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Abstract

Background: Much recent research effort in traumatic brain injury (TBI) has been devoted to the discovery of a reliable
biomarker correlating with severity of injury. Currently, no consensus has been reached regarding a representative marker
for traumatic brain injury. In this study, we explored the potential of epithelial/endothelial tyrosine kinase (Etk) as a novel
marker for TBI.

Methodology/Principal Findings: TBI was induced in Sprague Dawley (SD) rats by controlled cortical impact. Brain tissue
samples were analyzed by Western blot, Q-PCR, and immunofluorescence staining using various markers including glial
fibrillary acidic protein, and epithelial/endothelial tyrosine kinase (Etk). Results show increased Etk expression with increased
number and severity of impacts. Expression increased 2.36 to 7-fold relative to trauma severity. Significant upregulation of
Etk appeared at 1 hour after injury. The expression level of Etk was inversely correlated with distance from injury site. Etk
and trauma/inflammation related markers increased post-TBI, while other tyrosine kinases did not.

Conclusion/Significance: The observed correlation between Etk level and the number of impacts, the severity of impact,
and the time course after impact, as well as its inverse correlation with distance away from injury site, support the potential
of Etk as a possible indicator of trauma severity.
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Introduction

The discovery of a reliable biomarker correlating with

severity of injury has been the focus of much of the recent

research effort in traumatic brain injury (TBI). An ideal

biomarker would exhibit a rapid change signifying sensitivity

to disease, tissue specificity, and diagnostic value for the disease.

For TBI, the biomarker would have added value if it could also

be used to predict neurological condition and serve as a

surrogate endpoint for evaluation of treatment. Currently, no

consensus has been reached regarding a representative marker

for traumatic brain injury [1]. Previous studies show significant

post-TBI increases of S-100, glial fibrillary acidic protein

(GFAP), neuron-specific enolase (NSE), neurofilament polypep-

tides, and tau. However, while these markers demonstrate

potential as indicators of TBI [2,3,4], the study results showed a

lack of correlation of these markers with clinical trauma severity

[5,6,7,8] and suggested limitations in the discriminative powerof

some of these biomarkers alone [9].

Although the general pathophysiology of TBI is still unclear,

recent research has revealed several possible mechanisms under-

lying TBI [1,10]. While some studies suggest the disruption of the

blood-brain barrier as a main cause of secondary injury [11],

much of the literature focuses on mechanisms involving lipid

peroxidation and the activation of calpain by the increase of

intracellular calcium [12,13,14,15]. Calpain is also known to

activate Hsp70 and lysosomal release of cathepsin which results in

axonal beading and diffuse axonal injury after TBI [16,17].

Many therapeutic targets involving the cascade triggered by

lipid peroxidation are currently under investigation for use in the

treatment of TBI. Therapeutic strategies suggested include the

reduction of mitochondrial free radical production [14,15,18,19]

and the scavenging of peroxynitrite-derived free radicals with

tempol and melatonin [18,20,21]. The use of estrogen, progester-

one, telmisartan and wogonin has also been suggested to limit

damage secondary to TBI [22,23,24,25]. Calpain activates many

injury pathways with its proteolytic activity on myelin basic

protein [26]and mediation of collapsin mediator proteins21, 22,
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and 24 [27], and has been suggested as a potential target for TBI

treatment [13,14,15,27,28,29,30,31,32].

Many peptides produced by proteolytic reactions caused by

calpain activation, such as alpha-spectrin derivatives, have been

considered as markers for TBI [33]. The elevation of calpain-

derived alpha-spectrin among other markers in cerebrospinal fluid

was observed at 24 hours after TBI with peak levels not reached

until 48–96 hours [34]. As early detection of TBI severity is

desirable [34], we sought to find other factors which may underly

the initiation of injury.

A tyrosine kinase of interest is the tec kinase bone marrow

tyrosine kinase gene in chromosome X (Bmx) which is also known

as epithelial/endothelial tyrosine kinase (Etk) [35]. Most literature

thus far regard Bmx/Etk as a modulator of apoptosis and cancer

cell growth, and its cell-specific function has been characterized in

various cancer cells [36]. Studies have also shown the Bmx/Etk-

dependent pathway to be crucial in ischemic brain injury for the

recruitment of inflammatory cells and angiogenesis at the site of

injury [12,37,38]. Genetic profiling suggests that an increased

expression of Bmx/Etk induces chronic inflammation and

Figure 1. Etk is up-regulated after TBI. (A, B) Extracts of rat brains treated without impact (Normal), impacted once (impact1) or
impacted twice (impact2) were subjected to real- time PCR analysis. Expression of GAPDH mRNA was used as internal control. The relative
Etk level of the impact1 rat was used as the fold increase compared to left brain of normal rat. L = left brain. R = right brain. (C) Western blots were
done with antibodies to Etk and actin (loading control).
doi:10.1371/journal.pone.0039226.g001

Etk as a Biomarker for Traumatic Brain Injury
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angiogenesis via cytokine-mediated recruitment of inflammatory

cells [39]. In addition, Bmx/Etk was reported to regulate Toll-like

receptor-induced IL-6 production, a cytokine closely related to

traumatic brain injury [40,41]. The possible role of Etk in post-

traumatic neural injury and in the inflammation cascadeis the

focus of this study.

