
Integrated Analysis of Gene Expression and Tumor
Nuclear Image Profiles Associated with Chemotherapy
Response in Serous Ovarian Carcinoma
Yuexin Liu1, Yan Sun1,3, Russell Broaddus1, Jinsong Liu1, Anil K. Sood2, Ilya Shmulevich4, Wei Zhang1*

1 Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America, 2 Departments of Gynecologic Oncology and

Reproductive Medicine and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America, 3 Department of Pathology,

Tianjin Medical University Cancer Institute and Hospital, Tianjin, China, 4 The Institute for Systems Biology, Seattle, Washington, United States of America

Abstract

Background: Small sample sizes used in previous studies result in a lack of overlap between the reported gene signatures
for prediction of chemotherapy response. Although morphologic features, especially tumor nuclear morphology, are
important for cancer grading, little research has been reported on quantitatively correlating cellular morphology with
chemotherapy response, especially in a large data set. In this study, we have used a large population of patients to identify
molecular and morphologic signatures associated with chemotherapy response in serous ovarian carcinoma.

Methodology/Principal Findings: A gene expression model that predicts response to chemotherapy is developed and
validated using a large-scale data set consisting of 493 samples from The Cancer Genome Atlas (TCGA) and 244 samples
from an Australian report. An identified 227-gene signature achieves an overall predictive accuracy of greater than 85% with
a sensitivity of approximately 95% and specificity of approximately 70%. The gene signature significantly distinguishes
between patients with unfavorable versus favorable prognosis, when applied to either an independent data set (P = 0.04) or
an external validation set (P,0.0001). In parallel, we present the production of a tumor nuclear image profile generated
from 253 sample slides by characterizing patients with nuclear features (such as size, elongation, and roundness) in
incremental bins, and we identify a morphologic signature that demonstrates a strong association with chemotherapy
response in serous ovarian carcinoma.

Conclusions: A gene signature discovered on a large data set provides robustness in accurately predicting chemotherapy
response in serous ovarian carcinoma. The combination of the molecular and morphologic signatures yields a new
understanding of potential mechanisms involved in drug resistance.
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Introduction

Ovarian carcinoma (OvCa) remains a leading cause of mortality

from gynecologic cancer, with approximately 21,880 new cases

and 13,850 deaths estimated in the United States in 2010 [1,2].

The standard treatment protocol for advanced-stage epithelial

OvCa is cytoreductive surgery followed by platinum-based

combination chemotherapy. However, the majority of patients

eventually relapse with generally incurable disease, mainly due to

the emergence of chemotherapy resistance [3,4]. Early identifica-

tion and differentiation of patients who are resistant to chemo-

therapy could lead to their enrollment in clinical trials with

alternative therapeutics and is of utmost importance for improving

the outcome of ovarian cancer.

Understanding the molecular mechanisms for chemoresistance

has been the subject of intense research. Various genomic

methodologies [4–12] have been applied to the study of OvCa

to identify a gene signature associated with chemotherapy

response [6,13]. However, there is a lack of overlap between the

discovered genes in different studies [6,14], possibly because of

limited sample size in most studies.

The Cancer Genome Atlas (TCGA), a project of the National

Cancer Institute and the National Human Genome Research

Institute, generates a comprehensive catalog of genomic abnor-

malities with large-scale data sets that include cancers with the

highest mortality rates including serous OvCa. In addition, the

TCGA effort has led to the accumulation of a large set of tumor

images in the repository. It is recognized that cell morphologies are

intimately linked to multiple cell functions, such as cell growth,

apoptosis, differentiation, and migration [15–17]. Switches

between different cell functions can be controlled by regulating

cell shapes [18,19]. It is reported that nuclear size is correlated

with tumor prognosis in Stage III-IV ovarian cancer [20] and is

capable of distinguishing low- from high-grade serous OvCa [21].

However, the molecular mechanism underlying this association
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remains unknown. The tumor image collections in TCGA provide

the opportunity to systematically characterize the morphologic

features associated with chemotherapy response and gene activity.

In this study, we leverage the full scope of the TCGA database

with a large population of patients, including gene expression and

tumor images, to identify the molecular and morphologic

signatures associated with chemotherapeutic response in OvCa.

Integration of the genomic and morphologic dimensions of OvCa

will yield potential insights into mechanism of drug resistance and

facilitate identification of novel system-level events for alternate

therapeutic interventions.

