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Abstract

Hyaluronan is synthesized within the cytoplasm and exported into the extracellular matrix through the cell membrane of
fibroblasts by the MRP5 transporter. In order to meet the law of electroneutrality, a cation is required to neutralize the
emerging negative hyaluronan charges. As we previously observed an inhibiting of hyaluronan export by inhibitors of K+

channels, hyaluronan export was now analysed by simultaneously measuring membrane potential in the presence of drugs.
This was done by both hyaluronan import into inside-out vesicles and by inhibition with antisense siRNA. Hyaluronan export
from fibroblast was particularly inhibited by glibenclamide, ropivacain and BaCl2 which all belong to ATP-sensitive inwardly-
rectifying Kir channel inhibitors. Import of hyaluronan into vesicles was activated by 150 mM KCl and this activation was
abolished by ATP. siRNA for the K+ channels Kir3.4 and Kir6.2 inhibited hyaluronan export. Collectively, these results
indicated that hyaluronan export depends on concurrent K+ efflux.
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Introduction

Hyaluronan is synthesized at the inner side of cell membranes

[1], and is exported by the ABC transporters MRP5 of fibroblasts

[2] or CFTR of epithelial cells [3]. Hyaluronan molecules which

are typically exported have a molecular weight of 46106 Da and

a diameter of about 300 nm in the fully expanded state enabling

them to displace other macromolecules from their territory [4]. It

can be retained by CD44 receptor on the outside of the cell

membrane, where it reduces the membrane potential [5] or

regulates the cell volume [6]. The membrane potential is

generated by thin layers of positive and negative charges on

either side of the cell membrane. To make transport of polyanions

possible, the law of electroneutrality must be obeyed, i.e. cations

must follow or even drive hyaluronan export from the cytosol into

the extracellular matrix. The most likely cation would be K+,

because it is the only cation that extrudes in larger quantities and is

tightly regulated by a variety of K+ channels.

Three major classes of K+ channels exist which can be

expressed simultaneously [7]. (1) Voltage-driven channels which

open once the membrane is depolarized. They govern the

repolarisation of neurons after an action potential. (2) Kir channels

(inwardly rectifying potassium channels) which serve for a low

hyperpolarizing K+ exit and are activated upon high extracellular

K+ concentrations as well as during hyperpolarization. The Kir

channels are distinguished into different subgroups consisting of

the ATP dependent K+ channel and the G-protein activated Kir

channel. (3) Ca2+-activated K+ channels which are activated by

high intracellular Ca2+ concentrations. For all three categories of

channels inhibitors are available which can discriminate them.

These blockers were used to analyse for their influence on the

membrane potential of human fibroblasts and hyaluronan export.

Materials and Methods

Materials
Bis-(1,3-dibutylbarbituric acid) (Di-BAC4(3)) was purchased

from Invitrogen, Eugene, USA and other chemicals were obtained

from Sigma Chemical Co. The serum-free complete Quantum

medium 333 for fibroblasts containing growth factors was bought

from PAA Laboratories. [3H]glucosamine 30 Ci/mmol was

delivered from PerkinElmer.

Cells and cell culture
Primary cultures of human skin fibroblasts from one donor and

the human fibrosarcoma cell line HT1080 were grown in

Dulbecco’s medium supplemented with streptomycin/penicillin

(100 units of each/ml) and 10% foetal calf serum or in serum free

Quantum medium supplemented with streptomycin/penicillin

(100 units of each/ml) and kanamycin (100 units/ml) on 96 well

microtiter plates.

Determination of the membrane potential
Changes in membrane potential responses were assessed with

a fluorometric plate reader as described earlier [8] using the

bisoxonol dye bis-(1,3-dibutylbarbituric acid) (Di-BAC4(3)), an
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anionic potentiometric probe which partitions between cellular

and extracellular fluids in a membrane potential-dependent

manner. Briefly, cells were grown to near confluency in Dulbecco’s

medium in 96 well microtiter plates. They were rinsed with 100 ml
of Quantum medium containing 1 mg/ml DiBAC4(3) and in-

cubated with the same medium containing varying concentrations

of the various drugs. Changes in fluorescence were monitored

from the bottom of the wells at excitation and emission

wavelengths of 488 and 520 nm, respectively. Depolarisation

and hyperpolarisation were reflected by a respective increase or

decrease in fluorescence. The resting potential was determined

using the method of Krasznai et al. [9]. Fluorescence values were

converted into membrane potentials using the Nernst equation Et

= E0 261.56log ft/f0, where E0 is the resting potential, ft the

measured fluorescence, and f0 the fluorescence of resting cells at

37uC.

