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Abstract

Yersinia outer protein J (YopJ) is a type III secretion system (T3SS) effector of pathogenic Yersinia (Yersinia pestis, Yersinia
enterocolitica and Yersinia pseudotuberculosis) that is secreted into host cells. YopJ inhibits survival response pathways in
macrophages, causing cell death. Allelic variation of YopJ is responsible for differential cytotoxicity in Yersinia strains. YopJ
isoforms in Y. enterocolitica O:8 (YopP) and Y. pestis KIM (YopJKIM) strains have high cytotoxic activity. In addition, YopJKIM-
induced macrophage death is associated with caspase-1 activation and interleukin-1b (IL-1b secretion. Here, the mechanism
of YopJKIM-induced cell death, caspase-1 activation, and IL-1b secretion in primary murine macrophages was examined.
Caspase-3/7 activity was low and the caspase-3 substrate poly (ADP-ribose) polymerase (PARP) was not cleaved in Y. pestis
KIM5-infected macrophages. In addition, cytotoxicity and IL-1b secretion were not reduced in the presence of a caspase-8
inhibitor, or in B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 homologous antagonist/killer (Bak) knockout
macrophages, showing that YopJKIM-mediated cell death and caspase-1 activation occur independent of mitochondrial-
directed apoptosis. KIM5-infected macrophages released high mobility group protein B1 (HMGB1), a marker of necrosis, and
microscopic analysis revealed that necrotic cells contained active caspase-1, indicating that caspase-1 activation is
associated with necrosis. Inhibitor studies showed that receptor interacting protein 1 (RIP1) kinase and reactive oxygen
species (ROS) were not required for cytotoxicity or IL-b release in KIM5-infected macrophages. IL-1b secretion was reduced
in the presence of cathepsin B inhibitors, suggesting that activation of caspase-1 requires cathepsin B activity. Ectopically-
expressed YopP caused higher cytotoxicity and secretion of IL-1b in Y. pseudotuberculosis-infected macrophages than
YopJKIM. Wild-type and congenic caspase 1 knockout C57BL/6 mice were equally susceptible to lethal infection with Y.
pseudotuberculosis ectopically expressing YopP. These data suggest that YopJ-induced caspase-1 activation in Yersinia-
infected macrophages is a downstream consequence of necrotic cell death and is dispensable for innate host resistance to a
strain with enhanced cytotoxicity.
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Introduction

Induction of host cell death is a general and a very important

outcome of pathogen infection, since cell death may facilitate

pathogen clearance by removal of infected tissues, destruction of a

pathogenic niche or up modulation of host immune responses

[1,2]. On the other hand, some pathogens subvert host immune

responses by killing immune cells [3,4]. Not only the death of the

infected cells impacts the consequence of the battle between host

immune system and pathogens, but also the choice of cell death

pathway is important [5]. Apoptosis is characterized as having

serial apoptotic caspase activation and as non-inflammatory.

Apoptosis of immune cells such as macrophages is induced in

response to infection by many pathogens, such as Mycobacterium

tuberculosis and Y. pseudotuberculosis [6,7,8]. Unlike apoptosis,

necrosis (also called oncosis, the term necrosis will be used here)

is a form of traumatic death that results from acute cellular injury

and is independent of caspase activation. Necrotic cell death is

characterized by cell swelling, membrane rupture and release of

inflammatory contents [9,10].

A more recently characterized form of pro-inflammatory cell

death that requires caspase-1 is termed pyroptosis [9]. The

inflammasome is an intracellular sensor composed of NOD-like

receptors (NLRs) that recognizes a variety of pathogen associated

molecular patterns (PAMPs) and damage associated molecular

patterns (DAMPs) and activates caspase-1, allowing for cleavage

and secretion of cytokines such as IL-1b and IL-18 [11,12].

Inflammasomes show specificity in signal sensing: the NLR

NLRP1 (NALP1) inflammasome responds to Bacillus anthracis

lethal toxin (LT) [13]; NLR NLRC4 (IPAF) recognizes flagellin

from Salmonella enterica Typhimurium and Legionella pneumophila,

which is delivered into host cells by specialized secretion systems in
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these pathogens [14,15]; and NLR NLRP3 senses a group of

structurally unrelated PAMPs and DAMPs, such as extracellular

ATP, lipoproteins, double stranded RNA, potassium (K+) efflux,

uric acid crystals, and pore-forming toxins from Gram positive

bacteria Listeria monocytogenes and Staphylococcus aureus [16,17,18].

Pro-caspase-1 recruited by inflammasomes undergoes self-cleavage

to give rise to an active form, which processes pro-IL-1b and pro-

IL-18 to mature cytokines. Caspase-1 recruited to inflammasomes

also induces cell death, but in this case cleavage of caspase-1 may

not be required [19]. Thus, functionally distinct inflammasomes

may form in cells in response to pathogen infection [19,20].

Pyroptosis is defined as a caspase-1 dependent cell death, which

morphologically exhibits DNA fragmentation, damaged cell

membrane, and IL-18 and IL-1b release [9]. Pyroptosis occurs

in macrophages infected with Salmonella, Shigella or Fransicella

species, and can be blocked by caspase-1 inhibitor or by the use of

caspase-1 deficient cells [21,22,23]. A forth type of cell death

termed pyronecrosis has been observed in macrophages infected

with Shigella flexneri, or Neisseria gonorrhoeae, or upon nigericin

treatment. Pyronecrosis requires the NLR NLRP3 and the

apoptosis-associated speck-like protein containing a CARD

(ASC) adaptor, but not caspase-1 [24,25,26,27,28,29]. Cell death

during pyronecrosis can be blocked with cathepsin B inhibitors,

suggesting a role for lysosome rupture [30].

