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Abstract

Pathway analysis provides a powerful approach for identifying the joint effect of genes grouped into biologically-based
pathways on disease. Pathway analysis is also an attractive approach for a secondary analysis of genome-wide association
study (GWAS) data that may still yield new results from these valuable datasets. Most of the current pathway analysis
methods focused on testing the cumulative main effects of genes in a pathway. However, for complex diseases, gene-gene
interactions are expected to play a critical role in disease etiology. We extended a random forest-based method for pathway
analysis by incorporating a two-stage design. We used simulations to verify that the proposed method has the correct type I
error rates. We also used simulations to show that the method is more powerful than the original random forest-based
pathway approach and the set-based test implemented in PLINK in the presence of gene-gene interactions. Finally, we
applied the method to a breast cancer GWAS dataset and a lung cancer GWAS dataset and interesting pathways were
identified that have implications for breast and lung cancers.
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Introduction

Many genome-wide association studies (GWAS) have been

conducted to identify markers associated with diseases over

millions of SNPs. However, to survive the multiple testing

correction over millions of tests, SNPs need to have strong

marginal effects on the disease or a large sample size is required for

SNPs with small effects. For a complex disease that is often caused

by the joint effects of multiple genes with small marginal effects,

considering the effects jointly will significantly increase the

statistical power to identify these genes. Pathway analysis provides

a powerful approach for identifying the joint effect of genes

grouped into biologically-based pathways on disease. Promising

pathway results have already been identified in GWAS datasets

[1–3].

Recently, many statistical pathway analysis methods have been

proposed. Most of them focused on testing the cumulative main

effects of genes in a pathway [4–6]. That is, pathway statistics were

derived based on single-marker association test statistics or p-

values. However, for complex diseases, gene-gene interactions are

expected to play a critical role in disease etiology. Some methods,

such as ‘‘Gene set Ridge regression in Association studies’’

(GRASS) [6], which is based on a regression framework, can

incorporate gene-gene interactions in the test. However, since

there are many combinations of SNPs for interactions, it is not

straightforward to select the combinations of SNPs in the

regression model to account for gene-gene interactions.

Random Forest (RF) has been used as a tool for association tests

[7,8]. SNPs are used as predictor variables and disease status is the

outcome in a classification tree. A set of classification trees is

created based on replicates of samples generated by a bootstrap

approach in the RF algorithm. The significance of a SNP is then

evaluated based on its prediction ability for the disease outcome.

Moreover, interactions are implicitly modeled in RF as each path

of edges in the tree corresponds to a particular combination of

alleles that is associated with the disease status [9]. Therefore,

several studies also applied RF to test gene-gene interactions

[10,11]. RF is efficient for a gene-gene interaction analysis, since a

small set of SNPs is used in each node of the tree for splitting the

samples.

RF has also been shown to be useful for pathway analysis due to

its promising feature of considering both main effects and gene-

gene interactions. Pang et al. identified candidate pathways by

ranking the pathways using their prediction error rates calculated

in RF for gene expression data [12]. Chang et al. performed a pilot

study of applying RF to SNP data for identifying pathways

associated with Glioma [13]. A permutation procedure was used

to estimate the p-value for each pathway by testing the significance

of the prediction error rate calculated based on a set of SNPs

within the pathway with respect to the error rates observed by

chance. Although RF was demonstrated to be a useful approach

for pathway analysis of SNP data in Chang et al., its statistical

power for analyzing SNP data has not been evaluated by

simulation studies. Moreover, a large pathway can have hundreds

of genes, which can include thousands of markers. To test a large

pathway for association, using all SNPs in the pathway for the RF

pathway analysis may reduce the classification power, as more

noise is introduced to the model. Reducing the number of SNPs
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that are not associated with the disease without biasing the results

can significantly increase the power for RF.

Here we propose a powerful two-stage RF-based pathway test

(TRF-pathway) based on SNP data, such as data from a GWAS.

We used simulations to verify that the TRF-pathway has the

correct type I error rates. We also compared the power of the

TRF-pathway to the original RF-based pathway test used in

Chang et al. Finally, we applied the TRF-pathway to a breast

cancer GWAS dataset and a lung cancer GWAS dataset and the

TRF-pathway identified candidate pathways that have implica-

tions for breast and lung cancer etiology.