Hyaluronan synthase activity
The hyaluronan synthase activity was determined on a cell

membrane fraction [10]. Fibroblasts were grown to confluence

and stimulated by addition of fetal calf serum to a final

concentration of 15%. After 5 hours of incubation, the cells were

Figure 1. Effect of K+ export inhibitors on hyaluronan export and membrane potential. Human skin fibroblasts were grown in 96 well
microtiter plates with increasing concentrations of valinomycin (A), glibenclamid (B), ropivacaine (C), amiloride (D), barium chloride (E) and verapamil
(F) for 24 hours. The membrane potentials (- -) and hyaluronan concentrations (__) were determined as described in the methods section. The error
bars indicate the sd of 3 determinations.
doi:10.1371/journal.pone.0039096.g001
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washed with cold phosphate buffered saline (PBS), harvested with

the aid of a rubber policeman, sedimented at 1500 g for 5 min and

suspended in 30 ml of ice-cold PBS. The cells were then

transferred into a Parr-cell disruption bomb, exposed to a nitrogen

pressure of 900 psi for 15 min and disrupted by nitrogen

cavitation [11]. The particulate fraction was obtained by

centrifugation at 40000 g for 20 min. The sediment was

suspended in 50 mM TRIS-malonate pH 7.0 at a protein

concentration of 200 mg/ml and was mixed with an equal volume

of the substrate for hyaluronan synthesis that contained 8 mM
UDP-[14C] GlcA, 166 mM UDP-GlcNac, 4 mM dithiothreitol,

20 mM MgCl2 in 50 mM TRIS-malonate pH 7.0 and incubated

at 37uC for 4 hours in the presence of increasing concentrations of

multidrug resistance inhibitors. Hyaluronan synthesis was stopped

by adding a solution of 10% sodium dodecylsulfate (SDS) to a final

concentration of 1%. The mixtures were applied to descending

paper chromatography that was developed with ethanol/aq. 1 M

ammonium acetate pH 5.5 (13:7) as solvent. After 18 h the

radioactivity of [14C] hyaluronan at the origin was determined.

Determination of hyaluronan synthesis
Human skin fibroblasts were grown to confluence on a surface

area of 1100 cm2. The cells were stimulated further by adding 5%

fetal calf serum for 4 hours. They were washed with cold PBS,

scrapped off with a rubber policeman, sedimented by centrifuga-

tion for 5 min at 1000 g and suspended in a cold solution of 40 ml

of 20 mM TRIS-malonate pH 7.0, 250 mM sucrose. Inside-out

vesicles were prepared through nitrogen cavitation [12]. Briefly,

the suspension was exposed to 1000 psi of nitrogen pressure in

a Parr-Cell Disruption Bomb. After pressure release, the

suspension was centrifuged at 2000 g for 6 min. The inside-out

vesicles were sedimented from the supernatant by centrifugation at

20.000 g for 15 min. The pellet was again suspended in 1.8 ml of

20 mM TRIS-malonate pH 7.0, 250 mM sucrose. Aliquots of

100 ml were transferred to Eppendorf vials and the vesicles were

again sedimented by centrifugation at 14.000 rpm for 10 min.

The sediments were suspended in 100 ml of substrate solution for

hyaluronan synthesis containing 8 mM-UDP-[14C]- GIcA,

166 mM-UDP-GlcNAc, 20 mM-MgCl2, 10 mM dithiothreitol,

100 mM TRIS-malonate pH 7.0, 250 mM sucrose.

The following solutions were further added:

Control: 100 ml of 100 mM TRIS-malonate pH 7.0, 250 mM

sucrose.

Low KCl: 100 ml of 100 mM TRIS-malonate pH 7.0, 250 mM

sucrose, 10 mM KCl.

High KCl: 100 ml of 100 mM TRIS-malonate pH 7.0,

300 mM KCl.

Low NaCl: 100 ml of 100 mM TRIS-malonate pH 7.0,

250 mM sucrose, 10 mM NaCl

High KCl, low NaCl: 100 ml of 100 mM TRIS-malonate

pH 7.0, 300 mM KCl, 10 mM NaCl.

