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Abstract

Detecting errors in other’s actions is of pivotal importance for joint action, competitive behavior and observational learning.
Although many studies have focused on the neural mechanisms involved in detecting low-level errors, relatively little is
known about error-detection in everyday situations. The present study aimed to identify the functional and neural
mechanisms whereby we understand the correctness of other’s actions involving well-known objects (e.g. pouring coffee in
a cup). Participants observed action sequences in which the correctness of the object grasped and the grip applied to a pair
of objects were independently manipulated. Observation of object violations (e.g. grasping the empty cup instead of the
coffee pot) resulted in a stronger P3-effect than observation of grip errors (e.g. grasping the coffee pot at the upper part
instead of the handle), likely reflecting a reorienting response, directing attention to the relevant location. Following the P3-
effect, a parietal slow wave positivity was observed that persisted for grip-errors, likely reflecting the detection of an
incorrect hand-object interaction. These findings provide new insight in the functional significance of the
neurophysiological markers associated with the observation of incorrect actions and suggest that the P3-effect and the
subsequent parietal slow wave positivity may reflect the detection of errors at different levels in the action hierarchy.
Thereby this study elucidates the cognitive processes that support the detection of action violations in the selection of
objects and grips.
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Introduction

An important question is how we understand the correctness of

other’s actions. For instance, when the person in front of you buys

a ticket at a vending machine in a railway station, it can be quite

annoying if you see him making an error (e.g. trying to put his

credit card in the wrong slot) and you may want to point out the

correct action. On the other hand, in case you observe someone

performing a novel action (e.g. checking in luggage at a novel

baggage-drop-off system), you can learn from the other’s errors. As

these examples illustrate, error detection in action observation

enables both cooperative behavior and observational learning. In

addition, error detection is pivotal for competitive behavior as

well. For instance in many games and sports we take advantage of

detecting action slips of our opponent.

Several neural mechanisms have been proposed to underlie the

detection of action errors. Some studies have shown the

involvement of mirror neuron areas, such as the inferior parietal

lobe (IPL) and the premotor cortex (PM) in the observation of

erroneous actions [1,2]. Related to this, other studies have shown

that the observation of an incorrect action results in a stronger

desynchronization and subsequent rebound in the beta frequency

band, supposedly reflecting a stronger activation of sensorimotor

areas [3,4,5]. Both the execution and the observation of errors

have been associated with the error-related negativity (ERN), an

early negative deflection in the EEG likely originating from the

anterior cingulate cortex (ACC) [6,7,8]. Most studies on error

detection have used relatively low-level errors and stimuli (e.g.

observing a hand pressing the left instead of the right button),

leaving open the question how we understand the (in)correctness

of other’s actions in everyday situations.

Event-related potential (ERP) studies using real-world stimuli

have shown that the observation of action errors (e.g. watering

the table instead of the plant) resulted in an enhanced P3-

component and a subsequent parietal positivity [9,10]. However,

the functional significance of these findings is not entirely clear.

Some authors have suggested that the stronger P3 for incorrect

actions reflects a monitoring mechanism supporting the detection of

action slips [9]. In contrast, other studies, using relatively simple

detection tasks, suggest that the P3 reflects a reorienting response,

following the detection of an unexpected stimulus [11,12].

Interestingly, a similar parietal positive slow wave effect has

been found in association with the execution of goal-directed

actions, when subjects were required to actually reach towards

real-world objects [13,14]. More specifically, van Schie and

Bekkering (2007) reported a parietal positive slow wave for
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planning and executing movements that was found maximal at

the moment of object grasping. Accordingly, one alternative

interpretation of the parietal positivity for the observation of

incorrect actions is that it reflects a representation of the hand-object

interaction.

