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Abstract

Hepcidin is a regulatory hormone that plays a major role in controlling body iron homeostasis. Circulating factors
(holotransferrin, cytokines, erythroid regulators) might variably contribute to hepcidin modulation in different pathological
conditions. There are few studies analysing the relationship between hepcidin transcript and related protein expression
profiles in humans. Our aims were: a. to measure hepcidin expression at either hepatic, serum and urinary level in three
paradigmatic iron overload conditions (hemochromatosis, thalassemia and dysmetabolic iron overload syndrome) and in
controls; b. to measure mRNA hepcidin expression in two different hepatic cell lines (HepG2 and Huh-7) exposed to patients
and controls sera to assess whether circulating factors could influence hepcidin transcription in different pathological
conditions. Our findings suggest that hepcidin assays reflect hepatic hepcidin production, but also indicate that correlation
is not ideal, likely due to methodological limits and to several post-trascriptional events. In vitro study showed that THAL
sera down-regulated, HFE-HH and C-NAFLD sera up-regulated hepcidin synthesis. HAMP mRNA expression in Huh-7 cells
exposed to sera form C-Donors, HFE-HH and THAL reproduced, at lower level, the results observed in HepG2, suggesting the
important but not critical role of HFE in hepcidin regulation.
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Introduction

Hepcidin (*606464) is a regulatory hormone that plays a major

role in controlling body iron homeostasis. It is mainly synthesised

in hepatocytes and secreted in the blood as a mature 25-aa peptide

which binds to ferroportin (*604653), the only known cellular iron

exporter, causing ferroportin internalization and degradation and,

in turn, inhibition of iron absorption by enterocytes and iron

release from macrophages [1,2]. Inadequate hepcidin production

relative to body iron stores results in increased iron absorption and

may lead to iron overload. Hepcidin production is mainly

regulated at transcriptional level by several signalling pathways

[1]. Thalassemia syndromes (OMIM#613985) and other anemias

with ineffective erythropoiesis are characterised by marked

reduction of hepcidin synthesis caused by a still unidentified

erythroid signal [3,4]. Hereditary defects of the proteins involved

in hepcidin regulatory pathways are responsible for the different

forms of Hereditary Hemochromatosis (HH, OMIM#235200)

[1,5]. Among them, HH type 1 is the most common in Caucasian

population and is caused by the presence of homozygous p.C282Y

mutation in HFE (HFE-HH, *613609). This leads to the lack of

protein expression on hepatocyte cell membrane, inability to

interact with transferrin receptor (TFR) 1 (*190010) and 2

(*604720) and reduced efficiency in activating hepcidin signalling

[6]. A peculiar, but very common iron overload disorder is the

Dysmetabolic Iron Overload Syndrome (DIOS) which is charac-

terized by mild to moderate iron overload in association with

obesity and alterations of lipid or glucose metabolism, insulin

resistance and Non Alcoholic Fatty Liver Disease (NAFLD) [7].

The mechanism of iron overload in DIOS is still undefined.

Recently, it was shown that hepcidin at either mRNA [8], serum

[9] or urinary [8,9] level is increased in DIOS as compared to

controls, although it was apparently inadequate compared to the

amount of body iron stores. In addition, discrepancies (lack of

correlation) between mRNA expression and urinary hepcidin level

[8] and between serum and urinary hepcidin levels [9] have been

reported in these patients, differently from what observed in

patients with HH [8] and with non-HH-related hepatic cirrhosis

[10]. It has been suggested that inflammatory-dependent cytokines

activation, extrahepatic hepcidin production by adipose tissue as

well as post-translational modifications, or abnormal interaction

with ferroportin at the target sites might be involved in causing

high hepcidin levels in DIOS [11]. Since the discovery of hepcidin

and the demonstration of its pivotal role in iron homeostasis, there
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has been a great interest in measuring this hormone in tissues and

biological fluids to improve our understanding of iron-related

diseases, including DIOS. To our knowledge, data comparing

mRNA, serum or urinary hepcidin levels in humans are scanty.