Results

Gene Signature Associated with Chemotherapy
Response in Serous OvCa

To gain insight into the potential mechanisms underlying the

differential response of OvCa to chemotherapy, we perform an

integrated analysis of gene expression and tumor nuclear image

profiles. The 232-sample set that has both gene expression and

image data is used to identify a gene expression pattern that could

predict clinical outcome. The 227 genes most weighted in

achieving the prediction are identified, of which 154 (67.8%)

were downregulated and 73 (32.2%) are upregulated in the

chemoresistant group (Figure 1A; Table S1). The gene expression

fold change cutoff between these two groups is determined on the

basis of the overall predictive accuracy of the patients in this

training set (Figure S1); this cutoff is similar to the one used in the

previous study [9]. The gene expression profiling well separates

the chemoresistant patients from the chemosensitive patients

(Figure 1B) and achieves an overall predictive accuracy of

approximately 87.9% (Figure 1D), with a sensitivity of approxi-

mately 95.2% and specificity of approximately 70% (Figure 1C).

Pathway analysis of the discovered genes reveals an enrichment of

several groups of genes that regulate morphologic changes at the

cellular (approximately 11%), tissue (approximately 13%), and

tumor (approximately 3%) levels (Figure 1E).

Validation of Gene Signature
A validation of the gene signature is performed on an

independent set of 261 samples from TCGA. Based on the score

cutoff from Figure 1D, the predictive model splits the patients into

two groups (Figure 2A) that are well separated from each other

(Figure 2B). 35 patients are identified to have an explicit response

to chemotherapy [22] and 26 of them are correctly predicted

(Figure 2A). Kaplan-Meier analysis of the remaining samples after

removing the patients without survival data shows that the patients

in the low-scoring group exhibited poorer progression-free survival

(PFS) (Figure 2C; median: 22.3 vs 34.2 months; log-rank P = 0.04,

HR [95%CI] = 0.43 [0.19–0.97]). The clinicopathologic charac-

teristics of patients in these two groups are summarized in Table

S2.

Robustness and scalability of the gene signature are next

evaluated by using the Australian data set which is based on a

different microarray platform. We use it to validate whether the

discovered genes are associated with patient outcome. Overlap

analysis reveals 198 among the 227 genes in this data set (Table

S1). Using the threshold from the reported chemosensitive rates in

ovarian cancer patients (approximately 70% [6]), we group the

,70.0% patients (171 out of 244) with the highest scores into the

high-scoring group and the remaining 30% patients (73 out of 244)

into the low-scoring group (Figure 2D); consistently patients in the

low-scoring group have poorer prognosis (Figure 2E; P,0.0001,

HR [95%CI] = 0.36 [0.22–0.56]) where the median PFS of Group

2 (12.0 months) is almost 4 times shorter than that of Group 1

(50.0 months). The clinicopathologic characteristics of the patients

in these two groups either with high scores or with low scores in

both validation sets are detailed in Table S2, which shows the

similar age, tumor stage, and tumor grade distributions as the

TCGA training set (Table 1). Cox proportional hazard analysis

demonstrates that the two groups have significantly different

progression-free survival patterns, independent of age, grade, and

stage (Table S3).

These results not only validate the predictive performance of the

gene signature but also suggest its strong association with tumor

prognosis, which is most likely contributable from chemotherapy

response.

Tumor Nuclear Image Profile Associated with
Chemotherapy Response in Serous OvCa

The results from pathway analysis (Figure 1E) suggests that the

morphologic characteristics may play a key role in determining

chemotherapy response. The tumor nuclear image profile in the

130-sample training set is used to identify a morphologic signature

associated with chemotherapy response; this is then validated using

the 123-sample validation set. The 15 significant features

(FDR#2%, Table S4) consisting of 5 with the highest signal-to-

noise ratios (SNRs) and 10 with the smallest SNRs clearly uncovers

binary patterns in both the training and validation sets, as

illustrated in a similar fashion commonly used in gene expression

profiles (Figure 3A). A detailed version of this panel with

morphological feature names is provided in the Figure S5. More

prominently, we find that the Std_Ar_Bin2 feature (see Methods

and Table S5) values are strongly associated with tumor prognosis.

Based on the Std_Ar_Bin2 feature values, we split the 253 patients

into two groups, where patients with values greater than or equal

to the median are categorized into a group (ie, High Std_Ar_Bin2,

n = 129), and patients with values less than the feature median are

categorized a different group (ie, Low Std_Ar_Bin2, n = 124)

(Figure 3B). Kaplan-Meier survival analysis demonstrates that

tumors with smaller values of Std_Ar_Bin2 feature have signifi-

cantly poorer overall survival (OS) (Figure 3C, log-rank P = 0.001,

HR [95%CI] = 1.99 [1.32–3.01]) and poorer PFS (Figure 3D, log-

rank P = 0.017, HR [95%CI] = 2.72 [1.20–6.19]). Cox propor-

tional hazard analysis demonstrates that the two subgroups, split

on the basis of Std_Ar_Bin2 feature values, have significantly

different OS and PFS patterns, after controlling for age, stage, and

grade (Table S6). These results suggest that morphologic features

are significantly related to patient survival and could serve as

valuable prognostic markers [23].