The different interpretations of the P3 effect and the subsequent

slow wave positivity in association with the observation of action

errors may be related to the fact that previous studies did not

clearly distinguish between different levels of action errors. That is,

action correctness can be defined at different levels in the action

hierarchy. For instance, an action can be directed towards an

incorrect object (e.g. grasping a cup instead of a coffee pot) or an

object can be grasped in an incorrect way (e.g. grasping a coffee

pot with a grip that does not afford pouring coffee). Several

behavioral studies have suggested a dominance of processing goal-

over grip-related information in understanding the correctness of

others’ actions [15,16,17]. For instance, participants were faster in

judging the correctness of an action, when asked to focus on the

goal of the action than when instructed to attend to the grip of the

action [16]. This finding is in line with the hierarchical view of the

motor system, according to which our ability to perform complex

actions relies on the hierarchical organization of the motor system

[18,19,20].

The hierarchical view of the action system implies that the

processing of goal-errors is faster than the processing of grip errors.

Accordingly, the P3 and subsequent slow wave positivity may

reflect different aspects of observed actions. In the present study

we investigated the hypothesis that the P3-effect associated with

the observation of action errors reflects a reorienting response

following the identification of actions directed towards the

incorrect object. In contrast, the later parietal positive slow wave

associated with the observation of action errors [9,10] may reflect

the detection of a grip-error (i.e. incorrect handgrip applied for

grasping an object). To test this hypothesis we used an

experimental paradigm in which participants were required to

judge the correctness of actions involving everyday objects.

Participants observed action sequences that involved two objects:

a tool (e.g. a bubble blower) and a target object (e.g. a soap bottle).

The object pairs implied a specific action sequence and a specific

way of grasping that could be inferred based on the conceptual

properties of the objects (e.g. typically a bubble blower is grasped

at the handle to soak it subsequently in the soap bottle).

In the experiment the correctness of the object grasped and the

grip applied to the object were independently manipulated (see

Figure 1). This manipulation allowed us to investigate whether the

P3- and the parietal slow wave effect were selectively modulated by

object and/or grip-violations. Object correctness was defined with

respect to whether the tool (e.g. the bubble blower) or the target

object (e.g. the soap bottle) was grasped first. In order to combine

both objects in a meaningful action sequence, the tool needs to be

grasped first and therefore by definition tools have a higher

probability of being grasped first than target objects. Thus, an

object error was defined as grasping the target object first instead

of the tool. Grip correctness was defined with respect to the

appropriateness of the grip applied to the object for actually

interacting with the object. For instance, grasping a tool with an

incorrect grip does not allow using the tool in combination with

the target object (e.g. grasping the bubble blower at the opening

does not afford bubble blowing).

Based on previous studies we expected that the observation of

incorrect actions would be associated with a stronger P3

component and a subsequent parietal positive slow wave [9,10].

In addition, following the notion that actions are processed in

a hierarchical fashion we expected that object errors would be

detected earlier than grip errors and should result in a reorienting

response, as reflected in a stronger P3-effect [11,12]. The

processing of grip errors may be associated with a reorienting

response as well, followed by a relatively late parietal slow wave

positivity, which could reflect the detection of an incorrect hand-

object interaction.

Materials and Methods

Subjects
For pretesting the stimuli 19 participants were tested (4 males,

mean age = 22.4 years, SD=4.9 years). In the EEG experiment,

19 participants were tested (6 males, mean age = 21.2 years,

SD=3.7 years), who had not participated in the pre-test. Data

from five participants were discarded from analysis, due to

insufficient artifact-free trials (i.e. less than 30 trials remaining per

condition). All participants were students at the Radboud

University Nijmegen who participated for course credits or an

experimental remuneration. All participants were right-handed

and had normal or corrected-to-normal vision. All participants

gave written informed consent prior to the experiment. The study

was approved by the local ethics committee (Commissie Mens

Gebonden Onderzoek Regio Arnhem-Nijmegen) and was con-

ducted in accordance with the declaration of Helsinki.