So, we collected patients with three emblematic iron overload

conditions, e.g. HFE-related HH, thalassemia major and DIOS to

measure hepcidin expression at either mRNA, serum or urinary

level compared to controls. Second, based on the hypothesis that

circulating factors might variably contribute to hepcidin modula-

tion in different pathological conditions, we performed in vitro

studies to evaluate the effects of sera of patients and controls on

hepcidin transcription in two different hepatic cell lines.

Materials and Methods

Patients
Seventy-nine patients including 23 with HFE-hemochromatosis

(HFE-HH), 47 with DIOS, and 9 with b-thalassemia major

(THAL) were enrolled in the study. Control groups consist of: a. 15

patients with non-alcoholic fatty liver disease (NAFLD) without

iron overload which were taken as controls (C-NAFLD) for

evaluating both hepatic mRNA and serum hepcidin levels; b. 28

healthy blood donors at their first donation which were taken as

controls (C-Donors) for serum hepcidin levels and for in vitro study.

General exclusion criteria were: HBV or HCV infection,

autoimmune hepatitis, alpha1-antitrypsin deficiency or Wilson’s

disease; alcohol intake .40 g/day in men and .20 g/day in

women. HFE-HH patients were untreated p.C282Y homozygotes

with increased serum iron indices. Diagnosis of DIOS was based

on the presence of hepatic iron overload with one or more

component of the metabolic syndrome (according to NCEP-

ATPIII criteria) [12]. In this group of patients we excluded the

presence of other known causes of iron overload: history of blood

transfusions or treatment with parenteral iron; HH type I and IV

(OMIM#606069) by genotyping HFE for p.C282Y and p.H63D

variants and by sequencing SLC40A1 (Gene ID: 30061). HH type

II (OMIM#613313 and #602390) and III (OMIM#604250),

iron loading anemias, acute and chronic inflammatory disorders,

chronic hepatic diseases, end-stage liver disease, porphyria cutanea

tarda and aceruloplasminemia were excluded on clinical, bio-

chemical and hepatic histological grounds. All DIOS patients

carried the HFE wild-type genotype but two were heterozygous for

p.H63D. Liver biopsy was performed in 67 patients (14 with HFE-

HH, 47 with DIOS and 6 with THAL) and in 15 controls with

NAFLD for diagnostic or prognostic purposes. 30 of 47 DIOS

patients (64%) had NAFLD defined by the presence of at least 5%

steatosis in liver biopsy [13]. The fifteen controls with NAFLD had

no hepatic iron overload (Deugnier score ,6) and absent or

minimal fibrosis at liver biopsy.

The study, including the overall plan and the informed consent

form was reviewed and approved by the institutional review

boards of San Gerardo Hospital in Monza. All patients had given

written informed consent to genetic testing analysis and liver

biopsy before enrolment in the study according to the Ethical

Committee of our Institution.

Methods
Biochemical indices were measured at the time of diagnosis or

time of liver biopsy (when performed) in HFE-HH, DIOS and in

C-NAFLD, at the time of first donation in C-Donors, and at the

time of liver biopsy in THAL. Body mass index (BMI), blood

pressure and alcohol intake were also measured at diagnosis.

Iron and other biochemical indices. Serum iron,

transferrin and ferritin, serum glucose, total cholesterol, HDL,

triglycerides, alanine-aminotransferases, and c-glutamyl

transferase were measured by standard methods. Transferrin

saturation was calculated as follows {serum iron (mg/dl)/
[transferrin (mg/dl)x1.41]}. Serum IL-6 (*147620) was measured

by ELISA assay (R&D Systems Inc. MN, USA).

Hepcidin in serum and urine. Urinary hepcidin

concentration was assessed in 8 C-NAFLD, 28 DIOS and 15

HFE-HH patients. Urine were collected in the morning, fasting,

just before liver biopsy, preserved with 0.05% sodium azide and

stored at 280uC until measurement. Urinary hepcidin

immunodot assay was performed as previously described [14].