Pathogenic Yersinia species (Y. enterocolitica, Y. pestis and Y.

pseudotuberculosis) encode an injectisome-like T3SS that functions to

translocate Yops into target cells [31]. Yop effector proteins

disrupt cytoskeletal and signal transduction functions in infected

immune cells to paralyze the host’s anti-bacterial responses [31].

In turn, infected host cells can sense the Yersinia T3SS as a

virulence-associated danger signal, leading to activation of

caspase-1 [32,33,34,35,36,37]. There are at least two distinct

mechanisms of caspase-1 activation in response to the Yersinia

T3SS. One mechanism requires channel or pore formation in the

host cell plasma membrane by the T3SS, and is counteracted by

several Yop effectors, including YopK [33,34,36,37]. A second

mechanism of caspase-1 activation that occurs in Yersinia-infected

macrophages requires the effector YopJ (see below).

YopJ (YopP in Y. enterocolitica) is an acetyltransferase [38,39]

activated by the host-specific factor inositol hexakisphosphate [40].

YopJ binds to mitogen-activated protein (MAP) kinase kinases

(MKKs) and inhibitor of nuclear factor kappa-B kinase beta

(IKKb) and transfers acetyl groups onto serine or threonine

residues in the active sites of these kinases [38,39]. Acetylation of

MKKs and IKKb by YopJ prevents their activation by upstream

kinases, and effectively blocks signal transduction required for

activation of MAP kinases and nuclear factor kappa B (NF-kB)

transcription factors [38,39]. As a result, YopJ activity inhibits

transcription of pro-inflammatory cytokine and cell survival genes

[41,42]. Inhibition of survival gene expression by YopJ, combined

with activation of apoptotic signaling from Toll-like receptor 4

(TLR4), results in cell death in macrophages infected with Yersinia

[43,44].

YopP-induced apoptosis in Y. enterocolitica-infected macrophages

has been studied in detail and data suggest that the death signal is

initiated from caspase-8 activation and further amplified through

mitochondria and downstream caspases [41,45]. Evidence sup-

porting this model comes from studies showing that YopP-induced

macrophage cell death is reduced by a pan-caspase inhibitor or a

caspase-8 inhibitor, that cytochrome c is released from mitochon-

dria, and that active caspase-3, -7 and -9 are detected [41,45].

Different Yersinia strains exhibit a range of cytotoxic activities on

macrophages and this heterogeneity has been linked to allelic

variation of genes encoding YopJ/YopP proteins (Table 1)

[32,35,46,47,48]. The presence of an Arg instead of a Ser at

position 143 of YopP of Y. enterocolitica O:8 strains is associated with

increased inhibition of IKKb, enhanced suppression of NF-kB

activation, and higher cytotoxicity in infected macrophages [46].

Translocation of YopP into host cells and binding to IKKb was

not affected by the polymorphism at position 143 [46]. YopJ

proteins of Y. pestis and Y. pseudotuberculosis have Arg at residue 143

but in general have lower cytotoxicity than YopP of Y. enterocolitica

O:8 due to comparatively reduced secretion and translocation into

macrophages [47,48]. Reduced secretion and translocation of

YopJ proteins is caused by polymorphisms at positions 10 and 11,

which are Ile-Ser in YopJ of Y. pestis and Y. pseudotuberculosis and

Ser-Pro in YopP of Y. enterocolitica O:8 [47]. Ectopic expression of

YopP of Y. enterocolitica O:8 in Y. pseudotuberculosis or Y. pestis results

in attenuation of these strains in mouse models of infection

[47,49], which suggests that enhanced cytotoxicity may activate an

innate host immune response to the pathogen.

Additional polymorphisms among YopJ proteins in Y. pestis and

Y. pseudotuberculosis have been identified that are responsible for

differences in macrophage cytotoxicity [32]. An isoform of YopJ

found in Y. pestis molecular group 2.MED strains such as KIM

(YopJKIM) have high cytotoxic activity and contain a Leu at

position 177 and a Glu at position 206 [32]. Low activity YopJ

isoforms found in other Y. pestis strains (e.g. molecular group

ORI.1 isolate CO92) have Phe at residue 177 and Lys at position

206 [32]. The YopJ isoform in Y. pseudotuberculosis has a single

change relative to YopJKIM, Phe at residue 177, and has

intermediate cytotoxic activity in macrophages [32]. The

increased cytotoxic activity of YopJKIM as compared to YopJCO92

could be correlated with enhanced binding to IKKb, and

enhanced inhibition of NF-kB activation [32].