Integrated Analysis of Morphologic Features and Gene
Signature

Both genomic and morphologic features are associated with

chemotherapy, suggesting that these two types of signatures are

strongly associated with each other. With the patients split into the

two groups based on the Std_Ar_Bin2 feature values, as described

above, we carry out a supervised analysis of the gene expression

data and find that five of the signature genes are significantly lower

(P,0.01) in the Low Std_Ar_Bin2 group (Figure 4A). Similar

analysis is performed on the other morphologic features, and the

corresponding differentially expressed genes are summarized in

Table S7. Next we perform correlation analysis of morphologic

feature data and gene expression data, and the highly correlated

(either positively or negatively) feature-gene pairs (P,0.005) are

depicted in Figure 4B, in which we can see that the morphologic

features are strongly related to the gene signature.

Chemotherapy Response in Serous Ovarian Carcinoma
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Figure 1. Gene signature associated with chemotherapy response in serous OvCa. (A) Identification of gene signature differentially
expressed in chemoresistant and chemosensitive patients. (B) The selective genes (n = 227) distinguish the chemoresistant patients from the
chemosensitive patients. (C) A predictive model on the basis of the gene signature reveals an accuracy of approximately 87.9% in correctly classifying
chemoresistant and chemosensitive tumors (n = 232; green square = chemosensitive, blue triangle = chemoresistant). (D) An receiver operating
characteristic (ROC) curve illustrates the predictive performance, with a sensitivity of approximately 95.2% and specificity of approximately 70% at the
predictive score cutoff of approximately 20.16 that serves as a threshold for patient stratification in the TCGA data set. AUC: area under curve. (E)
Pathway analysis shows that the gene signature is enriched in the morphologic function at cellular, tissue, and tumor levels. The dotted line denotes
the cutoff for significance (P = 0.05). The shaded bars show the ratio of genes enriched in each function to the 227 genes.
doi:10.1371/journal.pone.0036383.g001

Chemotherapy Response in Serous Ovarian Carcinoma
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Figure 2. Validation of gene signature. (A) The predictive model constructed from the TCGA training set was applied to an independent TCGA
validation set (n = 261) and split the patients into two groups based on the score cutoff of 20.16 as determined by the ROC curve. Thirty five patients

Chemotherapy Response in Serous Ovarian Carcinoma
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Discussion

Several studies have described chemotherapy response in

ovarian cancer using gene expression profiles, as summarized by

Helleman et al [14]. However, the number of ovarian cancer

specimens used for the gene selection in those studies was relatively

small, ranging from 6 to 119, and the corresponding gene sets

discovered to be associated with platinum-based chemotherapy

resistance exhibited a wide range of 14 to 1,727 genes where only

seven genes were observed as an overlap and each between only

two gene sets [14]. Lack of overlap between the discovered gene

sets is likely due to the limited sample size in most studies.

However, ours is the first study performed on such a large scale,

two genes in the 227-gene set, EPH receptor B3 (EPHB3) and

nuclear factor I/B (NFIB), had been identified in one of the

previous studies [12], and one gene, RNA binding protein 1

(RNABP1), had been identified in a different study [24]. More

prominently, a gene set discovered on a large data set undoubtedly

has high statistical power and robustness in accurately predicting

chemotherapy response. Recently, the TCGA research network

identified 193 prognostic gene signatures predictive of OS, but the

gene association with chemotherapy response remains unexplored

[22]. Here we used a large sample set (493 samples from TCGA

and 244 samples from an external source) for identification of

are identified to have an explicit response to chemotherapy [22]. (B) The two groups are well separated, with 212 patients in the low-scoring group
and 49 in the high-scoring group. (C) Exclusion of patients with no survival data resulted in 109 patients in the low-scoring group and 29 in the high-
scoring group. Kaplan-Meier analysis shows patients in the high-scoring group had poorer progression-free survival (P = 0.04). (D) The predictive
model as applied to the external data set distinguishes the patients in the low-scoring group from in the high-scoring group; where the low-scoring
group consists of the 70.1% patients (171 out of 244) with the highest predictive scores, and the high-scoring group consists of the 29.9% patients
(73 out of 244) with the lowest predictive scores (see text for details). (E) Kaplan-Meier analysis shows patients in the high-scoring group had poorer
progression-free survival than those in the low-scoring group (P,0.0001).
doi:10.1371/journal.pone.0036383.g002

Table 1. Clinicopathologic characteristics of TCGA patients with serous OvCa that are used for tumor nuclear image profile and
gene expression profile analyses.