Urinary hepcidin was normalized to urinary creatinine

concentration (ng hepcidin/mg creatinine). Quantification of

serum hepcidin-25 was performed in 47 DIOS, 21 HFE-HH

and 8 THAL patients, as well as in 15 C-NAFLD and 24 C-

Donors. After collection, sera were stored at 280uC until

measurement. Serum hepcidin-25 levels were determined by

liquid chromatography–tandem mass spectrometry (LC/MS/

MS)-based assay as reported [15,16]. Intra-assay and inter-assay

coefficients of variation (CVs) were less than 6.7 and less than

8.8%, respectively. The lower limit of detection was 1.0 ng/mL

with a signal to noise ratio of 10:1 [17].

Liver biopsy. Immediately after the procedure, the biopsy

was cut into two pieces. A 2.5 cm piece was fixed in 10% formalin

(pH 7.4) for histology, whereas a 0.5–1 cm of tissue from needle

liver biopsy was snap-frozen in liquid nitrogen for mRNA analysis.

Hepatic sections were stained with standard and Perls’ staining for

routine histology and iron deposition, respectively. Grading and

staging were classified as described by Ishak et al [18], and

steatosis by Kleiner’s score [13]. Liver iron overload was assessed

as described by Deugnier et al [19], with Hepatocyte Iron Score

(HIS) ranging from 0 to 36, Sinusoidal Iron Score (SIS) from 0 to

12, and Portal Iron Score (PIS) from 0 to 12. The sum of HIS, SIS

and PIS is the Total Iron Score (TIS) which ranges from 0 to 60.

RNA extraction and cDNA synthesis. RNA from hepatic

tissue was extracted using TRIzol (Invitrogen, Grand Island, NY,

USA) according to the manufacturer’s protocol, quantified by

spectrophotometry and its integrity assessed by nondenaturing

agarose gel. 2 mg of total RNA was used as a template for reverse

transcription, performed using the High Capacity cDNA Archive

kit (Applera, Foster City, CA, USA), according to the

manufacturer’s protocol.

Real-time quantitative-PCR. mRNA expression levels of

HAMP (Gene ID:57817) were evaluated by quantitative real time

PCR (qRT-PCR); HPRT1 (Gene ID:3251) was chosen as

housekeeping gene. The analysis were performed on an ABI

7900HT (Applera, Foster City, CA, USA) using the Assays-on-

Demand Gene Expression Products (Applera) according to the

manufacture’s protocol (catalog no. of TaqMan AssayH are

Hs99999909_m1 and Hs00221783_m1 for HPRT1 and HAMP,

respectively). Instrument was set up with default thermal cycler

protocol provided by the producer: 50uC for 2 min, 95uC for

10 min, 95uC for 15sec and 60uC for 1 min for 40 cycles.

TaqManH Assays (20X) contain 18 mM of each primers and 5 mM
for the probe. Amplification efficiencies were calculated according

to our experimental conditions and were found to be 96% for

HAMP and 98% for HPRT1, data in accordance with the

TaqManH Gene Expression Assays datasheet that reports a PCR

efficiency of 100% (610%). Inter-assay plate variation showed a %

Coefficient of Variation (CV) of 1.17% and 1.21% for hepatic

HAMP and HPRT1, respectively, in three different liver samples;

%CV for cellular HAMP was 0.80% and 1.9% for cellular HPRT1

in three different HepG2 and Huh-7 samples. For each PCR

reaction, 15 ng of cDNA were used as a template. All analyses
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were carried out in triplicate; results showing a discrepancy greater

than 0.3 cycle between the samples were excluded. Relative

quantities present in each sample were assessed using the 22(DDCt)

method [20]; a cDNA generated from total liver RNA (Invitrogen,

Grand Island, NY, USA) was used as external control. Non-

retrotranscribed RNAs were included in each amplification plate,

and the analysis regarded as valid if the fluorescence intensity in

the no-template control was zero.