Stimuli
As stimuli we used pictures representing an actor sitting behind

a table, on which two different objects were placed. In total 48

different object pairs were used that each implied a specific action

sequence (see Table 1). Each object pair consisted of a tool and

a target object (e.g. a bubble blower and a soap bottle, a sugar

bowl and a cup; for example stimuli, see Figure 1). For each object

pair, an action sequence was constructed, consisting of 3 action

snapshots representing: (a) an actor sitting behind the table on

which the objects were placed, (b) the actor grasping one of the

objects and (c) the actor moving one object to the other object (see

Figure 1 for example stimuli). The correctness of the object

grasped and the grip applied to the object were independently

manipulated. Accordingly, for each object pair 4 different action

sequences were taken, representing an actor (1) grasping the

correct object with a correct grip, (2) grasping the correct object

with an incorrect grip, (3) grasping the incorrect object with

a correct grip and (4) grasping the incorrect object with an

incorrect grip (see Figure 1). Grip errors were defined as grasping

the object at the incorrect part that would not afford its use in an

action sequence (e.g. it is not possible to use a bubble blower when

it is grasped at the opening instead of the handle and putting one’s

finger in the soap bottle in order to grasp it also does not afford

using the soap). In addition, for each object pair the location of the

objects was switched to avoid the correct object from being always

on the ipsilateral side of the movement. Thus, for each object pair

8 different action sequences were constructed according to an

Object (Correct vs. Incorrect) x Grasp (Correct vs. Incorrect) x

Location (Ipsilateral vs. Contralateral) design. It should be noted

that the actions associated with each object pair were matched for

difficulty. That is, each tool could be used in combination with the

target object by means of a simple grasping- and transport-

movement. For instance, the lid was already removed from the

teapot, so as to allow the simple insertion of the teabag in the

teapot. Although the analysis focused only on the onset of the

second picture, the inclusion of a third picture representing the

outcome of the action was deemed necessary, to provide a context

for making judgments about the correctness of the object grasped

and the grip applied to the object.

Understanding the Correctness of Other’s Actions
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To test for possible ambiguities in the action sequence implied

by the object pairs a pre-test was conducted. Participants were

presented with a picture representing each object pair without an

action and were required to predict which object would probably

be grasped first, by means of a left/right button press. After each

picture participants rated the predictability of the object pair on

a 7-point Likert scale. In an item analysis the percentage of object

pairs that differed from the pre-specified assignment of objects to

tools and targets was 10.9% (SD=14.4) and the average reaction

time was 1195 ms (SD=221 ms). Overall, participants were well

able to correctly predict which object would be grasped first (mean

predictability = 2.3, SD= .63; 1= very predictable, 7 = very un-

predictable). A correlation was observed between reaction times

and the predictability rating, r = .504, p,.001, reflecting that

objects pairs that were responded to slowest also were classified as

being less predictable. To obtain a reliable measure of the

predictability of the object pairs, a factor analysis was conducted

using principal component analysis [21]. One factor accounted for

66% of the variance observed in the error rates, the reaction times

and the predictability rating. On the basis of the factor loadings six

object pairs that were highly unpredictable (factor loading .1)

were excluded from the stimulus set, leaving 42 object pairs in the

final stimulus set used for the EEG experiment. The 6 object pairs

that were not included were used as practice trials for the EEG

experiment.

Experimental Design and Procedure
Each trial started with the presentation of a fixation cross for

500 ms. Next the action sequence was presented for 3000 ms

(1000 ms per action snapshot). Each action sequence was

followed by either an object question (‘‘was the correct object

grasped?’’) or a grip question (‘‘was the correct grip applied to

the object?’’). Object questions and grip questions were

randomly presented, in order to ensure processing of both

object- and grip-related information during each trial. Partici-

pants were required to respond to the question by pressing the

left or the right button of a button box with their right hand.

The mapping of response buttons (yes/no) was varied between

trials to avoid participants from preparing the button press

response already during the presentation of the action sequence.