After incubation at 37uC for 3 hours, the enzymatic reaction

was stopped by adding of 10 ml of 10% (w/v) SDS, the solutions

were applied to Whatman 3 MM paper and then subjected to

descending paper chromatography for 16 hours with ethanol/

aqueous 1 M-ammonium acetate, pH 5.5 (13:7 v/v) as solvent.

The paper was dried and the radioactivity at the origin was

determined. The experiment was performed in triplicates.

Size determination of vesicles
An aqueous solution of poly-L-lysine (40 ml) (0.01% w/v,

Sigma, Deisenhofen, Germany) was applied to the clean side of

a glass bottom petri dish. After 10 min the solution was removed

and the petri dish rinsed with water. The vesicle suspension (10 ml)

was diluted with 2 ml of 10 mM TRIS-malonate pH 7.0, 0.25 m

sucrose on the poly-L-lysine coated petri dishes. The vesicles were

stained with the membrane dye FM1-43 (Molecular Probes,

Eugene/OR, U.S.A.) at a concentration of 5 mg/ml and image

acquisition was performed during dye exposure. Samples were

imaged using 100x alpha-Plan FLUAR objective NA 1.45

mounted on a Axio Observer Z1 (Carl Zeiss MicroImaging,

Göttingen, Germany). Images were acquired with a back illumi-

nated EM-CCD camera (iXon DU-888, Andor Technology PLC,

Belfast/Northern Ireland) controlled by Metamorph (Molecular

Devices, Sunnyvale/CA, U.S.A.). ImageJ (NHI, Bethesda/MD,

U.S.A.) was used for data analysis. The vesicles were further

characterized by the Coulter N4Plus Submicron Particles Sizer.

Inhibition of hyaluronan export by siRNAs K+ channels
The following siRNAs were obtained from Ambion Cambrid-

geshire, UK:

Kir3.4 (s7745) AUAGGUAUCAUGGAAGGUGtt

Kir6.2a (s7759)AUAGUGACAAGUGCCUUGUaa

Kir6.2b (s7760)UGAUGAUCAUGCUCUUGCGga

Kir6.2c (s7761)AAAAAUAACCCAGUACAGGtt

SilencerH Select Negative Control (4390843).

The siRNAs were reverse transfected into HT1080. siRNA

solutions (7.5 ml, 10 mM) were pipetted into the wells of 6 well

plates, followed by 500 ml of a mixture of 60 ml si-Port in 4 ml

serum-free Quantum medium. After 10 min at room temperature,

5 ml of trypsinized cells (56105 cells/ml) were added and the cells

were incubated over night at 37uC. The medium was changed to

2.5 ml fresh Quantum medium and the cells were again incubated

for 24 hours at 37uC. The supernatant was withdrawn for

determination of the hyaluronan concentration as described

above.

Detection of mRNA by rt-PCR
RT-PCR was performed using the Access RT-PCR System

(Promega) and OmniscriptH RT Kit (Qiagen) and a MastercyclerH
ep realplex (Eppendorf) and the following primers:

Kir3.4 forward: 59-GCCCTTTCCTGCCTTTTTTTC-39

Kir3.4 reverse: 59-TGCTCCCAGGCTCTGCAGT-39

Kir6.2 forward: 59-TTGGCAACACCGTCAAAGTG-39

Kir6.2 reverse: 59-GAGGCGAGGGTCAGAGCTT-39

Table 1. Action profile of ion channel inhibitors, percentage
of hyaluronan export and alteration of membrane potential at
maximal inhibitory concentrations.

Channel
Inhibitor Kir Na+ Ca2+

HA-
inhibition
(%)

Potential
difference
(mV)

KATP KG

BaCl2 + + 50 22

Glibenclamide + 50 5

Verapamil + 20 0

Ropivacain + + 80 18

Amiloride + 20 6

doi:10.1371/journal.pone.0039096.t001
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Inhibition of hyaluronan export by exogenous
hyaluronan
Human skin fibroblasts were grown in 96 well microtiter plates

to near confluency. The media were replaced by serum-free

Quantum media containing 1 nCi [3H] glucosamine and a serial

1:1 dilution of hyaluronan. After incubation at 37uC for 24 hours,

the culture supernatant was subjected to descending paper

chromatography for 16 hours with ethanol/aqueous 1 M-ammo-

nium acetate, pH 5.5 (13:7 v/v) as solvent. The paper was dried

and the radioactivity at the origin was determined. The

experiment was performed in duplicates. Digestion with hyal-

uronidase before paper chromatography removed the radioactivity

from the origin indicating that it consisted of [3H] hyaluronan.