Methods

In the RF algorithm [14], a training set of samples are selected

by sampling with replacement from the original samples. The

training set is used to create a classification tree, and the remaining

samples that are not in the training set are used as the testing set

for the classification tree. The process is repeated a large number

of times so that a forest of classification trees is created. Based on

the forest of trees, a sample that is classified more often in a

category (when it is in the testing set) is assigned to the category. A

classification error rate can then be calculated based on the

number of samples that are incorrectly classified. Moreover, the

significance for each predictor variable can be assessed by a

permutation procedure in RF. The variable importance is

standardized to a Z score.

We incorporated the RF algorithm in the TRF-pathway test.

SNPs in genes in a pathway are used as predictor variables to

classify the case and control status in RF. For a large pathway,

using SNPs in all the genes in the pathway may reduce the power

for classification, because a majority of SNPs may not have effects

on the disease. Therefore, we used a two-stage approach to

eliminate the number of SNPs that may not have effects. The RF

algorithm is performed on all SNPs in a pathway at the first stage.

Then SNPs with variable importance scores greater than a user-

specified threshold are selected at the second stage and the RF

algorithm is performed only on the significant SNPs. The

algorithm for the TRF-pathway is described as follows:

The TRF-pathway algorithm
For each pathway, we perform the following steps in the TRF-

pathway algorithm:

1. Select a set of SNPs within a user-specified distance to genes in

a pathway.

2. RF is performed based on the set of SNPs and the standardized

variable importance score is calculated for each SNP.

3. SNPs with importance scores greater than a user-specified

threshold are selected as the important SNPs. RF is performed

again based on the important SNPs.

4. The prediction error rate, which is the proportion of samples

not correctly categorized, from the RF analysis in step 3 is used

as a score R for the pathway.

5. Permute the case-control affection status and repeat steps 2–4

K times. In each permutation i, the score Ri is calculated.

6. The p-value for the pathway is calculated as:
PK

i~1

I(RivR)=K ,

where I(S) = 1 when the statement S is true and I(S) = 0 when S

is false. The null hypothesis for the TRF-pathway is that none

of the SNPs in the pathway are associated with the disease.

Note that if the user does not specify a threshold for the variable

importance scores, all the SNPs within genes in a pathway are used for

RF analysis and the TRF-pathway algorithm is reduced to the RF-

based pathway algorithm used in Chang et al. [13]. In the following

text, we refer to the RF-pathway as the method used in Chang et al.

Unlike methods developed for GWAS data that compare test

statistics of genes in a pathway with respect to statistics for

background genes in the genome such as Wang’s method [1] and

‘‘Association LIst GO Annotator’’ (ALIGATOR) [5], the TRF-

pathway compares the test statistic (i.e. the prediction error) with

respect to the null distribution of the test statistic. Therefore, the

TRF-pathway is suitable not only for GWAS, but also for

candidate gene or candidate pathway studies.

Simulations
We conducted simulation studies to evaluate the type I error

rates and power for the TRF-pathway. We used genomeSIMLA to

simulate SNPs in genes in a pathway based on Affymetrix 550k

chip [15]. Linkage Disequilibrium (LD) structures for SNPs were

simulated based on a forward-time population simulator, which

accounts for random mating, genetic drift, recombination and

population growth rate, in genomeSIMLA [15]. We randomly

selected 50 genes as a pathway for the simulations. A total of 1,038

SNPs within 20 KB to the genes in the pathway were selected.

Three SNPs (X1, X2 and X3) with minor allele frequencies 0.25,

0.15 and 0.15, each in different genes, were used as disease loci. A

penetrance function similar to the one used in [16] was used to

simulate the affection status:

Pr(AffectedjX)

~
exp(azb1X1zb2X2zb3X3zb4X1X2zb5X1X3zb6X2X3zb7X1X2X3)

1zexp(azb1X1zb2X2zb3X3zb4X1X2zb5X1X3zb6X2X3zb7X1X2X3)

ð1Þ

where X is a vector of X1, X2, and X3, a is the parameter based on

the disease prevalence, b1, b2, and b3 correspond to the

conditional marginal effects for X1, X2, and X3, b4, b5 and b6

correspond to the conditional interaction effects for the second-

order interactions, and b7 models the conditional interaction

effects for the third-order interaction. Xi is equal to 1 in the

presence of at least one of the minor alleles at the locus i and equal

to 0 if no minor allele is present. The disease prevalence was

assumed to be 1%. We simulated 1,000 cases and 1,000 controls in

each replicate of the simulations. We refer to the settings of these

parameters (i.e. the number of genes in the pathway, the number

of disease loci, the disease prevalence, and the number of cases and

controls) as Scenario 1.