In vitro study. The human hepatoma HepG2 cell-line was

grown in MEM (Minimum Essential Medium) supplemented with

10% heat-inactivated fetal bovin serum (FBS), glutamine and

combined antibiotics, 37uC e 5% CO2. The human hepatoma

Huh-7 cell-line was grown in DMEM (Dulbecco Modified

Essential Medium) in the same conditions. For the examination

of serum effect, cells were seeded in 6-well plates (300.000 cell/

well). After 24 h they were starved of FBS for 24 h, after which the

medium was changed to medium containing 10% human serum

[21]. After an additional 48 h, the cells were harvested for RNA

isolation and gene expression analysis as reported above. We

treated HepG2 cells with sera of 13 HFE-HH, 28 DIOS, 9 THAL

patients and 13 C-NAFLD and 28 C-Donors. Huh-7 were

incubated with sera of 13 HFE-HH, 9 THAL patients and 28 C-

Donors. Cell lines were bought from I.Z.S.L.E.R. (Istituto

Zooprofilattico Sperimentale della Lombardia e dell’Emilia-

Romagna, Brescia, Italy).

Statistical analysis. Data were expressed as median and

range. All comparisons involving quantitative variables were

performed by nonparametric tests: Kruskal-Wallis with Dunn’s

test for multiple comparisons, and Mann–Whitney to compare two

groups of patients. The degree of linear association between two

variables was assessed by Spearman’s test. All tests were two sided

and with a significance level of a equal to 0.05. Analyses were

carried out by the GRAPHPAD PRISM statistical analysis

software (version 3.02) (GraphPad Software, Inc., La Jolla, CA,

USA).

Results

Subjects characteristics are shown in Table 1. Excluding THAL

patients, age, total cholesterol, cGT, serum glucose and hemo-

globin concentration did not differ among groups.

Iron and metabolic indices significantly differed among groups.

As expected, HFE-HH and THAL had more severe iron overload

than other groups, whereas DIOS and C-NAFLD had more

metabolic abnormalities and steatosis than HFE-HH and THAL.

To evaluate the possible effect of inflammatory activation on

hepcidin levels in patients with dysmetabolic alterations, we

measured IL-6 concentrations in DIOS and C-NAFLD compared

to C-Donors. Serum IL-6 was higher in C-NAFLD [0.99 (0.16–

21.35) pg/ml] than in DIOS [0.10 (0.10–7.010) pg/ml] and C-

Donors [0.10 (0.10–4.52) pg/ml] (p,0.001).

mRNA, Serum and Urinary Hepcidin
HFE-HH and THAL had the lowest mRNA, serum and urinary

hepcidin among groups, whereas DIOS had the highest (Table 2).

The correction of hepcidin values for the amount of storage iron

(serum ferritin and TIS) underscores the inadequate production of

hepcidin in HFE-HH and THAL, and the higher values in C-

NAFLD and DIOS in the order (Table 3).

Correlation between Hepcidin Levels and Other Variables
Serum and urinary hepcidin showed a significant correlation in

the whole population (r:0.62, p,0.0001) and in HFE-HH patients

(r:0.54, p = 0.037). In the whole population, HAMP mRNA level

correlated with serum and with urinary hepcidin concentration

(r:0.32, p = 0.0057 and r:0.34, p = 0.025 respectively). Serum

hepcidin also inversely correlated with transferrin saturation (r:-

0.25, p= 0.014) in the whole population, but not in single groups.

In the whole population (r:0.241, p= 0.013) there was a direct

correlation between serum ferritin and serum hepcidin concen-

tration, as also observed in the DIOS (r:0.38, p = 0.0082), C-

Donors (r:0.837, p,0.0001) and C-NAFLD (r:0.552, p= 0.033)

groups.