Results

Is hyaluronan export linked to membrane potential?
A set of K+ blocking drugs was used in a concentration

dependent manner to simultaneously analyse the influence on the

membrane potential and on hyaluronan export in cultures of

human skin fibroblasts. Valinomycin is highly selective for K+ and

facilitates its movement through the plasma membrane. Fig. 1A

shows that valinomycin both reduced hyaluronan export and

membrane potential. Glibenclamid inhibits ATP-sensitive K+

channels [13]. Fig 1B shows that it reduced the membrane

potential in a concentration dependent manner from 224 mM to

219 mV at 100 mM and inhibited hyaluronan export by 50%.

Ropivacaine (NaropinH) is also an inhibitor of ATP-sensitive

channels [14–16]. Fig. 1C shows that it reduced the membrane

Figure 2. Effect of the K+ channel opener pinacidil. Human skin fibroblasts were grown in 96 well microtiter plates with increasing
concentrations of pinacidil for 24 hours. The hyaluronan concentrations were determined as described in the methods section. The error bars
indicate the sd of 3 determinations.
doi:10.1371/journal.pone.0039096.g002

Figure 3. Inhibition by exogenous hyaluronan. Human skin fibroblast were labelled with [3H] GlcN and incubated in the presence of the
indicated exogenous hyaluronan concentrations. After 24 hours the radioactivity incorporated into [3H] hyaluronan was determined. The error bars
indicate the mean of duplicate samples.
doi:10.1371/journal.pone.0039096.g003
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potential in a concentration dependent way from 224 mM to

26 mV at 100 mM and also inhibited hyaluronan export by 80%.

Amiloride directly blocks the epithelial sodium channel (ENaC)

thereby inhibiting sodium reabsorption and indirectly reducing K+

export as well as the membrane potential [17]. Fig. 1D shows that

it decreased the membrane potential in a concentration dependent

manner from – 24 mM to 218 mV at 100 mM and blocked

hyaluronan export by 20%.

Barium chloride is a reversible inhibitor of Kir channels [18;19].

Fig. 1E shows that increasing concentrations of BaCl2 up to

25 mM hyperpolarized the membrane potential marginally and

reduced the hyaluronan export by 50%.

Verapamil is a classical calcium antagonist. It reduces the

cellular influx of Ca2+ [20] and thus has an indirect effect on the

Ca2+ activated potassium channel. Fig. 1F shows that it did not

affect the membrane potential up to concentrations of 50 mM, but

reduced hyaluronan export by 20%. The calcium sensitive K+

channels were also inhibited directly by specific inhibitors and

activators such as charybdotoxin, chlotrimazol, TRAM-34 and

NS309. These drugs did not affect hyaluronan export at their

effective concentrations for K+ efflux (data not shown).

The above results are summarized in Table 1. They suggested

that the membrane potential is not directly correlated with

hyaluronan export, as BaCl2 hyperpolarized the cells and reduced

hyaluronan export and amiloride depolarized and reduce export

only marginally. The best correlation existed between the ATP-

sensitive K+ channels and hyaluronan export.

Opening of K+ channels
We investigated in further experiments, whether hyaluronan

export may be linked to K+ efflux. Pinacidil opens ATP-sensitive

K+ channels [21]. Fig. 2 shows that it activated hyaluronan export

from human skin fibroblasts in a concentration dependent manner

verifying that K+ channels are indeed involved in hyaluronan

export.

Inhibition by exogenous hyaluronan
We recently showed that exogenous hyaluronan reduced the

membrane potential and attributed this observation to the

Donnan effect of hyaluronan which forces ions back into the cells

[5]. Hence, we analysed here, whether exogenous hyaluronan may

also affect its own export. Fibroblasts were labelled with [3H]

glucosamine in the presence of increasing exogenous hyaluronan

and shedding of [3H] hyaluronan into the culture medium was

determined. Fig. 3 shows that exogenous hyaluronan indeed

reduced the amount of newly synthesized hyaluronan.