In addition to Scenario 1, we also changed the parameters one at

a time for a more comprehensive simulation study. For Scenario 2,

we simulated 500 cases and 500 controls. For Scenario 3, we

changed the disease prevalence to be 5%. For Scenario 4, we

simulated a larger pathway with 100 genes. A total of 1,527 SNPs

within 20 KB to the genes in the pathway were used. We

simulated an additional disease locus with a minor allele frequency

of 0.25 for the large pathway. The disease locus has only main

effects on the disease and the model for the other three disease loci

is the same as eq (1).

We downloaded the Random Jungle package [17], which

efficiently implements the RF algorithm, for the RF analysis in

steps 2 and 3 in the TRF-pathway algorithm. We specified K as

2000 in all of our simulations as well as in the real data analyses.

The default bootstrap procedure in the RF algorithm was used to

determine the relative proportions of the samples in the training

and test sets. To evaluate the type I error rates for the TRF-

pathway, the parameters (b1–b7) were all specified as 0. A total of

5,000 replicates of simulated datasets were used to calculate the

ð1Þ
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type I error rates. For power simulations, we first simulated a

model (Model 1) with main effects only. The parameters b1, b2, and

b3 were specified as 0.92 and b4–b7 were specified as 0 in Model 1.

Then we simulated a multiplicative model similar to the model

used in Chatterjee et al. [16]. That is, b1, b2, and b3 were specified

as Q, b4, b5, and b6 were specified as 2Q, and b7 was specified as

3Q. Therefore, the joint effect of two or three markers was the

product of the main effects of the individual markers. Model 2,

Model 3, and Model 4 were simulated with Q equal to 0.18, 0.22,

and 0.26, respectively. A total of 500 replicates of simulated

datasets were used to calculate the power for each model.

We compared the power of the TRF-pathway with the RF-

pathway and the set-based test in PLINK [18]. All of the 1,038

SNPs were provided as a set in PLINK. TagSNPs selected based

on the LD measure r2 of 0.5 were tested for association using a

standard chi-square test. The mean of the chi-square statistics for

SNPs with p-values ,0.05, which is the default setting in PLINK,

was used as the statistic for the pathway in PLINK. A permutation

procedure is used to create a null distribution for the statistic and

estimate the p-value. Therefore, the set-based test in PLINK does

not need background genes across the genome for the statistic. In

the following text, we refer to PLINK as the set-based test

implemented in PLINK. In all of the simulation models, we

specified the threshold as 1.64 for the variable importance scores,

which corresponds to p-value of 0.05 in a one-tailed Z-test, in step

3 in the TRF-pathway algorithm.

Results

Simulations
The type I error rates for the TRF pathway, RF-pathway and

PLINK at the 0.05 and 0.01 levels under different scenarios are

shown in Table 1. As shown in Table 1, the simulation results

suggested that the TRF-pathway and the RF-pathway both have

the correct type I error rates close to the 0.05 and 0.01 nominal

levels when b1–b7 were all specified as 0. The power comparisons

for the TRF-pathway with the RF-pathway and PLINK under the

4 scenarios were shown in Figure 1 at the significance levels of 0.05

and 0.01. In Figure 1 we can see that the TRF-pathway

consistently has more power than the RF-pathway for all models.

We can also see that PLINK can have more power than the TRF-

pathway in Model 1 and Model 2. PLINK can also have more

power than the RF-pathway in Models 1, 2, and 3 across the 4

scenarios. However, with the increased multiplicative effects of

gene-gene interactions in Model 3 and Model 4, the TRF-pathway

has significantly more power than PLINK. The results demon-

strate that by using a two-stage approach, the TRF-pathway can

improve power significantly when compared to the traditional RF-

pathway approach. Moreover, the RF-based pathway methods

can have more power than methods considering only main effects

in the presence of strong gene-gene interaction effects.