Some studies have implicated GFAP, S-100b, cleaved tau, and

IL-6 as potential trauma markers [42,43,44,45]; however, other

reports have documented their limitations in clinical use [9,46,47].

An ideal biomarker should respond rapidly to the onset of disease

and be diagnostic of the condition. Furthermore, an ideal

biomarker should possess tissue specificity and be useful as a

surrogate endpoint to address therapeutic efficacy [34]. Since our

initial experiments with genetic profiling showed a moderate

increase in Etk expression levels of 1.8 to 2.5 fold in rats with

induced TBI compared to naı̈ve rats (data not shown), we sought

to clarify the correlation between level of Etk expression and

degree of cranial trauma. In this study, we demonstrated the

potential of Etk as a neurotrauma biomarker based on its

expression correlating with the location and the degree of

traumatic brain injury.

Methods

Western Blot
Brain tissue samples were lysed in RIPA buffer. 50–100 mg of

cell lysates were resolved on 8% to 15% SDS/PAGE gel and

transferred onto nitrocellulose membranes. Subsequently, blots

were incubated with antibodies raised against the following

proteins: anti-Bmx, anti-Stat3 (1:1000, Transduction Laborato-

ries), anti-Tec, anti-Btk, anti-Src, anti-FAK, anti- Bcl2, anti-LC3

(1:1000, Cell Signaling) and Actin (1:1000, Sigma). Donkey

peroxidase-conjugated anti-rabbit or anti-mouse antibodies

(1:1000, Amersham Pharmacia Biotech) were used and binding

was revealed by chemiluminescence (1:1000, ECL; Amersham

Pharmacia Biotech).

RT-PCR and Q-PCR
Total RNA was extracted from brain tissue by utilizing Trizol

reagent (Invitrogen). Prior to RT-PCR, 1 mg of RNA was initially

treated with DNase I (Ambion Inc., Austin, TX) to degrade

genomic DNA. Thereafter, 50 ng of treated RNA was used for

each one-step RT-PCR reaction (QIAGEN OneStep RT-PCR

Kit, Valencia, CA). Gene expression was quantified by QRT-PCR

using SYBR Green dye. All QRT-PCR reactions were performed

on a 7900 HT ABI platform (Applied Biosystems, Foster City, CA)

as previously described [48]. The sequences of primers were as

follows: GAPDH forward 59-GCACCGTCAAGGCTGAGAAC-

39 and reverse 59-ATGGTGGTGAAGACGCCA-39. GAPDH

was used to normalize the expression levels in the quantitative

analyses. The forward primer for mEtk was 5’-CACACCACCT-

CAAAGATTTCATGG-3’ and the reverse primer was 5’-

CATACTGCCCCTTCCACTTGC-3’.

Controlled-Cortical Impact
Animals were sedated prior to impact and treated according to a

Taipei Medical University Laboratory Animal protocol. Animal

studies were approved by the Institutional Animal Care and Use

Committee (IACUC) of National Defense Medical Center

Laboratory Animal Center (NDMCLAC). Adult male Sprague-

Dawley rats (weight 280–300 g) were used for this study. The

surgical procedures were modified from the Lin CM et al. (2009)

method. Under chloral hydrate (40 mg/kg, intraperitoneal, i.p.,

injection, Kanto Chemical Co., Inc.) anesthetized, SD rats were

placed in a stereotactic frame. A craniotomy of 5 mm diameter

was performed at the right parietal cortex between bregma and

Figure 2. Correlation of Etk and S100 expression with severity of impact. (A, B) Western blots revealing expression of Etk was upregulated
nearly 2-fold in rats receiving controlled cortical impact at 2.5 M/s and was further increased to 2.7-fold when impact speed was increased to 5M/s.
S100 was increased to more than 2.5 fold after impact at these speeds.
doi:10.1371/journal.pone.0039226.g002

Etk as a Biomarker for Traumatic Brain Injury
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Figure 3. Triphenyltetrazolium chloride (TTC) staining of brain having received CCI. (A) Figure indicating location of site of induced
trauma. (B) Size of injured cortex was also increased proportionally to the speed of impact using triphenyltetrazolium chloride (TTC) staining.
doi:10.1371/journal.pone.0039226.g003