Detailed studies of the features of death in host cells infected

with Yersinia strains that encode YopJ isoforms with high cytotoxic

activity have yielded evidence that pro-inflammatory modes of

destruction may be activated in addition to apoptosis. For

example, murine dendritic cells infected with Y. enterocolitica O:8

undergo YopP-dependent necrotic cell death [50]. In addition,

infection of murine macrophages with Y. pestis KIM results in

YopJ-dependent activation of caspase-1 and secretion of high

levels of IL-1b [32,35]. Human monocytes infected with KIM also

secrete high levels of IL-1b [51]. Caspase-1 is not required for

YopJKIM-induced cell death but is important for secretion of IL-1b
from macrophages [35]. K+ efflux, NLRP3 and ASC were shown

to be important for IL-1b secretion in macrophages infected with

Y. pestis KIM [32]. However, the morphological features and the

mechanism of YopJKIM-induced macrophage death have not

Table 1. Amino acid polymorphisms that are associated with
differences in translocation or IKKb binding or inhibition
activities between different YopJ/YopP isoforms.

Amino acid position

Translocation IKKb binding or inhibition

Isoform 10 11 143 177 206

YopP08 Ser Pro Arg Leu Glu

YopJKIM Ile Ser Arg Leu Glu

YopJYPTB Ile Ser Arg Phe Glu

YopJCO92 Ile Ser Arg Phe Lys

doi:10.1371/journal.pone.0036019.t001

Caspase Activation in Yersinia-Infected Macrophage
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determined, and the mechanistic link between cytotoxicity and

caspase-1 activation has not been established.

In this study, we examined the mechanism of cell death and

caspase-1 activation in macrophages infected with Y. pestis KIM.

The results suggest that YopJKIM induces necrotic cell death in

macrophages, which triggers a cathepsin B-dependent pathway of

caspase-1 activation. In addition, we show that macrophages

infected with Y. pseudotuberculosis ectopically expressing YopP are

efficiently killed and secrete high levels of IL-1b. However,

infection of caspase-1-deficient mice revealed that increased host

resistance to a Y. pseudotuberculosis YopP-expressing strain endowed

with enhanced cytotoxicity does not require caspase-1.

Results

Caspase-3/7 activity is low in KIM5-infected macrophages
Activation of apoptotic caspases, such as caspase-3, -7 and -9,

has been detected in macrophages undergoing YopP-dependent

cell death in response to Y. enterocolitica infection [45]. Caspase-3/7

activity assay was performed to examine apoptotic caspase

activation at 4, 8, 12 and 24 hours post-infection in macrophages

undergoing YopJKIM-induced cell death following infection with Y.

pestis. Murine bone marrow derived macrophages (BMDMs) were

infected at a multiplicity of infection (MOI) of 10 for 20 min. The

tissue culture media was then supplemented with gentamicin for

the remaining period of incubation to prevent growth of

extracellular bacteria [32,35]. This ‘‘low MOI’’ infection proce-

dure has previously been shown to cause cytotoxicity, activation of

caspase-1, and high level secretion of IL-1b in macrophages

[32,35]. As controls, some macrophages were left uninfected or

infected with a Y. pestis strain expressing catalytically inactive

YopJC172A. Caspase-3/7 activity in KIM5-infected macrophages

was higher as compared to the controls at all time points, but the

difference was not significant (Figure 1A). Lysates of macrophages

infected as in Figure 1 were subjected to immunoblotting to detect

cleavage of the caspase-3 substrate PARP. Lysates of control

macrophages treated with staurosporin, a strong inducer of

apoptosis, were analyzed in parallel. The 86 kDa cleaved PARP

(c-PARP) fragment was not detected lysates of KIM5-infected

cells, but it was seen in staurosporin-treated cell lysates (Figure 1B).

These results show that apoptotic caspases are not strongly

activated in macrophages undergoing YopJKIM-induced cell

death.

Apoptotic signaling through caspase-8 and mitochondria
is dispensable for KIM5-induced macrophage death

It has been shown that YopP-induced apoptosis is initiated from

caspase-8 in macrophages and dendritic cells infected with Y.

enterocolitica, and can be blocked by caspase-8 or pan-caspase

inhibitors [45,52]. A detailed study detected BH3 domain only

protein (Bid) truncation before cytochrome c release and

apoptosome activation, which suggests that the death signal

coming from caspase-8 may require mitochondria and is amplified

through caspase -3,-7 and -9 cleavage [45]. Bcl-2 family members

Bax and Bak play a central role in controlling mitochondrial-

dependent apoptosis [53]. Bax and Bak when activated create a

channel in the mitochondrial membrane, releasing cytochrome C

to activate the apoptosome. In order to test if the YopJKIM-

dependent death signal goes through mitochondria, we infected

Bax2/2Bak2/2 macrophages with KIM5, using heterozygous

Bax+/2Bak+/2 cells as the control. The Bax2/2Bak2/2 macro-

phages have been shown to be fully defective for mitochondrial-

induced apoptosis [53]. Cell death was measured by lactate

dehydrogenase (LDH) release assay and secreted IL-1b was

measured by enzyme-linked immunosorbent assay (ELISA) at

24 hr post infection. No significant differences in YopJKIM-

induced cell death or IL-1b release could be identified between

Bax2/2Bak2/2 or Bax2/+Bak2/+ macrophages (Figure 2A and

B).