A breast cancer GWAS analysis
We applied the TRF-pathway to a breast cancer GWAS dataset

available at dbGaP [19,20]. The dataset consists of 1,145 cases

and 1,142 controls and 499,206 markers across the genome

genotyped on the Illumina 550K platform. All the samples are

Caucasian women. SNPs that are within 20 KB to a gene were

assigned to the gene. We downloaded pathway definitions from

the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

database for humans [21]. There were 208 pathway definitions

used for the analysis.

Since Random Jungle assumes that there are no missing

genotypes in the data, we imputed the missing genotypes in the

sample using fastPHASE [22]. Genotypes with the highest

likelihood were used to replace the missing genotypes. A total of

2,000 permutations were used to estimate the p-value for each

pathway in the TRF-pathway algorithm.

Table 2 shows the pathways with p-values ,0.01 identified by

the TRF-pathway for the breast cancer GWAS. We also showed

the number of genes and the number of SNPs used in step 3 in the

TRF-pathway algorithm for each pathway in Table 2. None of the

pathways in Table 2 can pass the Bonferroni threshold for multiple

testing correction. However, interestingly, aminoacyl tRNA

synthetases (AARSs) that are involved in the ‘‘Aminoacyl-tRNA

biosynthesis’’ pathway in Table 2 have been shown to have

implications for the etiology of breast cancer [23]. AARSs are

essential for protein synthesis, and function as regulators and

signaling molecules in biological processes [24]. One of the

AARSs, lysyl-tRNA synthetase (KRS), was found to be over-

expressed in the tumor regions of breast cancer patients [24].

A lung cancer GWAS analysis
We also applied the TRF-pathway to a lung cancer GWAS

dataset from the Cancer Prevention Study II Nutrition Cohort

(CPS-II) [25] available at dbGaP [20]. After QC, the dataset

consists of 663 cases and 642 controls and 496,761 markers

genotyped on the Illumina 550K platform. The subjects were

collected by the American Cancer Society between 1992 and 2001

across all U.S. states. The same procedures as the breast cancer

analysis were used to impute missing genotypes. The same

pathway definitions from KEGG were used for the analysis.

Table 3 shows the pathways with p-values ,0.01 identified by

the TRF-pathway for the lung cancer GWAS. Similar to Table 2,

we showed the number of genes and the number of SNPs used in

step 3 in the TRF-pathway algorithm for each pathway in Table 3.

Interestingly, the TRF-pathway identified the p53 signaling

pathway, which is associated with many human cancers, with p-

value 0.006. The MDM2 gene, which is a key negative regulator

of p53 activity, is a candidate gene for non-small cell lung cancer

[26]. The p53 and MDM2 genes have also been shown to interact

with smoking for lung cancer in a Chinese population [27].

Discussion

We developed the TRF-pathway, which is a powerful two-stage

RF-based pathway analysis method extended from the RF-

pathway. Unlike many pathway analysis methods that consider

only main effects of genes, the TRF-pathway considers both main

effects of genes and gene-gene interactions. We used simulations to

verify that both the TRF-pathway and the RF-pathway are valid

tests for pathway association under the null hypothesis that none of

the SNPs within a pathway are associated with the disease. We

Table 1. Type I error rates for the TRF-pathway, RF-pathway,
and PLINK set-based tests.

TRF-pathway RF-pathway PLINK

0.05 0.01 0.05 0.01 0.05 0.01

Scenario 1 0.048 0.012 0.049 0.009 0.052 0.012

Scenario 2 0.054 0.011 0.049 0.010 0.053 0.011

Scenario 3 0.058 0.011 0.047 0.010 0.047 0.009

Scenario 4 0.049 0.009 0.051 0.008 0.050 0.010

doi:10.1371/journal.pone.0036662.t001
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then used simulations to demonstrate that by employing a two-

stage design, statistical power can be significantly increased in the

TRF-pathway compared to the RF-pathway.