Is hyaluronan export influenced by K+-concentrations on
inside-out vesicles?
The experiments described above could either be explained by

complicated cellular signalling pathways or by simple concurrent

efflux. In order to discriminate between these alternative

hypotheses, inside-out vesicles were prepared from human skin

fibroblasts, incubated with the precursor nucleotide sugars UDP-

GlcNac and UDP-[14C] GlcA in the absence and presence of low

(5 mM) and high (150 mM) KCl concentrations and the formation

of [14C] hyaluronan was determined. Fig. 4A shows that low NaCl

or KCl concentrations did not activate hyaluronan synthesis. Only

high KCl concentrations were activating. Further activation was

not achieved by a mixture of high KCl and low NaCl

concentrations which mimic intracellular ion distribution. In

another set of experiments, ATP was added at a concentration of

10 mM. This treatment annihilated the activation of hyaluronan

import into vesicles by high KCl concentrations. The vesicles were

characterized by staining and microscopy. They were closed and

heterogeneous. The size distribution was measured by nephelom-

etry using the Coulter N4Plus Submicron Particles Sizer. Fig. 4B

shows a comparison of the intensity result. From these data the

diameter of the mean intensity peaks were calculated to be

3519 nm for vesicles without hyaluronan synthesis and 3370 nm

with hyaluronan synthesis. Thus intravesicular hyaluronan re-

duced the vesicles size about 4%.

Figure 4. Effect of KCl on vesicular hyaluronan synthesis. Inside-
out vesicles were prepared from human skin fibroblasts and incubated
for 3 hours with radioactive substrate for hyaluronan synthesis with the
salts indicated in the absence (open bars) and presence 10 mM ATP
(solid bars). A. Radioactivity incorporated into [14C] hyaluronan was
determined from triplicate samples. *p,0.01 (ANOVA test). B. Size
determination of vesicles incubated for 2 hours in the absence (- - -)
and presence (___) of substrates for hyaluronan synthesis.
doi:10.1371/journal.pone.0039096.g004
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Inhibition of K+ channels by siRNA
Human fibroblasts express the G-protein gated Kir3.4 and the

ATP-sensitive Kir6.2 channels [22–24]. Therefore we chose these

channels to analyse their knock-down on hyaluronan export in the

HT1080 cell line, because these cells proved to be more suitable

for cellular transfection. Fig. 5 shows that Kir3.4 siRNA and

a mixture of three Kir6.2 siRNAs reduced hyaluronan export

significantly. The knockdown of the respective mRNAs was

controlled by rtPCR.

Discussion

The transport of charged molecules through plasma membranes

requires the stoichiometric cotransport of counterions in order to

fulfill the law of electroneutrality, and this applies particularly to

Figure 5. Inhibition of Kir channels by siRNA. Human fibrosarcoma cells HT1080 were reverse transfected with 30 nM siRNA for Kir3.4, three
different Kir6.2 siRNAs, a mixture of the three Kir6.2 siRNAs or non-sense siRNA and incubated for 24 hours in serum free Quantum medium. A.
Specific inhibition of mRNA. The downregulation of Kir3.4 mRNA and Kir6.2 mRNA was detected by rtPCR. B. The hyaluronan concentrations were
determined in the culture media. The error bars indicate the standard error of 6 determinations. *p,0.01 (ANOVA test).
doi:10.1371/journal.pone.0039096.g005

Figure 6. Model of hyaluronan synthesis and export. The hyaluronan synthase assembles hyaluronan at the inner side of the plasma
membrane, the chains are exported by the ABC transporter MRP5 from fibroblasts and retained on the cell surface by CD44. Concurrent K+ efflux is
required for maintaining electroneutrality.
doi:10.1371/journal.pone.0039096.g006
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macromolecules such as hyaluronan. Nature has designed several

mechanisms for cotransport. Secondary-active transporter proteins

mediate uphill transport of a solute by tapping into the free energy

provided by the concentration gradient of a coupled ion that is

specific to the transporter protein (e.g., H+, K+, or Na+). Chloride
transport by CFTR is believed to be linked to Na+ transport by the

epithelial sodium channel (ENaC). If cotransport is stoichiomet-

rically coupled, there is a driving force of the membrane potential

in addition to downhill diffusion along the concentration

gradient.In our previous studies, we recognized that hyaluronan

export was sensitive to inhibitors of K+ channels [10]. Since K+

channels are also responsible for membrane potential formation,

we investigated the relationship in closer detail. A set of different

K+ channel inhibitors revealed that the membrane potential was

not correlated with hyaluronan export in all cases. Prominent

inhibition of hyaluronan export over 50% was observed with

glibenclamide, ropivacain and barium chloride which are all

rather specific for Kir channels.