HAMP mRNA Response to Patient’s Sera in HepG2 and
Huh-7 Cell Lines
Differently to HepG2, Huh-7 carries a mutation in HFE leading

to the lack of HFE expression on the cell membrane [22], thus

being a good in vitro model for testing whether the absence of this

protein causes a different regulation of hepcidin expression after

incubation with human serum. As reported in Table 4, treatment

of HepG2 cells with the sera of C-NAFLD and HFE-HH

increased hepcidin mRNA synthesis whereas exposure to THAL

sera induced a strong inhibition. By contrast, treatment of HepG2

cells with DIOS sera did not induce significant differences in

hepcidin expression compared to C-Donors. Similar results were

obtained in Huh-7 exposed to C-Donors, HFE-HH and THAL

sera, although HAMP expression was significantly lower than in

HepG2 cells in each group (Table 4). HAMP mRNA levels in

HepG2 and Huh-7 significantly correlated (r:0.625, p,0.0001)

when the whole population was considered.

Discussion

Our study provides some new and some confirmatory findings.

First, quantification of hepcidin indicated that the amount of

protein in serum and urine significantly but slightly correlated with

the liver transcript in the whole population. Second, among

patients with iron overload, hepcidin expression was up-regulated

in DIOS and patients with NAFLD without iron overload (C-

NAFLD) and down-regulated in HFE-HH and THAL. Third,

incubation of hepatic cell lines with patients’ sera showed that

circulating factors can variably modulate hepcidin expression.

There are few studies analysing the relationship between

hepcidin transcript and related protein expression profiles in

humans. Detivaud et al [10] and Kattamis et al [23] found

a moderate correlation between urinary hepcidin and mRNA

transcript in patients with chronic liver disease and thalassemia,

but such correlation was not found in DIOS patients [8]. When

patients with chronic hepatitis C were evaluated, Tsochatzis et al

[24] found no correlation whereas Fujita et al [25] showed a nice

correlation between HAMP hepatic transcript and serum hepcidin.

The results reported in the present manuscript extend the

observation to a large number of patients with different hepatic

disorders. Overall, these findings suggest that hepcidin assays

reflect hepatic hepcidin production, but also indicate that this

correlation is not ideal. This fact is possibly due to limits in

quantitative accuracy of hepcidin mRNA and protein measure-

ments, but also to several post-trascriptional events (protein

degradation and secretion, hepcidin-ferroportin interaction and

hepcidin internalization at its target sites, and extra-hepatic

production) which might have a role in determining the net

amount of circulating and functional protein. Although hepcidin is

mainly expressed in hepatocytes, it is also expressed in other

organs including heart, lung, adipose and macrophage-rich tissues,

whose contribution to the amount of circulating hepcidin is

unknown and might vary in different pathological conditions [1].

Hepcidin in Iron Overload Diseases

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e36425



Second, our results confirm that DIOS patients retain the ability

to increase hepcidin production in response to iron load,

differently to HFE-HH and THAL. It cannot be excluded that

mild inflammation [shown by the slightly higher IL-6 levels than in

healthy controls] might contribute to the increased hepcidin

production. However, we previously demonstrated that iron

depletion normalized hepcidin levels in DIOS, indicating that

iron stores were major determinants of hepcidin increase [26].

This also explains some of the phenotypic characteristics of the

syndrome: normal transferrin saturation, increased iron accumu-

lation in macrophages and absence of progression of iron overload

[9,27,28]. These results are even more evident when considering

the ratios between hepcidin and ferritin or TIS at both the mRNA

and protein levels. The correction of hepcidin data according to

serum ferritin level is supposed to better assess the adequateness of

hepcidin production to the stimulus induced by iron overload

because of the strong correlation between hepcidin and ferritin

concentrations [29]. However, this ratio should be taken with

caution when considering disorders characterized by serum ferritin

increase disproportionate to the amount of iron overload such as

C-NAFLD and DIOS [30,31], due to hepatocellular necrosis and

local inflammation. Taking TIS as a measure of hepatic iron

overload, we showed that C-NAFLD had the highest ratio among

groups at each level (serum, urinary and mRNA), from 2.5 to 4

times higher than DIOS, and that DIOS had 5 or more times

higher ratios than HFE-HH and THAL. The higher serum IL-6 in

C-NAFLD likely explain the higher hepcidin/TIS ratio compared

to DIOS patients.