Our power comparisons suggested that when there are only

main effects or the effects of gene-gene interactions are not strong

(i.e. Model 1 and Model 2), PLINK can have more power than the

TRF-pathway and RF-pathway. This is not surprising as PLINK

tests specifically for main effects. However, when the effects of

gene-gene interaction are strong, the TRF-pathway has signifi-

cantly more power than PLINK. Therefore, in practice, the TRF-

pathway should be used as a tool that is complementary to the

methods considering only main effects such as PLINK.

The score R, which is the prediction rate based on the SNPs

with importance scores greater than a threshold in a pathway,

should not be used as an unbiased prediction error rate for the

SNPs due to the selection bias of the SNPs in step 3 in the TRF-

pathway algorithm. We did not calculate the unbiased prediction

error rate for the SNPs in the TRF-pathway algorithm because the

purpose of the TRF-pathway is to test the association of SNPs in

the pathway. N-fold cross-validation technique can be used to

estimate the unbiased error rate for the important SNPs in step 3.

For example, based on a 10-fold cross-validation procedure, each

9/10 of the samples can be used in the first stage of the TRF-

pathway algorithm as a training set to find the significant SNPs.

The remaining 1/10 of the samples can be used as a test set to

Figure 1. Power comparison of the TRF-pathway with PLINK and RF-pathway at the 0.05 and 0.01 significance levels.
doi:10.1371/journal.pone.0036662.g001

Table 2. Pathway analysis results for the breast cancer GWAS data.

Pathway No. Genes1 No. SNPs2 TRF P-value3 RF P-value4 PLINK P-value5

T cell receptor signaling pathway (hsa04660) 97 105 0.001 0.168 0.035

Maturity onset diabetes of the young (hsa04950) 25 27 0.003 0.043 0.048

Prostate cancer (hsa05215) 82 90 0.004 0.143 0.012

Aminoacyl-tRNA biosynthesis (hsa00970) 39 56 0.009 0.016 0.252

1Number of genes in the pathway.
2Number of SNPs used in the step 3 in the TRF-pathway algorithm.
3P-values for the TRF-Pathway.
4P-values for RF-Pathway.
5P-values for PLINK set-based tests.
doi:10.1371/journal.pone.0036662.t002
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calculate the score R for the significant SNPs in step 4. Then the

prediction error rate is the average of R over 10 replicates.

However, sample size will be reduced due to the partition of the

data. Our simulation suggested that this resulted in a significant

loss of power (Data not shown). Alternatively, an independent

dataset can be used to calculate the unbiased prediction error rate

for the significant SNPs in step 3 in the algorithm.

The significant results shown in Tables 2 and 3 for the breast

cancer and lung cancer GWAS analyses did not pass the

Bonferroni threshold for multiple testing correction. However,

tests for pathways are not independent because pathways can

share common genes. Therefore, the Bonferroni correction can be

conservative. Moreover, an interesting pathway (hsa00970)

identified by the TRF-pathway has been shown to have

implications for breast cancer etiology. The p53 pathway

(hsa04115), which contains candidate genes for lung cancer, was

also identified by the TRF-pathway. This demonstrates that the

TRF-pathway can be a powerful tool for identifying candidate

pathways associated with diseases.

Unlike some pathway methods that calculate gene-specific

scores for pathway statistics [1,6], the TRF-pathway uses all SNPs

within genes in a pathway for the joint inference without

considering gene-specific information such as gene sizes or

groupings of SNPs within genes. Power studies suggested that

pathway methods without calculating gene-specific statistics such

as PLINK can still be more powerful than methods that

specifically calculate gene scores [6]. However, it will be of

interest to know how gene-specific information can improve power

for the TRF-pathway. We are investigating how to incorporate

gene-specific information such as gene sizes and LD structures in

the RF model for pathway analysis.

In summary, we used simulations and applications to breast

cancer and lung cancer GWAS datasets to demonstrate that the

TRF-pathway is a powerful pathway analysis tool. The TRF-

pathway is implemented in a PERL script. The script uses the

PLINK software to generate input files for Random Jungle (with –

recodeA option) and uses Random Jungle for the RF calculations.

A more efficient program of the TRF-pathway using C++ will be

implemented so that the TRF-pathway can be applied to a large

set of pathways. The script is freely available at http://

sourceforge.net/projects/trfpathway/.
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