To determine if caspase-8 is required for cell death in KIM5-

infected macrophages, cells were exposed to the caspase-8

inhibitor IETD. IETD treatment did not significantly reduce

macrophage death or IL-1b secretion after 8 or 24 hours of

infection with KIM5 (Figure 3A and B). IETD treatment did

increase cytotoxicity in KIM5-infected macrophages at the

8 hours time point, but this effect was not seen at the 24 hour

time point (Figure 3A and B) or in macrophages infected with Y.

pestis expressing YopJC172A (Figure 3A and B). As a control, IETD

treatment was shown to effectively block cell death in macro-

phages caused by treatment with lipopolysaccharide (LPS) and the

proteasome inhibitor MG-132 (Figure 3C). Thus, apoptotic

signaling through caspase-8 and mitochondria is not required for

YopJKIM-induced macrophage death.

KIM5-infected macrophages exhibit necrotic features
To characterize the plasma membrane integrity of KIM5-

infected macrophages, we performed Annexin V staining/

propidium iodide (PI) uptake assay at different times (4, 8 and

12 hr post infection) and analyzed the results by fluorescence

Figure 1. Caspase-3/7 activity is low in KIM5-infected macro-
phages. (A) BMDMs were left uninfected (U) or infected with Y. pestis
strains expressing YopJKIM or YopJC172A in 96-white walled tissue culture
plates. Caspase-3/7 activity was measured 4, 8, 12 or 24 hr post-
infection with fluorometer. The results from three independent
experiments were averaged and are shown as fold change compared
to uninfected cells. Error bars represent standard deviations. Differences
in caspase-3/7 activities between uninfected and infected cells were not
significant as determined by two way ANOVA (B) BMDMs were left
uninfected (U) or infected with Y. pestis strains expressing YopJKIM or
YopJC172A or treated with 1 mM of staurosporine (STS) for 16 hr.
Macrophage lysates were collected and analyzed by PARP immuno-
blotting. Sizes of molecular weight standards (kDa) are shown on the
left. Positions of full length PARP and cleaved PARP (c-PARP) are
showed on right.
doi:10.1371/journal.pone.0036019.g001

Caspase Activation in Yersinia-Infected Macrophage
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microscopy. Macrophages infected with Y. pestis expressing

YopJC172A were analyzed in parallel as a control. As summarized

in Figure 4, two populations of cells that were either Annexin V

single positive (apoptotic) or Annexin V/PI double positive

(necrotic) were detected beginning at 8 hr post infection with

KIM5. The number of Annexin V single positive cells (,11% at

8 hr) declined slightly to 8% of total by 12 hr post infection. The

double positive population (,13% at 8 hr) increased with time to

reach 17% of total by 12 hr (Figure 4).

Release of HMGB1, a chromatin protein, can be used to

differentiate apoptosis from necrosis [54]. Immunoblotting was

used to detect HMGB1 in culture supernatants of macrophages

following 24 hr infection with KIM5 or KIM5 expressing

YopJC172A. As shown in Figure 5, HMGB1 was released from

macrophages infected with Y. pestis expressing YopJKIM but not

YopJC172A (lanes 3 and 4, respectively). Together, these results

suggest that a population of KIM5-infected macrophages undergo

necrosis.

KIM5-infected necrotic macrophages contain active
caspase-1

As both cell death and IL-1b release require YopJKIM and they

display the same trends, caspase-1 activation and cell death appear

to be related. It is possible that necrotic cell death triggers caspase-1

activation [35]. To determine if necrotic cell death and caspase-1

activation could be correlated at the single cell level, infected

macrophages were analyzed by microscopy after labeling for active

caspase-1 and PI uptake. Representative images of macrophages

infected with KIM5 or Y. pestis expressing YopJC172A for 9 hr are

shown in Figure 6A, and a summary of the percentages of cells that

were positive for one or both signals is shown in Figure 6B. The

percentages of KIM5-infected macrophages that were caspase-1

positive, PI positive and double positive were not significantly

different (Figure 6B), which suggests that membrane damage in

necrotic cells is associated with caspase-1 activation.

RIP1 is not required for YopJKIM-induced cell death or IL-
1b secretion

YopP-mediated dendritic cell death in response to Y. enterocolitica

infection is reduced by treatment with geldanamycin, a heat shock

protein 90 (Hsp90) inhibitor, which promotes RIP1 degradation

[52]. Furthermore, YopP-induced dendritic cell death is partially

independent of caspases and exhibits necrotic features [50], which

are similar to our findings with YopJKIM. To test if RIP1 is involved

in KIM5-induced macrophage death, we treated cells with the

specific RIP1 inhibitor necrostatin-1, which blocks necrosis in many

cell types [55]. The treated macrophages were then infected with

KIM5 or Y. pestis expressing YopJC172A for 8 or 24 hours.

Necrostatin-1 did not significantly reduce cell death at either time

point in KIM5-infected macrophages (Figure 7A). IL-1b release was

significantly reduced at 8 hr, but not at 24 hr post infection with

KIM5 (Figure 7B). From these results we conclude that RIP1 is not

required for YopJKIM-induced cell death or IL-1b secretion,

however it may enhance IL-1b secretion at early infection times.

ROS are not required for cytotoxicity or IL-1b secretion in
macrophages infected with KIM5

NLRP3 is important for IL-1b secretion in KIM5-infected

macrophages [32]. NLRP3 senses several structurally unrelated

PAMPs and DAMPs that share the common property of inducing

ROS [56]. It has therefore been proposed that ROS is a major

signal detected by NLRP3 [56]. The nicotinamide adenine

dinucleotide phosphate-oxidase (NADPH) inhibitor diphenyle-

neiodonium sulfate (DPI) and the radical scavenger N-acetylcys-

teine (NAC) were used to examine the importance of ROS for

cytotoxicity and IL-1b secretion in KIM5-infected macrophages.