TCGA Cohort

Clinical Chemosensitive Clinical Chemoresistant Totals (All)

No. of patients 172 81 253

Age

Mean, yrs [SD] 59.1 [11.4] 61.7 [11.0] 59.9 [11.4]

Range 30.5–87.5 38–84.7 30.5–87.5

FIGO Stage"

II 13 0 13

III 134 69 203

IV 25 12 37

WHO Grade

2 29 8 37

3 139 72 211

Unknown 4 1 5

Surgical outcomej

Optimal (#1 cm) 70 48 118

Suboptimal (.1 cm) 43 19 62

No macroscopic disease 40 9 49

Unknown 19 5 24

Vital status

Alive 80 14 94

Dead 91 67 158

Unknown 1 0 1

Recurrent diseasef

Yes 144 81 225

No 28 0 28

Abbreviations: FIGO, International Federation of Gynecology and Obstetrics; TCGA, The Cancer Genome Atlas; SD, standard deviation; WHO, World Health Organization.
": Cases were staged according to the 1988 FIGO staging system.
j: Surgical outcome was defined as the size of residual disease at the conclusion of the primary surgical procedure. This field was used to define surgical cytoreduction
as optimal or suboptimal. Optimal was defined as no residual disease greater than 1 cm and included the variable categories of no macroscopic disease (i.e. microscopic
residual disease) and 1 to 10 mm. Suboptimal was defined as residual disease greater than 1 cm and included the variable categories of 11 to 20 mm and greater than
20 mm.
f: Local recurrence after the date of initial surgical resection.
doi:10.1371/journal.pone.0036383.t001

Chemotherapy Response in Serous Ovarian Carcinoma
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molecular and morphologic signatures that are associated with

chemotherapy response. The predictive model on the basis of gene

signature revealed an accuracy of 87.9% in correctly classifying

refractory from responsive tumors in the TCGA training set and

stratified patients in both the TCGA validation set and the

Australian data set into groups that demonstrated significant

discrepancy in tumor progression, suggesting the capacity of the

gene signature to serve as a mechanism to stratify patients with

respect to treatment.

The imaging approach stratifies the cells into 10 bins based on

nuclear size and accounts for the heterogeneity of cells in a

tumor population. Our stratification revealed that most signifi-

cant morphologic features differed between the chemosensitive

and chemoresistant groups in the larger nuclei (range, 300 to 500

pixel2; Table S2). However, nuclei within this size range account

for a very small percentage (approximately 2.0%), and the

majority of the nuclei (approximately 98.0%) do not show a

significant difference in chemotherapy response. This observation

not only is consistent with the Goldie-Coldman hypothesis [25]

that only a small cell population may contribute to differential

response to chemotherapy, but also suggests the difficulty of a

conventional approach of simply correlating the overall morpho-

logic differences with chemotherapy response, owing to the

‘‘dilution’’ effect [26]. Therefore, our imaging approach allows us

to interrogate different cell populations separated on the basis of

nuclear size in a high throughput and automated fashion.

The 15 morphologic features (Table S4) most weighted in

achieving the patient separation are highly instructive. The same

nuclear parameter might exhibit different or even opposite

patterns. The average roundness of nucleus in Bin 8 (Mean_-

Ro_Bin8) is significantly higher in the chemoresistant group

(P = 1.561024, Figure S2A), on the contrary, the same nuclear

Figure 3. Tumor nuclear image profile associated with chemotherapy response. (A) The tumor nuclear image profile demonstrates a
strong association with chemotherapy response in both the training set (top) and the validation set (bottom). Each row corresponds to a
morphologic feature, with the columns corresponding to data in different samples. Feature values were median centered across the tumor set and
then log transformed. A detailed version of this panel with morphological feature names is provided in the Figure S5. (B) Feature (Std_Ar_Bin2)
distribution across the entire image sample set (n = 253) where patients with values greater than or equal to the feature median are categorized into
a group (i.e., High Std_Ar_Bin2, n = 129), and patients with values less than the feature median are categorized a different group (i.e., Low
Std_Ar_Bin2, n = 124). Smaller values of Std_Ar_Bin2 feature are significantly associated with poorer OS (C) and poorer PFS (D).
doi:10.1371/journal.pone.0036383.g003

Chemotherapy Response in Serous Ovarian Carcinoma
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parameter in Bin 9 (Mean_Ro_Bin9) shows significant decrease

in the chemoresistant patients (P = 0.0015, Figure S2B). The

average roundness of the entire nucleus per sample (Mean_-

Ro_Total) shows no significant difference (P = 0.56, Figure S2C).