Etk as a Biomarker for Traumatic Brain Injury

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e39226



lambda, and 1 mm lateral from the midline. TBI was made by a

controlled cortical impact (CCI) device at a velocity of 2.5 or 5 m/

sec with 1 mm depth. Body temperature was maintained at 37uC
61uC with a heating pad. Rats were sacrificed at appropriate

times for analysis, and assignments of groups were blinded to

observers. For TTC staining, animals were killed at 24 hours after

impact, the brains were removed and a series of 2-mm coronal

slices were obtained and stained in 2% triphenyltetrazolium

chloride (Sigma) in 0.9% saline, then fixed in 4% paraformalde-

hyde. The injury area, which was not stained, was measured using

a digital scanner as previously described [49].

Immunofluorescence
Twenty-four hours after TBI, rats were perfused through the

ascending aorta with 100 mL of cold normal saline followed by

100 mL of 4% paraformaldehyde (PFA) in PBS. Brains were

removed and post-fixed in the same fixative for 3 days followed by

30% sucrose for 1 week. Sections were cut at a thickness of 12

microns in a freezing microtome and stored at 220uC. For

immunostaining, tissue sections were fixed with 4% PFA for 10

minutes. After several washes in PBS, the sections were incubated

with blocking buffer containing 0.3% Triton X2100 and 4%

bovine serum albumin for 1 hour at room temperature, and were

then stained with the desired primary antibody reconstituted in

PBS, 2% goat serum at 4uC for 14–16 hours. Dilutions of the anti-

Etk (Cell Signaling), anti-neurofilament M (NF), anti-GFAP

(Transduction Laboratories) antibodies were 1:100. After three

rinses in PBS, sections were incubated with goat anti-rabbit IgG

FITC conjugate (1:100 Jackson Immunoresearch) and goat anti-

mouse IgG Rhodamine conjugate (1:100; Jackson Immunore-

search) for 1 hour at room temperature. 1mg/mL DAPI was

added to the mixture during the last 15 minutes. After several

washes in PBS, sections were mounted with Crystal Mount (Sigma)

and analyzed using a Leica microscope, a SROT RTTM CCD

camera (Diagnostic Instruments) or laser-scanning confocal

microscope (Bio-Rad, MRC-1000).

Statistics
Data are presented as mean 6 SD. Oneway ANOVA and post-

hoc Newman-Keuls tests were used for statistical comparison. A

statistically significant difference was defined at p,0.05.

Results

Impact Increased Etk Expression Compared to the
Contralateral Hemisphere

PCR product (Figure 1A), real-time PCR analysis(Figure 1B),

and Western blot analysis(Figure 1C) demonstrated that Etk

expression is increased post-impact injury when compared to the

normal cortex. Upregulated Etk expression levels were observed

Figure 4. Time course of changes in Etk and GFAP levels after controlled cortical impact. (A) Western blot of Etk and GFAP expression at
1 hour, 3 hours, 6 hours, 4 days and 7 days after impact. (B) Densitometric analysis of Etk and GFAP western blot results revealing a significant
increase at 3 hours after impact for Etk and at 4 days for GFAP. Values are expressed as mean6SD of three different experiments. *P,0.05 vs sham.
doi:10.1371/journal.pone.0039226.g004

Etk as a Biomarker for Traumatic Brain Injury
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Figure 5. Immunofluorescence of Etk and GFAP at the injury site after controlled cortical impact. (A,B) Both Etk and GFAP was
detectable near the injury site, and the intensity of the immunofluorescence signal for both proteins decreases as distance increases away from injury
site. (C) Etk exhibits colocalization with neurofilament immunostaining.
doi:10.1371/journal.pone.0039226.g005

Etk as a Biomarker for Traumatic Brain Injury
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after trauma by both PCR and Western blot analyses (Figure 1A,

C). The expression of Etk increased in the single impact groups by

2.36-fold (Figure 1B). Expression increased up to 7fold when

impact was performed twice. (Figure 1B, *p,0.05, One-Way

ANOVA, posthoc Newman-Keuls test).

Expression of Etk is Related to Trauma Severity as shown
by Western Blot Analysis

Since an increase in Etk level was observed upon impact with a

marked further increase observed upon second impact, the

correlation of the expression of Etk with trauma severity was

examined. Differing degrees of cortical injury were induced using

the CCI model with 2.5m/s and 5m/s speed settings. Although

S100 increased after impact, the level of increase did not vary

among the different trauma severity groups. Conversely, the

increase in the level of Etk upregulation upon impact showed

statistically significant differences between groups with varied

trauma severity (Figure 2A, 2B, *p,0.05, One-Way ANOVA,

posthoc Newman-Keuls test). Western blot analysis of Etk

correlated with the degree of injury severity revealed by TTC

staining. (Figure 3).

