(p)~

Kh

rephi zKh
,

acti~
XN
j~1

aijpj ,repi~
XN
j~1

bijpj(i,j~1,2, � � � ,N) ð2Þ

where pi is the expression level of gene i, 0vpiv1. The adjacency
matrix aij ,bij determine the network structure of the system, which

are defined in such a way that 0vaijv1 if gene j activates gene i,

0vbijv1 if gene j inhibits gene i and aij~bij~0 for no regulation

of gene i by gene j. For convenience, all the corresponding a or b
in Figs.1 and 2 are set to 1:0. acti (repi) represents the sum of

active (repressive) transcriptional factors to node i. The regulatory
interactions of genes are represented by Hill functions with the

cooperativity exponent h (1:0vhv10:0) and the activation

coefficient K (0:005vKv0:30), characterizing many real genetic

systems. The model is of no-delay monotonous regulation. We

neglect the leakage transcription rate, and the degradation rates of

different proteins are identical.

Searching for chaos: (i) In Table 1, network structures are

randomly generated but to make sure that each node in the

network has at least one input and at least one output (all the

nodes are linked together). All the parameters a(b), K and h are

randomly given within their ranges. (ii) In Table 2, to enlarge

the chaotic samples, oscillatory network structures in Table 1

are used to search for chaos. a(b) of corresponding networks

are remained, K and h are randomly given. (iii) In Table 3,

chaotic samples are searched among the 105 TLSs with a(b), K
and h given randomly.

DPAD and DTFs
The idea to make the DPAD analysis is that any single node of

a GRN (node i for example) can not oscillate individually, and it

can oscillate only through the driving of cross interactions from

other nodes in the network. At any time instant (t?tzDt), node i
undergoes the cross driving Dfi(c),

dpi

dt
~fi(p){pi,

Dfi(c)~
XN

j~1, j=i

Lfi
Lpj

dpj

dt
Dt~

XN
j~1, j=i

Lfi
Lpj

Dpj : ð3Þ

In the total cross driving signal of node i, the fraction of the

contribution from node j over Dfi(c) can be computed.

Fi/j~
Dfi/j

Dfi(c)
~

Lfi
Lpj

Dpj

Dfi(c)
, j=i: ð4Þ

All the cross interactions to node i (Dfi/j , j=i) can be classified

into two distinct types: one is favorable to the cross driving

(Fi/jw0) while the other not (Fi/jv0). We can define the former

as ‘‘phase-advanced drivings’’ (PADs) while the latter ‘‘phase-

delayed drivings’’. A node may be driven by a number of PADs

among which a single PAD can be found providing the largest

Fi/j value to Dfi(c). This most important PAD is called DPAD

which can be calculated at any time instant. We can quantitatively

compute the DPAD contribution of any node j to the target node i

at a time step tq,

Di/j(tq)~
1, if node j is DPAD of node i,

0, otherwise:

�
ð5Þ

Now, we define a DPAD weighted time interval of node i as.

DTi(q)~DDfi(c)(tq)D, ð6Þ

with Dfi(c)(tq) being taken at the time interval tq. Then, we can

further measure DPAD time fraction (DTFij ) for a given in-

teraction from node j to play the role of DPAD on the driven node

i over certain long time (M time steps, 100 cycles in our

measurement)
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DTFij~
Ti/j

Ti

~

PM
q~1

Di/j
:DTi(q)

PM
q~1

DTi(q)

, ð7Þ

Ti is the total measuring weighted time of node i, while Ti/j

represents the sum of weighted time interval in Ti when the

interaction from node j to node i plays the role of DPAD (i.e., all

DTj(q) when Dfi/j is DPAD). DTFij measures the contribution of

node j in driving node i to oscillation quantitatively.

The Detailed Course of the Statistical Method
A randomly constructed GRN of Fig.8A is considered as an

example to show how to compute all the TLSs a GRN contains.

Obviously, there are two 4-node TLSs (Figs.8B and 8C) and three

3-node TLSs (Figs.8D28F) embedded in the GRN of Fig.8A. All

the 105 TLSs in Fig. S1 are taken into account in our counting.

Similar analysis can be also made on a large number of GRNs,

and the relative frequencies in Eq.(1) of the 105 TLSs appearing in

these GRNs can be computed.

Supporting Information
The 105 TLSs. All the chaotic motifs may possess the

following two characteristic features: (i) They have two feedback

loops (the fewest feedback loops); (ii) At least one of the two loops is

NFL. We exhaustively search all 3-node and 4-node two-loop

structures satisfying the above two conditions. Fig. S1 shows the

complete set of all these 105 distinctive two-loop structures (TLSs).

Supporting Information

Figure S1 The 105 two-loop structures (TLSs). Complete

set of distinctive 3-node and 4-node TLSs satisfying conditions (i)

and (ii), serve as possible candidates of chaotic motifs. All the 105

TLSs are listed (4-node (1)2(86) and 3-node (87)2(105)) with the

corresponding indexes used in the text and other figures.

(EPS)
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