In addition, none of the image features calculated from the entire

nucleus per sample, the way similar to those used in other studies

[20,21,26], show significant difference between the chemoresis-

tant and chemosensitive patients. This discrepancy from the

previous studies [20] likely results from the number of nuclei

used in the feature calculation. We used approximately 4000

nuclei per sample for feature value calculation, almost 80 times

more than the amount used in the other studies [20,21,26].

Taken together, our approach of binning the nucleus size and

then assessing the image feature in each individual bin improves

the image feature resolution and enhances the discriminating

power. Furthermore, our approach of calculating the morpho-

logic features in separate bins (with smaller size variations) is

capable of alleviating the size dependence of some of the

features, such as circularity and roundness [27].

Aside from the potentially practical value, the morphologic

features also provide insights into cancer morphogenesis. The

chemosensitive patients exhibit a smaller value of nuclear

roundness in Bin 8 (Mean_Ro_Bin8), but with a larger variability

(Std_Ro_Bin8) and a larger aspect ratio (Mean_AR_Bin8). Such

morphologic differences likely result from the active response of

the cells to their environment and heightened cellular metabo-

lism, that is contributable from different molecular regulations

(Figure 4B, Table S7). This is further corroborated by pathway

analysis, which revealed the gene enrichment in the morphologic

function at cellular, tissue, and tumor levels (Table 2). The gene

content of this table offers potential insight into the structural

and molecular mechanisms of the chemotherapy response. The

importance of A2M gene expression is of particular interest, in

view of past work suggesting a correlation between decreased

A2M levels with sensitivity to drugs [28]. A2M is an inhibitor of

matrix metalloproteinase activity, which is reported to contribute

to tissue remodeling and morphogenesis [29,30]. PAX6, which is

associated with drug response, is strongly activated by cotylenin

A in retinoblastoma cell lines [31]. Decreased expression of

Figure 4. Integrated analysis of morphologic features and gene signature. (A) Supervised analysis of gene expression data on the patients
split by the Std_Ar_Bin2 feature values as described by Figure 3B. (B) Correlation of the highly correlated feature-gene pairs (P,0.005), with negative
correlations in green and positive correlations in red.
doi:10.1371/journal.pone.0036383.g004

Chemotherapy Response in Serous Ovarian Carcinoma
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EPHB3 in the chemoresistant group may have promoted

chemoresistance by impairing the apoptotic response to cell

damage [12].

In conclusion, a gene signature discovered on a large data set

provides robustness in accurately predicting chemotherapy

response in serous OvCa. Meanwhile, we propose a novel

Table 2. Morphologically related genes at cellular, tissue, and tumor levels.

Gene Entrez Gene Name
Fold
difference* p-value Location

A2M alpha-2-macroglobulin 0.81 2.6E-02 Extracellular Space

AQP5 aquaporin 5 0.81 1.1E-02 Plasma Membrane

AREG amphiregulin 1.51 3.7E-02 Extracellular Space

AVIL advillin 0.77 6.2E-03 Cytoplasm

CALML3 calmodulin-like 3 1.36 5.0E-03 Cytoplasm

CD38 CD38 molecule 0.71 2.0E-02 Plasma Membrane

CNN2 calponin 2 1.24 1.0E-02 Cytoplasm

CXCR4 chemokine (C-X-C motif) receptor 4 0.80 2.6E-02 Plasma Membrane

DDR1 discoidin domain receptor tyrosine kinase 1 0.81 1.2E-03 Plasma Membrane

DKK1 dickkopf homolog 1 (Xenopus laevis) 1.47 2.9E-02 Extracellular Space

EFNB2 ephrin-B2 0.80 3.8E-02 Plasma Membrane

EPHB3 EPH receptor B3 0.76 1.2E-02 Plasma Membrane

FOXA2 forkhead box A2 0.64 4.0E-03 Nucleus

GAP43 growth associated protein 43 1.33 1.6E-02 Plasma Membrane

GDF6 growth differentiation factor 6 1.32 4.0E-02 Extracellular Space

GFRA1 GDNF family receptor alpha 1 1.31 1.2E-02 Plasma Membrane

HES1 hairy and enhancer of split 1, (Drosophila) 0.80 1.4E-02 Nucleus

SD11B2 hydroxysteroid (11-beta) dehydrogenase 2 0.77 1.8E-03 Cytoplasm

ICAM5 intercellular adhesion molecule 5, telencephalin 1.27 2.4E-02 Plasma Membrane