Pretreatment of macrophages with DPI or NAC did not reduce

IL-1b release or cell death following KIM5 infection of

macrophages for 8 or 24 hr (Figure 8A and 8B). As a control,

LPS-stimulated macrophages were exposed to DPI or NAC and

NLRP3-dependent pyroptosis was induced by ATP treatment.

The amount of IL-1b released was significantly reduced by DPI

and cytotoxicity was significantly reduced by DPI and NAC

(Figure 8C and 8D). Therefore, ROS are not required for

YopJKIM-induced cell death or IL-1b secretion.

Inhibitors of cathepsin B reduce caspase-1 activation in
macrophages infected with KIM5

Lysosomal rupture leads to release of lysosome-localized

protease cathepsin B into the cytoplasm, which directly or

indirectly activates NLRP3/caspase-1 [57]. We examined the

lysosome rupture pathway using the cathepsin inhibitor E64d and

specific cathepsin B inhibitor CA-074-Me. Treatment of macro-

phages with either of these two inhibitors during a 24 hr KIM5

infection resulted in a significant decrease in secretion of IL-1b
(Figure 9A) but had no effect on cytotoxicity (Figure 9B).

Microscopic imaging of KIM5-infected macrophages after strain-

ing them for active caspase-1 and PI uptake showed that E64d and

CA-074-Me blocked caspase-1 activation (Figure 9C). These

results suggest that cathepsin B activity is required for YopJKIM-

mediated activation of caspase-1.

Figure 2. Mitochondrial-induced apoptosis is not required for
KIM5-induced macrophage death and IL-1b secretion. BMDMs
from Bax+/2 Bak+/2 heterozygous (BaxBak+/2) or Bax2/2 Bak2/2

double knockout (BaxBakDKO) C57BL/6 mice were left uninfected (U) or
infected with Y. pestis strains expressing YopJKIM or YopJC172A for 24 hr.
LDH (A) or IL-1b (B) released into supernatants were measured by
CytoTox96 assay or ELISA, respectively. Results shown are the averages
from three independent experiments. Error bars represent standard
deviations. Differences average values between BaxBak+/2 or Bax-
BakDKO conditions were not significant as determined by two way
ANOVA.
doi:10.1371/journal.pone.0036019.g002

Caspase Activation in Yersinia-Infected Macrophage
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Enhanced YopP-mediated macrophage cell death is
associated with elevated levels of IL-1b release

Higher levels of cell death are observed when dendritic cells are

infected with Y. pseudotuberculosis ectopically expressing YopP as

compared to the native isoform YopJYPTB [47]. Two amino acid

polymorphisms in the N-terminal region of YopP specify increased

secretion, translocation and cytotoxic activity as compared to

YopJYPTB (Table 1) [47]. Macrophages were infected with Y.

pseudotuberculosis ectopically expressing YopP to determine if the

enhanced cell death caused by this isoform is correlated with

higher caspase-1 activation and IL-1b secretion. Macrophages

were also infected with Y. pseudotuberculosis expressing catalytically

Figure 3. Caspase-8 activity is dispensable for KIM5-triggered macrophage death and IL-1b secretion. BMDMs were treated with 40 mM
caspase-8 inhibitor Z-IETD (IETD) or vehicle 1 hr prior to infection. The BMDMs were then infected with Y. pestis strains expressing YopJKIM or
YopJC172A or left uninfected (U). Infected cells were maintained in the presence of Z-IETD or the vehicle for the remainder of the experiment. At 8 hr
or 24 hr post-infection, supernatants were collected and LDH release (A) and IL-1b (B) were measured. Results shown are averages from three
independent experiments. Error bars represent standard deviations. w, P,0.05 as determined by one way ANOVA compared to the YopJKIM infection
without inhibitor condition. (C) BMDMs were treated with 5 mM of MG-132 in the presence or absence of 40 mM Z-IETD for 30 min, followed by 1 mg/
ml of LPS for 3 hrs. Representative phase images of the treated BMDMs were captured by digital photomicroscopy.
doi:10.1371/journal.pone.0036019.g003

Caspase Activation in Yersinia-Infected Macrophage
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inactive YopP (YopPC172A), the native isoform YopJYPTB, or

YopJKIM. The different isoforms were expressed from a low copy

plasmid (pACYC184) in a Y. pseudotuberculosis DyopJ mutant (IP26).

Higher cytotoxicity and IL-1b release was detected in macro-

phages infected with Y. pseudotuberculosis expressing YopP as

compared to the other isoforms or the control strain with the

empty vector (Figure 10A and B). In ranking the different isoforms

YopP had the highest cytotoxicity, YopJYPTB the lowest killing

effect, and YopJKIM was intermediate. IL-1b release followed the

same order YopP.YopJKIM.YopJYPTB.