Thus, the spatial position of the words (‘yes’ and ‘no’) on the

screen instructed subjects how to respond on any given trial.

After the participant responded, a blank screen was presented

for a variable interval between 3500 and 4500 ms, upon which

the next trial was initiated. A schematic overview of a trial

followed by an object question and by a grip question is

represented in Figure 2.

Each of the 42 object pairs was presented 8 times according

to the Object (Correct vs. Incorrect) x Grasp (Correct vs.

Incorrect) x Location (Ipsilateral vs. Contralateral) design,

resulting in a total of 336 trials. Care was taken that for each

object pair half of all trials were followed by an object question

and half of all trials by a grip question. To this end, per subject

for each object pair ipsilateral and contralateral pictures were

randomly assigned to either goal or grip questions. To

familiarize with the task, at the beginning of the experiment

participants performed 10 practice trials, representing object

pairs that were not used in the main experiment. The

experiment consisted of four blocks of 84 trials each and after

each block the participant rested.

Figure 1. Example stimuli used in the experiment. For each object pair an action sequence was constructed, consisting of 3 action snapshots
(left column, middle column and right column). The correctness of the object grasped and the grip applied to the object were independently
manipulated, resulting in action sequences representing an actor (1) grasping the correct object with a correct grip (upper row), (2) grasping the
correct object with an incorrect grip (2nd row), (3) grasping the incorrect object with a correct grip (3rd row) or (4) grasping the incorrect object with
an incorrect grip (bottom row).
doi:10.1371/journal.pone.0036450.g001

Understanding the Correctness of Other’s Actions
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EEG Measurements
The electroencephalogram (EEG) was recorded using 61 active

electrodes that were placed in an actiCAP (BrainProducts,

Munich, Germany). Electrode positions were based on the M-11

61-Channel-Arrangement, encompassing the same areas as the

10/20 system. Horizontal and vertical EOG were measured with

electrodes placed on the outer canthi and above and below the

participant’s left eye. All electrodes were referenced to the left

mastoid online and re-referenced offline to the linked mastoids.

The impedance of the electrodes was kept below 20 kOhm. EEG

and EOG signals were amplified using two 32-channel BrainAmp

DC EEG amplifiers. The signal was sampled at 500 Hz and

filtered online with a 125 Hz high cut-off filter and a 10 second

time-constant.

The experiment was conducted in an electrically and sound-

shielded room. The experiment was controlled by a PC running

Presentation software (Neurobehavioral systems Inc., Albany, CA).

Markers for the different events were sent to the EEG computer

and stored for offline analysis.

Data Analysis
Analysis of behavioral responses focused on error rates (because

of the delayed response paradigm reaction time data were not

analyzed). Behavioral data were analyzed using a 26262 repeated

measures general linear model (GLM) with Question (Object,

Grip), Object (correct, incorrect) and Grip (correct, incorrect) as

within-subject variables.

The EEG data was filtered offline using a 30 Hz low-pass filter

and 0.1 Hz high-pass filter. For the analysis of event-related

potentials ERPs were calculated relative to the onset of the second

picture from -200 to 1000 milliseconds using a 100 ms pre-

stimulus baseline. Previous EEG studies using a sequence of action

pictures have used the image preceding the critical target picture

as a baseline as well [9,10,22].

Trials with eye movements and movement artifacts were

excluded from analysis on the basis of an automated procedure.

To test for statistical significance, ERP data was exported in 20 ms

bins for each individual subject and per condition across electrodes

of interest. Over central sites a 363 electrode grid was projected

that was analyzed with a 2626363 repeated measures general

Table 1. Object pairs used in the EEG experiment.

