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Abstract

Computational detection of TF binding patterns has become an indispensable tool in functional genomics research. With
the rapid advance of new sequencing technologies, large amounts of protein-DNA interaction data have been produced.
Analyzing this data can provide substantial insight into the mechanisms of transcriptional regulation. However, the massive
amount of sequence data presents daunting challenges. In our previous work, we have developed a novel algorithm called
Hybrid Motif Sampler (HMS) that enables more scalable and accurate motif analysis. Despite much improvement, HMS is still
time-consuming due to the requirement to calculate matching probabilities position-by-position. Using the NVIDIA CUDA
toolkit, we developed a graphics processing unit (GPU)-accelerated motif analysis program named GPUmotif. We proposed
a ‘‘fragmentation’’ technique to hide data transfer time between memories. Performance comparison studies showed that
commonly-used model-based motif scan and de novo motif finding procedures such as HMS can be dramatically
accelerated when running GPUmotif on NVIDIA graphics cards. As a result, energy consumption can also be greatly reduced
when running motif analysis using GPUmotif. The GPUmotif program is freely available at http://sourceforge.net/projects/
gpumotif/
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Introduction

Accurately locating the transcription factor (TF)-DNA interac-

tion sites provides insight into the underlying mechanisms of

transcriptional regulation. Since binding sites for most TFs show

sequence specificity, computational prediction of TF binding sites

based on such sequence features has demonstrated to be an

effective tool for functional genomics research.

New technologies such as ChIP-Seq, or chromatin immuno-

precipitation followed by high-throughput sequencing [1,2,3,4],

are capable of producing large amounts of sequence data that is

believed to harbor protein-DNA binding sites. Motif analyses

including known motif scan and de novo motif finding are effective

tools to help us understand the underlying transcription regulation

mechanisms [5]. A de novo motif search is helpful even in cases

where the TF binding pattern is known since it can reassure the

accuracy of data, especially in the common case where these

patterns are reported based on limited experimentally verified TF-

DNA interaction sites.

In our previous work, we discussed the limitations of current

methods and proposed a new de novo motif finding algorithm

named Hybrid Motif Sampler (HMS) [6]. HMS is specifically

designed for analyzing the massive volume of ChIP-Seq data.

Because HMS is a probability model-based method, which relies

on parameter-rich position-specific weight matrices (PSWM) to

characterize motif patterns, despite much improvement, HMS is

still time-consuming due to the requirement to calculate matching

probabilities position-by-position for every sequence through an

iterative process.

Recently, advanced parallel computing hardware such as

graphics processing units (GPUs), have greatly enabled massively

parallel processing on a desktop computer. Originally designed to

accelerate demanding 3D graphics, the power of GPUs has been

harnessed for non-graphical, general purpose applications includ-

ing bioinformatics [7,8,9,10,11,12,13,14]. For applications con-

taining a very large number of homogeneous tasks that can

(almost) be done independently, GPUs, which are classified as

‘‘fine-grain’’ parallel hardware, offer lower cost, less system

complexity and better energy efficiency when compared to their

‘‘coarse-grain’’ counter-parts such as many-core architectures and

computer clusters. This motivates us to develop a suite of motif

analysis programs taking advantage of the powerful GPU.

Methods

We have developed a software package named GPUmotif that is

capable of performing ultra-fast motif analysis. GPUmotif is

written in C++ and CUDA C and works on any CUDA-enabled

GPU.
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Our design is driven by the observation that motif scan

constitutes the main portion of the HMS’s runtime. As mentioned

earlier, although PSWMs provide an effective way to represent the

sequence features of TF binding sites, scanning a large number of

sequences using PSWM is time-consuming since a matching

probability needs to be calculated for each possible start position of

every sequence. Thus, we aimed to eliminate this computation

bottleneck in model-based motif analysis algorithms such as HMS.

In the following subsections, we first state the statistical models

that GPUmotif is based upon, and then proceed to discuss how we

use GPU-computing to significantly accelerate motif scan proce-

dure and finally show how we employ this new motif scan core to

improve HMS.

Motif scan
In motif scan, our task is to scan through a series of DNA

sequences using a set of known PSWMs, such that given a

significance threshold, we are able to report the number of motif

incidences for each PSWM. The motif scan core receives the input

sequences and PSWMs and outputs the corresponding matching

probabilities.

Statistical model. Let (r1,r2,:::) denote a set of DNA

sequences, a represent the motif start location, and w stand for

the motif width and is assumed to be known. Let H~(h1,:::,hw)
with each hi being a probability vector of length four that

represents the nucleotide preference at the ith position of the motif.