IGFBP5 insulin-like growth factor binding protein 5 0.75 7.0E-03 Extracellular Space

IGHM immunoglobulin heavy constant mu 0.66 7.2E-03 Plasma Membrane

IGKC immunoglobulin kappa constant 0.56 1.7E-03 Extracellular Space

IL15 interleukin 15 1.31 4.6E-02 Extracellular Space

KCNH2 potassium voltage-gated channel, subfamily H (eag-related), member 2 0.78 1.2E-03 Plasma Membrane

LIPG lipase, endothelial 0.73 7.4E-03 Extracellular Space

MATK megakaryocyte-associated tyrosine kinase 1.27 2.2E-03 Cytoplasm

MDK midkine (neurite growth-promoting factor 2) 0.75 2.4E-03 Extracellular Space

EVI1 MDS1 and EVI1 complex locus 0.77 4.6E-03 Nucleus

MMP1 matrix metallopeptidase 1 (interstitial collagenase) 0.69 4.7E-02 Extracellular Space

NPAS3 neuronal PAS domain protein 3 0.70 1.6E-02 Nucleus

NPY neuropeptide Y 1.64 2.8E-02 Extracellular Space

NRG4 neuregulin 4 0.71 8.5E-03 Extracellular Space

NTF5 neurotrophin 4 1.35 3.7E-02 Extracellular Space

PAX6 paired box 6 0.75 1.8E-02 Nucleus

PCSK6 proprotein convertase subtilisin/kexin type 6 0.81 2.4E-02 Extracellular Space

POU2AF1 POU class 2 associating factor 1 0.63 2.0E-03 Nucleus

POU5F1 POU class 5 homeobox 1 1.24 1.1E-02 Nucleus

RTN4R reticulon 4 receptor 0.78 3.4E-04 Plasma Membrane

S100A4 S100 calcium binding protein A4 0.78 4.6E-02 Cytoplasm

SLC1A3 solute carrier family 1 (glial high affinity glutamate transporter), member 3 0.81 1.5E-02 Plasma Membrane

SPOCK2 sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 2 1.29 3.4E-02 Extracellular Space

TRPV6 transient receptor potential cation channel, subfamily V, member 6 0.80 6.4E-03 Plasma Membrane

TSPAN7 tetraspanin 7 0.69 1.0E-02 Plasma Membrane

XBP1 X-box binding protein 1 0.80 9.2E-03 Nucleus

*Fold difference in geometric means of chemoresistant tumors (numerator) compared with chemosensitive tumors (denominator).
doi:10.1371/journal.pone.0036383.t002
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approach for tumor nuclear image profile generation by charac-

terizing patients with nuclear features (such as size, aspect ratio,

and roundness etc) in incremental bins, and we demonstrate that

the tumor nuclear image profile exhibits a strong association with

chemotherapy response. This imaging approach is capable of

accounting for cell heterogeneity and improving the discriminating

power. The integrated approach herein, using gene expression

profile that predicts chemotherapy response coupled with the

morphologic features to stratify patients to the most appropriate

treatment regimen, represents an important step toward the goal

of personalized cancer treatment by identifying the area where

novel drugs can be developed. Although our observations suggest

that the tumor image profile is capable of defining prognosis and

yielding mechanistic insights into the process of chemoresistance,

one limitation of this study is the lack of validation of the image

analysis due to unavailability of the independent image sets

especially in a large population. This issue should be addressed in

the future in order to determine the ultimate value of this

technique in clinical practice. Besides, the resolution dependence

of the morphologic features in separate bins has not been

systematically investigated yet in this study and deserves attention

in the follow-up studies. Future work also consists of inclusion of

more possible morphologic features and verification of the gene-

feature relation identified in this study.

Materials and Methods

Patients and Tissue Samples
Two hundred fifty three OvCa patients in the TCGA database

with explicit platinum status [22] are obtained for nuclear image

profile generation, among which 172 patients are sensitive to

chemotherapy, and 81 are chemoresistant. Platinum status is

defined as resistant if the patient recurred within six months.