Tool
Target
Object Tool

Target
Object

1 battery digital camera 25 knife butter

2 bottle opener beer bottle 26 ladle soup bowl*

3 brush paint 27 lightbulb lamp

4 bubble blower soap 28 lighter candle*

5 buttered knife bread 29 magnifying glass stamps

6 cd cd player 30 paint tube paper

7 cd cd case 31 paper perforator*

8 chalk blackboard 32 paper letter tray

9 coffee coffee filter 33 pencil paper

10 coffee filter filter holder 34 pen notebook

11 cola can empty glass 35 pizza knife pizza*

12 cover pan 36 power cord socket

13 creditcard wallet 37 sprinkles bread

14 dish brush wash tub 38 stamp stamp pad

15 drumstick drum 39 stick xylophone

16 egg egg holder 40 straw glass

17 eraser blackboard 41 sugar bowl cup

18 eraser line drawing 42 sunglasses glasses case

19 flour kitchen balance 43 teabag teapot

20 garbage trash bin 44 thermos mug*

21 glue paper 45 toothpaste toothbrush*

22 iron shirt 46 water can glass

23 kettle stand 47 weight kitchen
balance

24 key lock 48 whisk bowl

The left column represents tools that had a high probability of being grasped
first. The right column represents target objects towards which the tools could
be moved. Object pairs marked with an asterisk were used as practice trials and
were not included in the main EEG experiment.
doi:10.1371/journal.pone.0036450.t001

Figure 2. Schematic overview of a trial sequence. Each trial started with a fixation cross, after which the action sequence was presented,
consisting of 3 action snapshots. Following the action sequence either an object question (left side) or a grip question (right side) could be presented.
Mapping of the response buttons (left/right) varied between trials and was presented below the question. After the subject responded a blank screen
was presented.
doi:10.1371/journal.pone.0036450.g002

Understanding the Correctness of Other’s Actions
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linear model (GLM) with Object (correct, incorrect), Grip (correct,

incorrect), Anterior-to-Posterior (3 levels) and Left-to-Right (3

levels) as within-subjects factors. To control for multiple compar-

isons, a criterion of 3 consecutive intervals showing a significant

effect was adopted. As 50 intervals were tested, there was a chance

of 5060.05= 2.5 that one of the intervals shows an effect. By using

the criterion of three consecutive significant intervals, this chance

is reduced to (5060.053) = 0.00625, a value lower than significance

criterion p= .05 (for a similar statistical approach, see: [3,5]).

Finally we were interested to what extent participants made

systematic eye movements in relation to the detection of object

and grip errors. Therefore we analyzed the HEOG (i.e. squared

difference between left and right EOG) and the VEOG (i.e.

squared difference between the upper and the lower EOG) signals

using a 262 repeated measures general linear model (GLM) with

Object (correct, incorrect) and Grip (correct, incorrect) as within-

subjects factors. We applied the same significance criterion as for

the main analysis of the ERP data.

Results

Behavioral Results
Error rates are represented in Figure 3. A main effect of

question, F(1, 13) = 220.6, p,.001, g2 = .94, reflected that

participants made more errors in response to questions about

the grip of the action (average percentage of errors = 2.4, SE= .19)

compared to questions about the object (average percentage of

errors = .58, SE= .20). A main effect of object, F(1,13) = 27.8,

p,.001, g2 = .68, reflected overall more errors for incorrect

compared to correct objects. Finally, an interaction between

question and object, F(1,13) = 23.6, p,.001, g2 = .65, reflected

that for object questions the number of errors was comparable

between correct and incorrect objects, whereas for grip questions

participants made more errors if the incorrect object was grasped

instead of the correct object (see Figure 3).

Event-related Potentials
The ERPs relative to the onset of the second picture are

represented in Figure 4. As can be seen, the onset of the picture

representing incorrect action sequences resulted in a P3 effect that

developed into a late positivity.