For notational simplicity, we use integers 1, 2, 3 and 4 to represent

the four types of nucleotides A, C, G and T. P(Backgroundt) is the

background noise calculated using a third-order Markov model as

P(Backgroundt)~P(rt)P(rtz1jrt)P(rtz2jrtz1,rt)P(rtz3jrtz2,rtz1,rt)

P(rtz4jrtz3,rtz2,rtz1)

P(rtz5Drtz4,rtz3,rtz2):::

The posterior probability of the corresponding motif starting at

each position is calculated for all sequences using the following

formula:

p(a~lDH,R)!
P
w

i~1
hi,rlzi{1

P(Backgroundl)
:

Here hi,rlzi{1
is one of the four parameters in the ith multinomial

distribution parameter vector hi that corresponds to the base

found at lzi{1.

De novo motif finding
De novo motif finding requires no prior knowledge of the TF

binding sites. It is designed to delineate over-represented motif

patterns from a set of DNA sequences. A variety of different

software programs have been developed for motif-finding

[15,16,17,18,19,20,21]. See Tompa et al. [22] for a review of

this topic.

Statistical model. The HMS algorithm [6] is specially

designed to analyze massive sequence data produced from high-

throughput assays such as ChIP-Seq. HMS is based on the

product multinomial model [23] which is commonly used for

Gibbs sampler-based algorithms [16,17,19]. In order to process

tens of thousands of input sequences, HMS implements a

prioritized hybrid Monte Carlo strategy that allows us to rapidly

analyze a large amount of input sequences and produce an

accurate estimate of the motif pattern. In addition, HMS leverages

sequencing depth within each region to aid motif identification.

For the sake of completeness, we briefly summarize the statistical

model introduced in our earlier work.

Let R~(R1,:::,RJ ) denote a set of J DNA sequences, obtained

from ChIP-enriched regions, of lengths L1,:::,LJ respectively. Let

A~(a1,:::,aJ ) denote the vector that is formed by the start

locations with 1ƒajƒLj{wz1,j~1,2,:::,J . Here w is the motif

width and is assumed to be known. Let H~(h1,:::,hw) with hi

representing the nucleotide preference at the ith position of the

motif and let the probability vector h0 represent the nucleotide

preference for non-motif positions in these sequences. Each of the

hi ,i~0,1,2,:::,w is a probability vector of length four. For

notational simplicity, we use integers 1, 2, 3 and 4 to represent

the four types of nucleotides, A, C, G and T.

To increase specificity, we introduce a binary indicator variable

Ij where Ij~1 indicates that Rj contains at least one motif, and

Ij~0 otherwise. In the algorithm, Ij is set to 1 if the average of

likelihood ratios observing the motif in the sequence Rj , denoted

as zj , is greater than 1. i.e.,

zj~
1

Lj{wz1

XLj{wz1

l~1

P
w

i~1
P
4

k~1

hik

h0k

� �hk (rj,lzi{1)

,Ij~Ifzj§1g:

The functions hk(), k~1,2,3,4 (represents nucleotide A, C, G and

T respectively) return the number (0 or 1) of nucleotides of type k.

After updating Ij , we only conduct motif search on the

sequences with Ij~1.

The probability of background sequences is calculated as before.

And the prior probability p(aj~l) is derived from a student-t’s

distribution which mimics the sequence depth within the peak.

The parameter of main interest in this model is the alignment

variable A. HMS employs a Gibbs sampler type approach as in

the original Gibbs motif sampler [17]. Using a conjugate prior for

each hi , which is Dirichlet (a0,1,a0,2,a0,3,a0,4), the posterior

distribution for alignment aj can be expressed as:

p(aj~lDh0,H,Rj ,A{j)!Ifzjw1g

P
w

i~1
P
4

k~1
h

hk(rj,lzi{1)za0,k
ik

P(Backgroundj,l)
p(aj~l)

GPU-accelerated Implementation
During both motif scan and de novo motif finding procedures,

calculating the posterior probability that a motif starts from a

given position is the most computation-intensive step. These

probability calculations can be done simultaneously. Therefore,

we offload this task to the GPU to take advantage of its concurrent

computation capabilities.