Hepcidin transcription is modulated by different stimuli, which

act as positive or negative regulators. There are four main active

Table 1. Characteristics of the subjects.

C-Donors (n=28) C-NAFLD (n=15) DIOS (n=47) HFE-HH (n=23) THAL (n=9)

Age (yrs) 45 (19–60) 42 (21–66) 55 (30–68) 41 (21–68) 30 (27–37)

BMI (Kg/m2) 24.1 (21–27.5) 26.3 (23–39.7) 25.4 (22–33.6) 24.2 (18.8–28) 23.9 (18.8–27.8)

Alcohol (g/day) 5 (0–30) 0 (0–40) 7.5 (0–30) 10 (0–60) 5 (0–40)

Hemoglobin (gr/dL) 14.3 (13.5–16) 15.0 (13.3–16.9) 14.2 (11.2–16.3) 14.6 (11.2–16.8) 9.8 (8.3–10.7)

Transferrin Saturation (%) 29 (20–41) 32.5 (21–222) 38 (9–65) 87 (3.2–98) 97 (94–106)

Ferritin (mg/L) 71 (53–308) 241 (41–806) 872 (351–2293) 1392 (201–4728) 1060 (520–2481)

TIS ND 0 (0–6) 17 (12–29) 32* (22–38) 27.5u (16–37)

Glucose (mg/dL) 92 (64–101) 101 (73–203) 95 (75–146) 96 (65–131) 111 (93–189)

Cholesterol (mg/dL) 199 (137–266) 180 (112–227) 197.5 (125–273) 198 (145–256) 114 (62–166)

Triglycerides (mg/dL) 80 (42–133) 109 (34–233) 119.5 (61–505) 93 (57–180) 82 (45–346)

Steatosis (%) ND 60 (0–98) 65 (0–98) 0 (0–70) 0 (0–0)

ALT (IU/L) 21.5 (14–38) 60 (33–103) 39 (17–118) 32.5 (12–67) 34 (12–95)

cGT (IU/L) ND 51 (16–109) 39.5 (16–271) 30 (11–350) 20.5 (14–57)

Values are represented as median (range).
ND: not done; ALT: alanine aminotransferase; c-GT: c-glutamyl-transferase; TIS: Total Iron Score; *: available in 14 patients; u: available in 6 patients.
Age: DIOS vs THAL (p,0.01);
BMI: C-NAFLD vs C-Donors, HFE-HH, THAL (p,0.05);
Hemoglobin: THAL vs all (p,0.01);
Transferrin saturation: C-Donors vs HFE-HH, THAL (p,0.01); C-NAFLD vs HFE-HH, THAL (p,0.01); DIOS vs HFE-HH, THAL (p,0.01);
Ferritin: C-NAFLD vs DIOS, HFE-HH, THAL (p,0.01);
TIS: C-NAFLD vs all (p,0.01); DIOS vs HFE-HH (p,0.01);
Cholesterol: THAL vs C-Donors, DIOS, HFE-HH (P,0.05);
Tryglicerides: C-Donors vs DIOS (p,0.01);
Steatosis: C-NAFLD vs HFE-HH, THAL (p,0.01); DIOS vs HFE-HH, THAL (p,0.01);
ALT: C-Donors vs NAFLD, DIOS (p,0.01); C-NAFLD vs HFE-HH (p,0.05).
doi:10.1371/journal.pone.0036425.t001

Table 2. Levels of HAMP mRNA, serum and urinary hepcidin in controls (NAFLD patients without iron overload), DIOS and HFE-HH
patients.