A main effect of Object was found significant from 200 to

720 ms, F(1,13) .4.7, p,.05, reflecting a stronger P3 that

developed into a slow wave effect for incorrect compared to

correct objects (see Figure 4). An interaction between Object and

Anterior-to-Posterior was found significant from 160 to 580 ms,

F(2, 26) .4.4, p,.05 and from 600 to 1000 ms, F(2, 26) .5.2,

p,.05, reflecting that the difference between incorrect and correct

objects was strongest over posterior sites. In addition, an

interaction between Object and Left-to-Right from 260 to

1000 ms, F(2, 26) .4.5, p,.05 reflected that the effect of Object

was slightly lateralized to the left hemisphere. A main effect of

Grip was found significant from 360 to 1000 ms, F(1,13) .4.9,

p,.05, reflecting a stronger P3 and a subsequent slow wave effect

over central sites for incorrect compared to correct grips (see

Figure 4). No interaction between Object and Grip was observed.

To investigate whether the main effects of Object and Grip

differed, for each subject and each time bin the averaged effect of

Object (Incorrect – Correct Object) and the averaged effect of

Grip (Incorrect – Correct Grip) was calculated. Subsequently,

these effects were directly compared using a paired-samples t-test.

The resulting t-value indicated whether the effects differed

significantly. As can be seen in the lower part of Figure 4, from

300 to 520 ms the effect of Object was stronger than the effect of

Grip and from 740 to 1000 ms the effect of Grip was stronger than

the effect of Object.

Ocular Movements
For the HEOG a main effect of Object was found significant

from 240 to 920 ms, F(1, 13) .4.7, p,.05, and reflected more

horizontal eye movements for incorrect compared to correct

objects. No main effect of Grip was found, indicating that no overt

horizontal eye movements were made for correct compared to

incorrect grips. No effects were found for the VEOG, indicating

that the observation of object or grip errors did not result in

systematic vertical eye movements. No significant interactions

were observed.

Discussion

The aim of the present study was to investigate the functional

significance of the P3- and positive slow wave effect associated with

processing the correctness of observed actions [9,10]. It was found

that the observation of actions comprising an object-violation

resulted in a stronger P3 component and a subsequent parietal

positive slow wave effect compared to actions representing a grip-

violation.

Figure 3. Behavioral results. Error rates in response to object questions (left graph) or to grip questions (right graph). Bars on the left represent
responses to action sequences representing grasping of the correct object, bars on the right represent responses to action sequences representing
grasping of the incorrect object. Light bars represent responses to action sequences representing a correct grip, dark bars represent responses to
action sequences representing an incorrect grip.
doi:10.1371/journal.pone.0036450.g003

Understanding the Correctness of Other’s Actions
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At a functional level, the P3-effect for the processing of object

errors likely reflects an orienting response, directing attention to

the unattended object or object part. Whereas many studies have

associated the P3-effect with stimulus-driven attention and the

detection of deviant or novel stimuli [23], the P3 reflects the

evaluative aspect of the orienting response as well [11,12]. For

instance, it has been shown that the P3 effect in response to

oddball stimuli is modulated by stimulus familiarity, suggesting

that it reflects a relatively late stage of attentional processing,

incorporating semantic information [11]. In the present study,

based on the functional relation between the objects presented in

the first picture, subjects probably generated a strong action

prediction about which object would be grasped first and about

the grip used for grasping. Observation of actions that did not

match this expectation resulted in a stronger P3, likely reflecting

a process of stimulus evaluation and spatial reorienting (i.e.

Figure 4. ERPs relative to the onset of the 2nd picture. ERPs relative to the onset of the 2nd picture for a selection of central electrodes.
Topographical plots represent the difference between Incorrect and Correct Objects (upper panel) and the difference between Incorrect and Correct
Grips (middle panel. The lower panel reflects the t-values for the comparison between the Object Effect (Incorrect – Correct Object) and the Grip
Effect (Incorrect – Correct Grip). The critical t-values are marked in red and a positive t-value reflects a stronger effect of Object than of Grip and
a negative t-value reflects a stronger effect of Grip than of Object.
doi:10.1371/journal.pone.0036450.g004