Platinum status is defined as sensitive if the platinum free interval

is six months or greater, there is no evidence of progression or

recurrence, and the follow-up interval is at least six months from

the date of last primary platinum treatment [22]. Compared with

patients who are chemosensitive, the chemoresistant patients

exhibit relatively poorer overall survival (OS; median, 53.9 vs. 33.8

months; p,0.0001) and progression-free survival (PFS; median,

25.8 vs. 9.3 months; p,0.0001; Figure S3). Other characteristics

of these 253 patients are listed in Table 1. The average age at

diagnosis is 61.7 years (range, 38.0 to 84.7 years) for the

chemoresistant group and 59.1 years (range, 30.5 to 87.5 years)

for the chemosensitive group. Up to 84% of the chemosensitive

patients show the symptom of recurrent diseases in contrast to

100% of relapse for the chemoresistant patients. 232 among the

253 samples with expression data serve as the TCGA training set

to identify the gene signature, of which 165 are chemosensitive

and 67 are chemoresistant. An independent data set from TCGA

(n = 261) and an external data set from an Australian study [32]

are applied for validation of the gene signature. The gene

expression profile in TCGA dataset was performed on three

different platforms (Affymetrix Exon 1.0, Agilent 244 K Whole

Genome Expression Array and Affymetrix HT-HG-U133A) and a

unified expression data set was created by the TCGA research

working group and is available in the TCGA data portal. The

external expression data was performed on the Affymetrix HG-

U133 plus 2 platform and was downloaded from the Gene

Expression Omnibus (accession GSE 9899 [32]). The training set

is used to discover the gene signature and then to create the

predictive model. To be consistent with patient characteristics in

these two data sets, we exclude patients from the Australian data

set who have either non-serous OvCa or grade 2 disease, resulting

in 244 patients in this validation set. The clinicopathologic

characteristics of patients in these two validation data sets are

summarized in Table S2.

Genomic Data Analysis
Expression data are prescreened to remove genes with trivial

variation across the samples and low median expression levels,

resulting in 14,084 genes in the analysis. The gene signature

identified through a supervised method [33] is used for construct-

ing a predictive model using the weighted voting algorithm

[34,35]. A predictive score is assigned to each sample and is

calculated as

Score~
XN

Vf w0

Vf {
XN

Vf v0

Vf

�� ��
2
4

3
5, XN

Vf w0

Vf z
XN

Vf v0

Vf

�� ��
2
4

3
5

where Vf ~wf | xf { msensitivezmresis tan tð Þ=2
� �

, N is the number

of discovered genes, wf is the weighting factor, xf is the expression

value and m represents the expression mean for each class. A

sample with a score greater than a cutoff is assigned to the

chemosensitive group, and a sample with a score less than or equal

to the cutoff is assigned to the chemoresistant group. The

predictive accuracy, based on a cutoff score determined by

receiver operating characteristic (ROC) curve, is assessed. The

gene signature is validated on an independent sample set from

TCGA and an external data set [32]. Pathway and network

analysis is performed using Ingenuity Pathway Analysis (IPA,

version 8.6-3003; Ingenuity Systems, Inc.).

Tumor Nuclear Image Profile Generation and Analysis
Nucleus parametric profile generation. An average of

10 high-resolution tumor images (20 X magnification,

10726648 pixels) per sample at the different views of the tissue

blocks are first selected by a pathologist from hematoxylin- and

eosin-stained ScanScope virtual slides, to account for the spatial

heterogeneity of the tumor tissues. Next, we automatically

identify and measure the nuclei in each image by using a cell-

image analysis software (ImageJ, version 1.42, NIH) [36],

producing a parametric profile for each nucleus. In brief, the

first slice of the tumor image is processed using a Fast-Fourier-

transform (FFT) band pass filter with the default setting before

it is converted to a black-white image (features of interest such

as nuclei are displayed as black and the background as white)

by using a threshold value verified by overlaying the segmented

nuclei with the original RGB image. Nuclei with a size range of

50 to 500 pixel2 and a circularity of greater than 0.3 are

selected for further analysis. The nucleus profile consists of a set

of numbers that describe the nucleus’s characteristics, including

size, location, and shapes that are automatically measured using

the ImageJ Plugins, which is widely used in research [37,38].

Definition of these nuclear parameters is described in details in

the ImageJ user guide [39]. Typically, approximately 4000

nuclei within the size range from 50 to 500 pixel2 per sample

are produced which is almost 80 times more than the amount

used in other studies [20,21]. An example detailing this

procedure is shown in Figure S4.