C-Donors C-NAFLD DIOS HFE-HH THAL

HAMP mRNA (22DDCt) ND (N=15) 32.9 (3.6–52) (N = 47) 44.6 (12.6–187.3) (N = 14) 18.5 (3.9–56.8) (N = 6) 13.8 (3.9–41.8)

S-Hepcidin (ng/mL) (N = 24) 14 (3.3–36.5) (N = 15) 11.1 (0.5–25.5) (N = 47) 17.4 (2.1–65.0) (N = 21) 4.8 (1.0–31.3) (N = 8) 6.15 (2.3–38.5)

U-Hepcidin (ng/mg creatinine) ND (N=8) 82 (30–156) (N = 28) 163 (72–449) (N = 15) 24 (2–169) ND

Values are represented as median (range).
ND: not done.
HAMP mRNA: DIOS vs HFE-HH, THAL (p,0.01);
S-Hepcidin: HFE-HH vs C-Donors, DIOS (p,0.01); NAFLD vs DIOS (p,0.05);
U-Hepcidin: DIOS vs HFE-HH (p,0.01), NAFLD (p,0.05).
doi:10.1371/journal.pone.0036425.t002
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regulatory pathways (erythroid-, inflammatory-, iron- and hypox-

ia-mediated) which control hepcidin production through different

signalling pathways [1,2,4]. Some of them are activated by factors

circulating in blood: a. holotransferrin stimulates hepcidin

synthesis interacting with the iron sensor complex (formed by

TFR1 and 2, and HFE) at hepatocyte membrane; b. IL-6 induces

hepcidin synthesis through IL-6 receptor (Gene ID: 3570) and

STAT3 (Gene ID: 6764) signalling; c. factor(s) released by

erythroblasts likely regulate the transcription of hepcidin in the

liver according to erythropoiesis activation [32]. We then analysed

modulation of HAMP mRNA expression induced by incubating

two different hepatic cell lines (HepG2 and Huh-7) with patients’

sera. Our results indicate that: a. sera of patients with THAL

down-regulated hepcidin synthesis as previously reported [33]; b.

HFE-HH and C-NAFLD sera induced HAMP transcription; c.

serum of patients with DIOS did not lead to significant changes as

compared to C-Donors; d. HAMP mRNA expression in Huh-7

cells exposed to sera form C-Donors, HFE-HH and THAL

reproduced the results observed with HepG2, but at lower level.

These results allow the following conclusions to be made. First,

hepcidin down-regulation induced by THAL sera confirms the

existence of regulating factor(s) released by erythroblasts into the

plasma to modulate hepcidin production [21,34]. It was suggested

a role for GDF15 (*605312) and TWSG1 (*605049) erythropoietic

growth factors [35], but recent studies challenged the hypothesis,

suggesting that other erythroid factors might be implicated

[36,37]. Hepcidin down-regulation occurred in HepG2 cells

treated with THAL sera despite their high transferrin saturation

which was supposed to increase hepcidin synthesis. This indicates

that the hepcidin regulatory pathway triggered by the putative

erythroid factor(s) predominates on the signalling cascade

activated by diferric holotransferrin. The latter likely explains

the increased hepcidin transcription observed when HepG2 cells,

which have a normal HFE, were incubated with the iron

overloaded serum of HFE-HH patients. DIOS sera did not induce

any differences in hepcidin production as compared to C-Donors.

This finding suggests that the slight increase of IL-6 level was not

sufficient to induce hepcidin expression in vitro and further

confirms that the increased mRNA and protein hepcidin levels

observed in patients with DIOS mainly depend to the increased

liver iron storage. By contrast, exposure of HepG2 cells with the

serum of C-NAFLD patients led to the highest up-regulation of

hepcidin mRNA among groups analyzed. Circulating inflamma-

tory cytokines, as shown by the higher IL-6 levels compared to that

observed in DIOS and C-Donors, were likely major determinants

of hepcidin up-regulation in HepG2 cells induced by C-NAFLD

Table 3. Ratios of HAMP mRNA, serum and urinary hepcidin in controls (NAFLD patients without iron overload), DIOS and HFE-HH
patients.