Understanding the Correctness of Other’s Actions
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directing attention to the other object in case of an object error or

the other object part in case of a grip error). This interpretation is

supported by the eye movement data, indicating that the detection

of object errors was associated with saccadic eye movements to the

correct object location. Importantly, the observed P3- and slow-

wave effects for object and grip violations preceded the shifts in

horizontal eye movements, thereby making it unlikely that these

effects can be attributed to mere eye movements. The posterior

scalp distribution of the P3 effect provides an additional argument

for the notion that this effect cannot be attributed to eye

movements. These findings suggest that the detection of action

errors, as reflected in the P3 effect precedes the overt redirecting of

attention.

Following the P3 effect, the ERPs were characterized by

a subsequent parietal positive slow wave effect, similar to the late

parietal positivities observed in previous studies on action

observation [9,10]. It has been suggested that the late positivity

reflects an evaluative process in which object affordances are

evaluated with respect to the preceding action context [10].

Recent studies have reported a comparable parietal positive slow

wave effect in association with the execution and online

monitoring of real-world actions, that was found maximal at the

moment of object grasping [13,14]. Accordingly, the parietal

positive slow wave could reflect the detection of an incorrect hand-

object interaction. This interpretation is in line with the functional

characteristics of parietal areas that are involved in representing

grip-related information [14,24].

In the present study, the effects of action correctness on the

positive slow wave effect were found to be additive and in contrast

to previous studies [16] no interaction was found between object-

and grip-violations. The absence of an interaction effect is likely

due to the experimental design, in which subjects were required to

attend to both object- and grip-related aspects of the action at the

same time. Therefore participants had to anticipate an appropriate

grip for both the tool and the target object and as a consequence

effects of grip-violations were observed both for correct and

incorrect objects. In contrast, in daily life people probably make an

action prediction only about the correct object and not about the

incorrect object.

The finding that the P3-effect had an earlier onset and was

stronger for goal- compared to grip-violations, suggests that object

violations were easier to detect, because the spatial features were

more salient for object violations compared to grip violations.

Classical studies on visual attention have shown an advantage of

space-based attention (i.e. allocation of attention between objects)

over object-based attention (i.e. allocation of attention within

objects; [25,26,27]). Similarly, in the present study the detection of

object errors likely required a shift of attention to the other object

whereas the detection of grip errors required a shift of attention to

a different location within the object. In addition, the temporal

precedence of processing object- over grip-related information is

directly related to the fact that in order to determine the

correctness of the grip applied to an object, one first needs to

process which object was grasped. This temporal dependence of

object- over grip-related is in line with the hierarchical view of the

motor system, according to which the way in which an object is

grasped is determined by its consecutive use [18,19]. Several

studies have provided evidence for the hierarchical view, showing

for instance a more effective planning process when actions are

planned based on object-information compared to grip-related

information [14,24,28]. The present study extends these findings

to the observation of object-directed actions and provides direct

neurophysiological evidence for a precedence of processing object-

over grip-related information.

Interestingly, the parietal positive slow wave for grip correctness

persisted after the effect for object correctness already terminated.

It could well be that participants actively maintained a represen-

tation of the grip applied to the object until the end of the action

sequence, as the correctness of the grip was defined specifically in

relation to the subsequent use of the object (e.g. grasping a bubble

blower at the opening does not afford bubble blowing). The

suggestion that grip errors were more difficult to detect and

therefore needed to be actively maintained is further supported by

the error data, indicating that subjects made more errors when

asked about the correctness of the grip applied to the object than

when answering a question about the correctness of the object that

was grasped.

Conclusions
The main finding of the present study is a stronger P3 for the

observation of object-violations, likely reflecting a reorienting

mechanism, directing attention to the relevant location. A

subsequent parietal positive slow wave was found that persisted

for the observation of grip-errors that likely reflects the detection of

an incorrect hand-object interaction. Thereby this study provides

new insight in the functional and neural dynamics that support the

understanding of other’s actions.
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