Caspase-1 is not required for innate host protection
against Yersinia endowed with enhanced cytotoxicity

Y. pseudotuberculosis or Y. pestis strains ectopically expressing YopP

are attenuated in orogastric [47] or bubonic [49] models of mouse

infection, respectively. The basis for attenuation of Yersinia strains

endowed with enhanced cytotoxicity is not known, but it appears

to result from an increased innate immune response and does not

require CD8 T cell activation [47,49]. To determine if activation

of caspase-1 is important for the increased innate immune

response to Yersinia endowed with enhanced cytotoxicity,

Casp1+/+ or Casp12/2 C57BL/6 mice were orogastrically

infected with Y. pseudotuberculosis ectopically expressing YopP.

Control mice were infected with Y. pseudotuberculosis ectopically

expressing YopJYPTB. Mouse survival was recorded over 21 days.

As shown previously [47] more Casp1+/+ mice infected with the

YopP-expressing strain survived as compared to mice infected with

YopJYPTB-expressing bacteria (Figure 11A). However, Casp12/2

mice also showed enhanced survival following challenge with

YopP-expressing Y. pseudotuberculosis, indicating that caspase-1 is

dispensable for the increased innate immune response to Yersinia

with enhanced cytotoxicity. When the results were grouped

according to the infecting strain while ignoring mouse genotype

(Figure 11B), the survival of mice infected with Y. pseudotuberculosis

expressing YopP was significantly higher than the mice infected

with bacteria expressing YopJYPTB (P,0.01).

Discussion

Many pathogens activate inflammasomes/caspase-1 in macro-

phages, underscoring the general importance of this pathway for

host sensing of PAMPs and DAMPs and activating innate immune

responses [58]. We, and others, have been investigating different

mechanisms of inflammasome/caspase-1 activation in macro-

phages infected with pathogenic Yersinia species

[32,33,34,35,36,37]. Yersinia-mediated caspase-1 activation in

macrophages can occur by several different mechanisms. Insertion

of T3SS translocation channels or pores in the macrophage cell

plasma membrane appear to activate caspase-1 and cause

pyroptosis [33,34,36]. Priming of macrophages with LPS followed

by Yersinia infection can redirect apoptosis to pyroptosis [37]. In

both of the aforementioned cases YopJ is not required for

activation of caspase-1. A third mechanism of caspase-1 activation

that occurs in naive macrophages infected with Yersinia requires

YopJ catalytic activity [32,35,36].

YopJ inhibits NF-kB and MAPK pathways that activate

transcription of cell survival genes, promoting macrophage cell

death in response to apoptotic signaling from TLR4 [43,59]. In

addition, suppression of the NF-kB pathway by YopJ [32] or

genetic or pharmacological inhibition of IKKb [60] triggers

TLR4-dependent activation of caspase-1. The conditions used for

infection of macrophages with Yersinia affect the outcome of YopJ-

mediated caspase-1 activation. Incubation of macrophages with Y.

pseudotuberculosis under conditions of high MOI (20) and extended

contact with extracellular bacteria (1 hr) results in rapid activation

of caspase-1 but IL-1b release is undetectable and caspase-1

activation does not depend on NLRP3 nor ASC [36]. Infection of

macrophages with Y. pestis KIM5 under low MOI (10) and short

contact time (20 min) results in delayed caspase-1 activation, high

level of IL-1b release and cytotoxicity in a YopJ dependent

manner [32,35]. In addition, NLRP3 and ASC are important for

IL-1b release from macrophages infected with KIM5 under the

low MOI procedure [32]. As an outcome of YopJ blocking the

NF-kB pathway, less pro-IL-1b would be synthesized in

macrophages, but processing of even a small pool of pro-IL-1b
by active caspase-1 can lead to detectable released IL-1b. In the

low MOI infection conditions used here, it is likely that low

amounts of YopJ are injected into macrophages, resulting in a

Figure 4. KIM5-infected macrophages have necrotic morphology as shown by Annexin V staining and PI uptake assay. BMDMs were
seeded on glass coverslips in a 24-well plate and infected with Y. pestis strains expressing YopJKIM or YopJC172A or left uninfected (U). Annexin V
staining and PI uptake assay was performed at 4 hr, 8 hr or 12 hr post-infection. Representative images were captured by digital photomicroscopy.
Average percentages of Annexin V positive or Annexin V/PI double positive cells as counted from three random fields in three independent
experiments are shown. Error bars represent standard deviations. Difference in values of single or double positive cells were not significant as
determined by one way ANOVA.
doi:10.1371/journal.pone.0036019.g004

Figure 5. HMGB1 is released from KIM5-infected macrophages.
BMDMs were infected with Y. pestis strains expressing YopJKIM or
YopJC172A or left uninfected (U). Medium from infected macrophages
was collected at 24 hr post infection and immunoblotted for HMGB1.
Total cell lysate (Lys) was used as a positive control. Position of
molecular weight standard (kDa) is shown on the left.
doi:10.1371/journal.pone.0036019.g005
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delay in cell death and caspase-1 activation in macrophages. This

infection condition may allow macrophages sufficient time to

synthesize pro-IL-1b before cell death occurs.