C-Donors C-NAFLD DIOS HFE-HH THAL

Normalized HAMP mRNA ND N=15 N=47 N=14 N=6

HAMP/SF ND 0.11 (0.02–1.17) 0.05 (0.01–0.16) 0.01 (0.00–0.05) 0.01 (0.00–0.03)

HAMP/TIS ND 8 (5.1–47.2) 3.01 (0.6–6.9) 0.43 (0.1–1.9) 0.53 (0.2–1.5)

Normalized S-hepcidin N=24 N=15 N=47 N=21 N=8

S-hepcidin/SF 0.11 (0.06–0.25) 0.03 (0.00–0.27) 0.02 (0.00–0.05) 0.00 (0.00–0.02) 0.00 (0.00–0.01)

S-hepcidin/TIS ND 2.48 (1.5–12.8) 1.07 (0.15–2.9) 0.16 (0.05–0.9) 0.27 (0.14–0.9)

Normalized
U-hepcidin

ND N=8 N=28 N=15 ND

U-hepcidin/SF ND 0.60 (0.08–1.51) 0.19 (0.05–0.72) 0.05 (0.00–0.10) ND

U-hepcidin/TIS ND 40.5 (5.0–76.0) 10 (4.5–36.2) 2.12 (0.00–7.3) ND

Values are represented as median (range).
ND: not done; SF: serum ferritin; TIS: Total Iron Score.
HAMP/SF: NAFLD vs HFE-HH, THAL (p,0.01) DIOS (p,0.05); DIOS vs HFE-HH (p,0.01), THAL (p,0.05);
HAMP/TIS: C-NAFLD vs HFE-HH, THAL (p,0.01); DIOS vs HFE-HH, THAL (p,0.01);
S-hepcidin/SF: C-Donors vs DIOS, HFE-HH, THAL (p,0.01); NAFLD vs HFE-HH (p,0.01), THAL (p,0.05); DIOS vs HFE-HH (p,0.01);
S-hepcidin/TIS: NAFLD vs HFE-HH, THAL (p,0.01); DIOS vs HFE-HH (p,0.01);
U-hepcidin/SF: HFE-HH vs DIOS, NAFLD (p,0.01);
U-hepcidin/TIS: DIOS vs HFE-HH (p,0.01).
doi:10.1371/journal.pone.0036425.t003

Table 4. HAMP mRNA expression in HepG2 and Huh-7 cells treated with different patients sera.

C-Donors (n =28) C-NAFLD (n=13) DIOS (n=28) HFE-HH (n=13) THAL (n =9)

HepG2 HAMP mRNA (22DDCt) 2.06 (0.6–4.8) 6.34 (0.6–16.5) 2.32 (0.3–6.7) 4.13 (1.5–12.5) 0.44 (0.1–1.4)

Huh-7 HAMP mRNA (22DDCt) 1.25 (0.3–2.2) ND ND 2.34 (0.6–4.1) 0.12 (0.03–0.5)

p (HepG2 vs Huh-7) 0.003 – – 0.022 0.005

Results are expressed as 22DDCt, as median (range).
ND: not done.
HepG2 HAMP mRNA: THAL vs all (p,0.01); HFE-HH vs C-Donors (p,0.05); C-NAFLD vs C-Donors (p,0.01); C-NAFLD vs DIOS (p,0.02);
Huh-7 HAMP mRNA: THAL vs all (p,0.01); HFE-HH vs C-Donors (p,0.01).
doi:10.1371/journal.pone.0036425.t004
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sera. The results observed in Huh-7 cell lines support the role of

HFE as hepatocyte iron sensor in modulating hepcidin synthesis

through interaction with diferric holotransferrin, TFR21 and 22

[6] in healthy controls, HFE-HH and THAL patients. Neverthe-

less, hepcidin response of Huh-7 cell lines to HFE-HH sera

suggests that HFE has an important but not critical role in

regulating HAMP transcription and that other components of the

membrane iron sensor complex may activate hepcidin signalling

even in the absence of HFE. This might explain the low

penetrance of the p.C282Y homozygous genotype and support

the idea that full expression of HH type 1 requires additional

factors either genetic or acquired.
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