The inhibition of hyaluronan production by exogenous

hyaluronan could also rely on K+ flow through plasma

membranes. We have previously shown that exogenous hyalur-

onan reduced the membrane potential, caused blebbing and

volume increase by its Donnan effect that forced salt into the cells

thereby reversing the normal efflux of K+ [5;6]. The influx of ions

did not only affect K+ ions but also Ca2+, as has recently been

shown for postsynaptic L-type Ca2+ channels [25]. On the other

hand, treatment of fibroblasts with hyaluronidase caused hyper-

polarisation, volume decrease and stimulation of hyaluronan

production [5;6;26].

To eliminate the possibility that inhibition was caused by

intracellular signalling cascades or the toxicity of drugs, hyalur-

onan synthesis and transport were analysed in inside-out vesicles.

Import of hyaluronan into these vesicles was activated only by high

KCl (150 mM) and this activation was thwarted by the addition of

ATP. This result indicated that hyaluronan import was dependent

on ATP-sensitive K+ channels which are blocked by increased

intracellular ATP levels. The activation by KCl occurred on a high

basic background as compared to the control which could be due

to faster hyaluronan synthesis than transport leading to excessive

extravesicular loops. It is also possible that other Kir channels

participated in K+ efflux. In control experiments the vesicles were

examined microscopically and appeared to be closed. The size

distribution as determined by nephelometry was about 3.5 mm in

diameter and decreased about 4% upon incubation with substrates

for hyaluronan synthesis. Thus intravesicular hyaluronan de-

creased the vesicle size. We observed a similar phenomenon on

intact cells incubated with inhibitors of hyaluronan export [6].

The participation of K+ channels in hyaluronan export was

verified using siRNA of the G-protein gated Kir3.4 and the ATP-

sensitive Kir6.2 channels. This could arise from the properties of

both channels to form functional heterodimers [27].

Our results show that there is an uncoupling of membrane

potential and hyaluronan export. A similar observation for the

interactions of Kv1.3 channels and cell surface integrins was made

previously. This was correlated to the K+ efflux rather than the

modulation of the membrane potential per se [28]. An explanation

for this dissociation could be the microheterogeneity on the cell

membrane. It is known that hyaluronan synthesis is confined to

membrane protrusions [29], whereas the membrane potential is

measured on the whole cell. There is an interesting correlation of

clustering of K+ channels [30] and hyaluronan [31] in neurons.

The glucose induced formation of ATP is known to depolarize

membranes of microvilli, but not basolateral membranes in the

small intestine [32]. High glucose concentrations can also reduce

the amount of hyaluronan produced by gingival fibroblasts [33]

and epidermal keratinocytes [34].

Our results suggest that cells have an additional level of

regulating hyaluronan production by the K+ efflux through K+

channels besides transcriptional regulation of the synthase or the

MRP5 transporter namely their covalent modification and

allosteric inhibition. Regulation by ATP-sensitive K+ channels

may operate to control the level of intracellular hyaluronan during

entrance of dividing cells into mitosis, where high levels of

intracellular ATP [35] as well as hyaluronan were found [36;37].

In addition, elevated hyaluronan synthesis as well as enhanced

expression of several K+ channels are correlated in some

metastatic tumour cells [38;39]. Our results propose a mechanistic

explanation for these observations. The metabolic association of

hyaluronan synthesis and K+ conductivity may also have great

impact on neurotransmission.

It is interesting to consider the topographic dimensions of

hyaluronan on the MRP5 export site of plasma membranes

(Fig. 6). Hyaluronan molecules typically exported have a molecular

weight of 46106 Da and a diameter of about 300 nm in the fully

expanded state that readily displaces other macromolecules from

its territory. The chain is retained by CD44 receptor on the

plasma membrane with a thickness of about 7 nm. The membrane

potential is generated by thin layers of positive and negative

charges on either side of the membrane. Hyaluronan is thread

through a pear like MRP5 structure with breadths of 6 nm to

13 nm, a length of about 13 nm and a hole of 2.5 nm [40;41].

Thus nascent hyaluronan chain occupies a large area of the

membrane which can be regarded as a closed system in the

physico-chemical sense. If a charged molecule is transported

through a membrane in a closed system, the law of electroneu-

trality has to be obeyed; e. g. concurrent cationic counter ion

export is required. This requirement is fulfilled by the K+ channels

located in the vicinity of the hyaluronan exporter.
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