To investigate the mechanism of YopJKIM-induced caspase-1

activation and its connection to cell death in macrophages, we first

investigated the importance of apoptosis. The low caspase-3/7

activity (Figure 1) and the dispensable role for caspase-8 (Figure 3)

in cell death are consistent with the idea that apoptosis is not

strongly activated in KIM5-infected macrophages under our

experimental conditions. A previous study in which KIM5 was

used to infect macrophages reported relatively high levels of

caspase-3/7 and caspase-8 activity [61]. Spinner et al [61] used

murine J774A.1 cells as well as an MOI of 50, which could explain

why higher caspase activity was detected as compared to our

results. Additional evidence for caspase-8 activation in Yersinia-

infected macrophages comes from Bid cleavage assays. Caspase-8

cleavage has been detected in Yersinia infected dendritic cells and in

macrophages treated with LPS/MG-132 to activate apoptosis

[45,52,59]. Caspase-8 has been reported to process pro-IL-1b after

stimulation of TLR3/TLR4 signaling in macrophages [62], but in

our studies a caspase-8 inhibitor did not decrease IL-1b release in

KIM5-infected macrophages (Figure 3). Participation of mito-

chondrial-induced apoptosis in death of macrophages infected

with Y. enterocolitica has been implicated by the observed release of

cytochrome c [45]. However, YopP-induced cell death in dendritic

cells was not inhibited by overexpression of Bcl-2 [50]. In our

studies the use of Bax/Bak knockout BMDMs would mimic Bcl-2

over-expression by preventing pore formation on the mitochon-

drial membrane, however loss of Bax and Bak did not decrease cell

death or IL-1b secretion in KIM5-infected infected macrophages

(Figure 2).

Necrosis releases inflammatory cell contents, which is consistent

with proinflammatory cytokine production in KIM5-infected

macrophages [35]. Annexin V/PI staining was performed to

observe macrophage plasma membrane integrity over time.

Annexin V single positive cells representing the early apoptosis

population occurred in parallel with Annexin V/PI double positive

cells representing the late apoptosis or necrosis population

(Figure 4). The presence of the two populations indicates that

apoptosis and necrosis may coincide. However, cells with the

double positive phenotype may not arise from necrosis, especially

in cell culture when apoptotic cells are not engulfed by bystander

phagocytes, but rather from ‘‘secondary necrosis’’ [10]. Thus, to

be sure that KIM5-infected macrophages are dying of necrosis,

accumulation of more evidence is needed.

HMGB1 release is a very distinctive marker of necrosis [54].

The observed release of HMGB1 from KIM5-infected macro-

phages (Figure 5) strongly suggests that these cells are dying of

necrosis. Although HMGB1 can be passively secreted by activated

dendritic cells and macrophages [63], infection of macrophages

with Y. pestis expressing YopJC172A, which would activate

macrophages through LPS-TLR4 signaling, did not result in

HMGB1 release (Figure 5). To determine if released HMGB1

could be important for cell death and activation of caspase-1,

medium from KIM5-infected macrophages was transferred to

naive uninfected macrophages. However, the conditioned medium

Figure 6. KIM5-infected necrotic macrophages contain active caspase-1. BMDMs were seeded on glass coverslips in a 24-well plate and left
uninfected (U) or infected with Y. pestis strains expressing YopJKIM or YopJC172A. FAM-YVAD-FMK was added at 9 hr post infection to stain for active
caspase-1 and PI uptake assay was performed immediately before microscopic analysis. (A) Representative images of phase, active caspase-1 (green)
and PI uptake (red) signals captured by digital photomicroscopy are shown in a-c and e-g, respectively. Panels d and h show merged images of green
and red signals. (B) Average percentages of BMDMs positive for active caspase-1, PI or both signals was calculated (,100–300 cells per field) from
three random fields in three independent experiments. Error bars represent standard deviations.
doi:10.1371/journal.pone.0036019.g006
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did not increase IL-1b release or cell death in uninfected

macrophages (Figure S1). Although HMGB1 has been shown to

stimulate pro-inflammatory cytokine production [64,65,66], it is

unlikely that HMGB1 interacts with TLR4 to promote IL-1b
production and cell death in our system.

Since necrotic cells release inflammatory cytokines and KIM5-

infected macrophages showed necrotic properties (Figure 4 and 5),

we performed caspase-1/PI staining to see if caspase-1 activation

takes place in necrotic cells (Figure 6). The highly overlapped

caspase-1/PI positive cell population supports the idea that these

two events occur in same cells. However, it is difficult to

discriminate if necrosis occurs earlier than caspase-1 activation.

The results of previous LDH and IL-1b time course release assays

showed LDH release 4 hr ahead of IL-1b secretion, suggesting

that cell death may happen earlier than caspase-1 activation [35].

As macrophages infected with KIM5 seem to die by necrosis,

and cell death initiated earlier than IL-1b release [35], we

hypothesized that necrosis could activate the inflammasome/

caspase-1. We tried to blocked necrosis through use of the RIP1

inhibitor necrostatin-1. RIP1 has been identified as an important

mediator of non-apoptotic death in many cell types. When

caspase-8 activity is inhibited, preventing cleavage of RIP1, RIP1

positively activates a necrotic (necroptosis) pathway [67]. Cell

death triggered with Fas ligand (FasL) or tumor necrosis factor-a
(TNF-a) through caspase-8 activation, combined with pan-caspase

or caspase-8 inhibitor treatment, is RIP1 dependent and could be

prevented by specific RIP1 inhibitor necrostatin-1 [68,69,70]. In

macrophages after TLR4 stimulation, when the cell NF-kB

survival signaling pathway and caspase-8 activation are inhibited,

RIP1 causes necrosis [71,72,73]. RIP1 has also been implicated in

death of dendritic cells infected with Y. enterocolitica O:8 strain WA-

314, and the same group obtained evidence that dendritic cells

could die by necrosis in the same infection conditions [50,52].