Tumor image profile generation. To generate the tumor

image profile, we first split the nuclei into 10 evenly spaced bins

based on the nuclear size, and then calculate the average value and

standard deviation (SD) of these parameters (e.g, area, perimeter,

circularity, aspect ratio, solidity, and roundness) for each nucleus

in each bin as well as for all the nuclei in an image. In addition, the
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number of nuclei in each bin (feature name, count) and its

percentage (feature name, percentage) are defined as image

features and calculated accordingly. The compactness is defined

as an image feature to qualify the spatial distribution of nuclei

within the tumor tissue. As a result, the tumor image profile

consists of 153 morphologic features including 66 means, 66 SDs,

10 percentages, 10 counts, and 1 compactness (Table S5).

Definition of these nuclear parameters is described in details in

the ImageJ user guide [39].

Tumor image profile analysis. The 253 TCGA samples

with the calculated image profile (described above) are randomly

divided into a 130-sample training set and a 123-sample validation

set in an approximate 1:1 ratio. The training set consists of 90

chemosensitive patients (69.2%) and 40 chemoresistant patients

(30.8%), while the validation set contains 82 chemosensitive

patients (66.7%) and 41 chemoresistant patients (33.3%). The

distribution of chemosensitive and chemoresistant patients in both

the training and validation sets is selected to reflect clinical

chemosensitive rates of approximately 70% [6]. Similar to the

gene expression analysis as stated above, the identification of the

morphologic features associated with chemotherapy response was

performed using the method described previously [7,34] in the

training set and validated in the validation set: In brief, the signal-

to-noise ratio (SNR) is calculated for each potential feature [7,34],

in which positive or negative SNR value indicates the feature

favorable for either the chemoresistant or the chemosensitive

group. The 153 features are ranked on the basis of their SNR

values. The differentially varied morphologic features are deter-

mined in the training set on the basis of FDR#2% and then

validated in the test set. Feature data exhibit a normal distribution

after median centered and log transformed.

Statistical Analysis
OS and PFS curves are generated by the Kaplan-Meier

method, and the statistical significance of survival differences is

determined with the log-rank test. Survival analysis is performed

and an ROC curve is generated using SPSS (version 17.0; SPSS

Inc.) and GraphPad Prism (version 5.04; GraphPad Software,

Inc.). Normality of feature values is verified via a Jarque-Bera test

[40]. The statistical significance of the morphologic signature is

calculated via an unpaired, two-tailed t-test combined with

Benjamini-Hochberg (BH) multiple testing [41]. The p-value of

the identified pathways is assessed by the Fisher exact test using

Ingenuity Pathway Analysis.

Supporting Information

Figure S1 Overall predictive accuracy of patients in the training

set as a function of the gene expression fold change cutoff. The

arrow indicates the fold-change cutoff used in the study that gives

rise to the highest predictive accuracy.

(PDF)

Figure S2 (A) The average roundness of nuclei in Bin 8

(Mean_Ro_Bin8) is significantly higher in the chemoresistant

group (P = 1.5 E-04). (B) The same nuclear parameter in Bin 9

(Mean_Ro_Bin9) shows a significant decrease in the chemoresis-

tant group (P = 0.0015). (C) The average roundness of the nucleus

in an entire sample shows no significant difference between groups

(Mean_Ro_Total) (P = 0.56).

(PDF)

Figure S3 Overall survival (OS) and progression-free survival

(PFS) curves of the 253 patients used for tissue nuclear image

profile generation, among which 172 patients were sensitive to

chemotherapy and 81 of them were chemoresistant.

(PDF)

Figure S4 Flow chart for nucleus parametric profile generation.

(PDF)

Figure S5 Detailed version of Figure 3A including morphologic

feature names.

(PDF)

Table S1 The 227 genes are differentially expressed between

chemoresistant and chemosensitive patients (P,0.05, as identified

by parametric t-test).

(XLS)

Table S2 Clinicopathologic characteristics of patients in the

TCGA and Australia Validation data sets.

(PDF)

Table S3 Cox proportional hazard analysis of progression-free

survival of OvCa patients in the TCGA and Australian validation

data sets in relation to predictive sub-groups (the group with high

predictive scores versus the group with low predictive scores).

(PDF)

Table S4 The 15 morphologic features are differentially varied

between chemoresistant and chemosensitive patients with serous

OvCa (FDR#2%).

(PDF)

Table S5 Image features defined for tumor nuclear image profile

generation.

(PDF)

Table S6 Cox proportional hazard analysis of overall and

progression-free survival of OvCa patients in relation to the

morphological feature value (Std_Ar_Bin2).

(PDF)

Table S7 Significantly expressed gene signatures associated with

each morphologic feature.

(PDF)
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