Etk and GFAP Increase with Respect to Time after TBI
shown by Western Blot Analysis

The expression of Etk and GFAP increased with respect to time

after injury. GFAP responded at a later stage and lasted for up to

7 days. In contrast, Etk upregulation appeared significant at

1 hour post-injury and continued to increase until 4 days after

injury (Figure 4A, 4B, *p,0.05, One-Way ANOVA, post hoc

Newman-Keuls test).

Location of Etk and GFAP with Respect to Injury Site
shown by Immunofluorescence Analysis

Etk and GFAP were localized in the impacted hemisphere

receiving mild CCI evidenced by increased fluorescence signals for

Etk and GFAP near the injury site. Levels of expression decreased

as distance from the injury site increased (Figure 5A, 5B). Etk also

exhibited colocalization with neurofilament immunostaining

(Figure 5C), suggesting the increase in Etk occurs in neurons.

These findings suggest the increase in Etk level arises from direct

injury to the neurons at the injury site.

Only Etk and Trauma/inflammation Related Markers, but
not Other Tyrosine Kinases, Increased after TBI

Western blot analyses at various times after TBI in rats revealed

increased levels of only trauma related markers and Etk. Other

tyrosine kinases and signal transduction proteins such as Tec, Btk,

Src, FAK, Stat 3, Bcl2, LC3 appeared unchanged after trauma

(Figure 6). The increase in Etk, but not other proteins, suggests

that induction of Etk is specific for traumatic brain injury.

Discussion

Etk may be an Indicator for Trauma Severity
Our results support the correlation of Etk upregulation with

trauma severity in rats. Based on the increase in Etk expression in

the injured cortex post-impact demonstrated by Western blot,

PCR, and RT-PCR, we postulate that Etk is associated with

traumatic brain injury. The correlation between the levels of Etk

expression with severity of injury was demonstrated by using

different degrees of controlled cortical impact. Furthermore, the

level of Etk increased as early as 1 hour after injury and a gradual

increase continued for 3 days or more. These increases in Etk

expression were further demonstrated by immunostaining and

correlated inversely with distance from the injury site. Taken

together, the increase in Etk observed with the increased number

of impacts, the severity of impact, and its time course after impact

as well as its inverse correlation with distance away from injury

support the possible role of Etk as a potential indicator for

traumatic neural injury severity.

Comparison to Other Markers
S100 and GFAP are two of the more accepted markers for

neural injury. Although both Etk and S100 increased after trauma,

a difference in degree of increase with respect to injury severity

was not observed for S100, yet was clearly demonstrated in the

expression of Etk. Furthermore, although both Etk and GFAP

expression demonstrated a timedependent increase after trauma,

the increase in Etk expression levelwas statistically significant at 3

hours after trauma. In contrast, the level of expression for GFAP

was not significantly different at 1 day post-trauma but increased

nearly 2- fold at 4 days post-trauma. With immunostaining of

GFAP and Etk, the difference between the two was equally

apparent at the site of injury, and both exhibited decreasing

expression at distances further away from the injury site.

Etk is Uniquely Upregulated by TBI and may be a
Potential Neurotrauma Biomarker

The upregulation of Etk is both temporally and spatially

correlated with injury. The upregulation responded more rapidly

to injury compared to GFAP.Similar post-trauma upregulation

was not observed with other tyrosine kinases of the same class or

with several other major signal transduction proteins in our study.

Thus, Etk appears to be uniquely upregulated after trauma and

may be a marker indicating trauma severity.

There are still several obstacles to be overcome before Etk can

be developed into a clinical biomarker for TBI severity. As current

detection of Etk in serum still has unresolved problems, we are

Figure 6. Western blot analysis for other proteins at various
times after impact. Other tyrosine kinases (Tec, Btk, Src, FAK)and
signal transduction proteins (Stat3, Bcl2, LC3 ) were analyzed after
impact, Etk was uniquely upregulated after injury.
doi:10.1371/journal.pone.0039226.g006

Etk as a Biomarker for Traumatic Brain Injury
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currently investigating the possibility of detecting substrates of Etk

as an alternative. In addition, while the expression of Etk is present

in other tissues such as bone marrow, and may be elevated even in

the absence of neuronal injury, its unique increase after TBI may

still provide pertinent information when used in combination with

other nerual or non-neural trauma markers.

In conclusion, unique Etk upregulation with respect to

traumatic neural injury severity suggests a possible role of Etk as

a neurotrauma marker.Its feasibility as an indicator for neuro-

trauma severity in human clinical settings warrants further clinical

investigation.
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