Figure 1 shows the high-level architecture of a CUDA-enabled

NVIDIA graphics card (GTX 480). We have eliminated graphics-

specific details (such as texture units) for more clarity. Computa-

tional tasks written for the GPU, ‘‘kernels’’, usually consist of many

units of work, called ‘‘threads’’, that can run concurrently. To

execute, logical groups of threads, called ‘‘thread blocks’’, are

assigned by the global scheduler to the multiprocessors (MPs),

simple processing cores that contain several CUDA cores (usually

8 or 32) for concurrent execution of threads and memory resources

to accommodate and enhance the storage needs of the threads

Motif Analysis Using Graphics Processing Units
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during execution. Although thread blocks remain on the same MP

for their entire lifetime (until all their threads complete), multiple

thread blocks can be assigned to the same MP at any given

moment, giving the scheduler more flexibility to avoid stalls

created by data dependencies and the memory access latency

while allowing the threads in the same block to share data and

communicate. A local (warp) scheduler inside the MP decides

which thread block and which threads inside that thread block

(usually groups of 16, called warps) execute during each

computational cycle. This execution model, called Single Instruc-

tion Multiple Threads, enables extremely high-throughput execu-

tion of concurrent units of work (threads), while allowing for more

control-flow flexibility than its traditional counter-part, Single

Instruction Multiple Data (SIMD). For more detailed information

on the CUDA architecture, please see NVIDIA CUDA C

Programming Guide, version 4.1. http://developer.download.

nvidia.com/compute/DevZone/docs/html/C/doc/

CUDA_C_Programming_Guide.pdf.

A typical computational task on a GPU consists of three major

steps: first, input-transfer: transferring input data from computer’s

main memory to the graphics card memory; second, computation:

performing the computation on the GPU; third, results-transfer:

transferring the results back from the graphics card memory to the

main memory.

In the GPUmotif motif scan core, the GPU is setup by first

transferring the input sequences and corresponding background

sequence information to the graphics card’s memory. The input-

transfer step is performed only once during the whole lifetime of

the program and thus the overhead from this step is negligible. We

describe the second and third steps in detail.

Once the card has been setup, we calculate the probabilities for

each PSWM. During this step, the actual computation takes place

and this is, in fact, where the power of the GPU is harnessed.

Because the probabilities evaluated at different starting positions

are independent of each other, our problem can be broken down

into parallel units of labor, or ‘‘threads’’ as mentioned earlier, with

thread t calculating the probability that a motif starts at position t.

Generally speaking, more threads lead to a more efficient

utilization of the GPU and thus higher gains. For this reason,

instead of waiting for each sequence to finish and then moving on

to the next, we concatenate all the sequences and scan them all at

once, as if they were one long sequence. A later post-processing

step separates the results for different sequences.

Results Transfer. When the probability calculation for all

sequences is completed, before moving on to the next PSWM, we

have to perform an important step: results-transfer. The results of

a GPU task (‘‘kernel’’) are placed in the graphics card memory. To

make these results accessible to the user, they have to be

transferred back to the computer’s main memory.

One of the most common restraining bottlenecks in GPU-

accelerated computing is the latency of data transfers between the

graphics card memory and the computer’s main memory. In this

work, we developed a novel and effective technique, named

‘‘fragmentation’’ that virtually eliminates this transfer overhead by

shifting it forward and making it happen concurrently with the

computation. Taking advantage of the new NVIDIA concurrent

transfer capabilities, we break down our scan task into n sub-tasks,

or ‘‘fragments’’. The results from fragment k are transferred back

to the host memory at the same time fragment k+1 is executing.

This almost completely hides the data-transfer overhead thus

boosting the performance up to 1.6 times in the motif scan

Figure 1. High-level architecture of the NVIDIA GTX 480 graphics card (simplified and excluding the graphics-specific details). The
GPU contains several multiprocessors (MPs) for executing groups of threads, called ‘‘thread blocks’’, assigned to MPs by the global control logic
(scheduler). Each MP contains several (2616 for GTX 480) CUDA cores capable of performing floating-point multiply-and-add and integer, logical and
bitwise operations. MPs also contain a fast programmable shared memory, hardware-managed data caches and ‘‘special function’’ units that perform
double-precision or more complex floating-point operation (such as reciprocal, square root, sine and cosign). A local scheduler assigns resources
(including CUDA cores) to the thread blocks assigned to the MP.
doi:10.1371/journal.pone.0036865.g001
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procedure. Figure 2 shows how fragmentation works. It should be

noted that this is for the case where computation time is greater

than transfer time. In the converse scenario, fragmentation is still

helpful but becomes less effective as the ratio of transfer time to

computation time grows.

Datasets for performance comparison. We integrated our

new motif scan core into HMS. To test its performance, we used

four publically-available ChIP-Seq datasets: NRSF (neuron-

restrictive silencer factor) [1], STAT1 (signal transducer and

activator of transcription protein 1) [3], CTCF (CCCTC-binding

factor) [2] and ER (estrogen receptor) [6]. We used HPeak [24] to

define read-enriched regions from the ChIP-Seq data and used

HMS [8] to perform non-GPU de novo motif finding.

Speedup Evaluation
Given the inherent granularity limitations of the conventional

timer implementations, to ensure accuracy, all our experiments

were performed multiple times and the per-experiment time was

derived by dividing the aggregate time by the number of repetitions.

Also the data transfer times were counted in for the calculations

making each per-experiment time include both the computation

and the data-transfer time to achieve a fair comparison.

Results and Discussion

We compared the computation time of GPUmotif against its

non-GPU version using real sequence data. Because the execution

time of both the CPU and GPU versions only depend on the size

of the input and not the specific sequences, for the performance

comparisons in this study, DNA sequences were randomly selected

from the reference Human genome sequence. Position-specific

weight matrices of motifs with different widths were selected from

TRANSFAC [25]. All performance comparisons in this study

were conducted on a desktop computer with an Intel Core i7 920

processor and 4 GB of RAM running 64-bit Ubuntu Linux 9.04.

Only a single CPU core of the desktop computer was used when

testing the non-GPU version. We tested on two different graphics

cards, NVIDIA GeForce GTX 260 and the NVIDIA GeForce

GTX 480 (Fermi) for a more thorough analysis of the motif scan

core performance improvement. For analysis of de novo motif

search performance, however, we performed our experiments only

on the latter.

Figure 3 shows the motif scan core speedup results for both

cards. As the figure shows, we can achieve speedup as high as 100

times. The increased number of cores and the more advanced

architecture of the new Fermi card yield higher speedup.

As the figure shows, longer motifs and longer aggregate input

sequences result in further speedup. This is because when the size

of the motif increases, the fraction of the program time spent in the

scanning loop becomes more salient as compared to scheduling

and setup overheads. Also, longer motifs benefit more from

fragmentation. Similarly, larger aggregate sequence size, i.e.

having longer or simply more input sequences, results in more

positions requiring assessment of matching scores. This, in turn,

Figure 2. Illustration of the ‘‘fragmentation’’ technique we proposed for improving the performance of GPU.
doi:10.1371/journal.pone.0036865.g002

Figure 3. The speedup of the GPU-accelerated motif search over the original version. ‘‘w’’ stands for motif width.
doi:10.1371/journal.pone.0036865.g003
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causes an increase in the degree of available concurrency resulting

in better utilization of the GPU and also increased freedom of the

GPU scheduler in assigning the scan tasks to its computational

units. Therefore, more speedup is achieved. Note that the

individual sequence lengths do not affect the speedup since all

sequences are concatenated before scanning in our algorithm.

Table 1 shows the results for the four ChIP-Seq datasets. The

large difference between the speedup of the motif scan core and

the overall algorithm might be surprising at first. This difference is,

in fact, due to a common phenomenon in parallelization of

algorithms referred to as Amdahl’s law [26]. Amdahl’s law states

that the maximum speedup that can be achieved by parallelizing a

portion of a program that constitutes fraction f of the overall

program execution time is 1/(12f). To justify Amdahl’s law,

imagine a program spends tR of its overall execution time, t, in a

specific routine R. By breaking R into n parallel sub-routines, the

program time reduces to tnew~(t{tR)z
tR

n
resulting in a

speedup of s~
t

tnew
~

t

(t{tR)z
tR

n

~
1

1{
n{1

n
|

tR

t

v

1

1{
tR

t

.

Setting f ~
tR

t
yields Amdahl’s law.

Here, the portion of the program that has been parallelized (R)

is the motif scan core. The fraction time that the HMS spends in

the motif scan core, depends on the input dataset (by a few

percents) and has been shown for each dataset in Table 1 (‘‘f’’ is

determined using a tool called the GNU profiler (gprof) that

outputs the amount of time spent in each function of a running

program).

For instance, for CTCF, HMS spends 90.62% of its execution

time in the motif scan core and thus by Amdahl’s law, the

theoretical upper bound for speedup (through parallelizing the

motif scan core) is
1

1{0:9062
~10:66. As the table shows, our

implementation does get very close to this maximum.

Energy consumption comparison
Although graphics cards draw additional power when active,

utilizing them significantly reduces the computation time for a

given task therefore leading to improved energy-efficiency. In the

case of our motif scan core, the original non-GPU version draws

324 Joules (measured by a digital meter) to scan a 21 bp motif on a

16-MB sequence. The same scan draws only 12.8 Joules on GTX

260 and 7.6 Joules on GTX 480 which is an improvement by a

factor of 25 and 42 times respectively. Our findings indicated that

mundane bioinformatics jobs such as motif scan and discovery can

benefits from the latest GPU-computing technology, achieving not

only dramatic speedup in computing time, but also significant

savings in energy consumption.
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