However, in our infection model, the RIP1 specific inhibitor

necrostatin-1 did not reduce cell death (Figure 7). Treatment with

necrostatin did inhibit IL-1b release at 8 hours post infection

(Figure 7), which may due to lack of interaction between RIP1 and

the NF-kB pathway [71]. RIP3 has also been implicated in

necrosis, and although it is not clear if RIP3 and RIP1 can form a

heterodimer, RIP3 alone could induce necrosis [74,75,76]. It

Figure 7. RIP1 is not required for YopJKIM-induced cell death or IL-1b secretion. BMDMs were treated with 30 mM RIP1 inhibitor necrostatin-
1 (Nec) or vehicle 1 hr prior to and during infection. BMDMs were infected with Y. pestis strains expressing YopJKIM or YopJC172A or left uninfected (U).
Supernatants were collected and LDH release (A) and secreted IL-1b (B) were measured at 8 hr or 24 hr post-infection from three independent
experiments. Results shown are averages and error bars represent standard deviations (ww, P,0.01 as determined by one way ANOVA as compared
to YopJKIM no inhibitor).
doi:10.1371/journal.pone.0036019.g007
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would be interesting to test RIP3 knockout BMDMs in the future

to determine the role of this kinase in YopJKIM-induced cell death

and caspase-1 activation.

Two recent studies discovered that necrosis could activate the

inflammasome/caspase-1 [77,78]. In the study of Iyer et al.,

mitochondrial ATP release from necrotic cells activated NLRP3/

Figure 8. ROS are not required for cytotoxicity or IL-1b secretion in macrophages infected with KIM5. BMDMs were treated with 10 mM
of DPI or 10 mM of NAC for 2 hours or left untreated. (A and B) BMDMs were infected with Y. pestis strains expressing YopJKIM or YopJC172A or left
uninfected (U). Supernatants were collected at 8 hr and 24 hr post-infection and analyzed by IL-1b ELISA (A) or LDH release assay (B). (C and D)
BMDMs treated or not with DPI or NAC as above were exposed to 50 ng/ml of LPS for 3 hr. The treated BMDMs were then exposed to 5 mM ATP for
1 hr to activate pyroptosis. Supernatants were tested by IL-1b ELISA (C) or LDH release assay (D). Results shown are the averages from three
independent experiments. Error bars represent standard deviations (ww, P,0.01; www, P,0.001, determined by one way ANOVA as compared to
LPS+ATP no inhibitor).
doi:10.1371/journal.pone.0036019.g008
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caspase-1 in LPS primed macrophages through P2X7 receptor

[78]. This pathway does not occur in our model, since we have

shown that P2X7 receptor is not required for secretion of IL-1b in

KIM5-infected macrophages [32].

NLRP3 and ASC were important for secretion of IL-1b from

KIM5-infected macrophages, although these inflammasome

components were dispensable for cell death [32]. Consistent with

an important role for NLRP3 and ASC in caspase-1 activation was

the observation that exogenous K+ inhibited secretion of IL-1b
from KIM5-infected macrophages. Specifically, extracellular K+,

but not Na+, down regulated IL-1b release in KIM5-infected

macrophages, suggesting that NLRP3 activation requires a low

concentration of intracellular K+ [32]. Low intracellular K+ levels

could result from intracellular K+ passing through ATP-sensitive

K+ channels (such as P2X7), or by its release from dying cells

[56,79]. As mentioned above P2X7 receptor is not required for IL-

1b release in KIM5-infected macrophages, suggesting that pore

formation in necrotic macrophages may allow K+ efflux.

As NLRP3 can recognize ROS generation, or lysosome rupture

leading to caspase-1 activation, we tested each of these processes

for their importance in IL-1b secretion in KIM5-infected

macrophages. With respect to the ROS generation model, most

pathogens that activate caspase-1 through NLRP3 induce ROS

generation and in many cases, K+ efflux occurs simultaneously

[56]. However, two ROS inhibitors, DPI and NAC, had no

significant effect on IL-1b release or cell death in KIM5-infected

macrophages (Figure 8). These inhibitors did reduce pyroptosis of

macrophages following LPS/ATP treatment (Figure 8C and 8D),

conditions that are known to produce high levels of ROS [80].

The lysosome rupture model was tested by the use of cathepsin

B inhibitors (Figure 9). Both inhibitors reduced IL-1b secretion

and caspase-1 activation in KIM5-infected macrophages. Halle et

Figure 9. Inhibitors of cathepsin B reduce caspase-1 activation in macrophages infected with KIM5. BMDMs were left untreated or
treated with 25 mM of E64d or CA-074 Me (CA) for 1 hr. Following infection with Y. pestis strains expressing YopJKIM in the absence or presence of the
inhibitors, supernatants were collected (A, B) or microscopic assay was performed (C). IL-1b ELISA (A) and LDH release assay (B) was done on
supernatants collected 24 hr post-infection. Results shown are the averages from three independent experiments. Error bars represent standard
deviations. (ww, P,0.01 as determined by one way ANOVA as compared to infection in absence of inhibitor) (C) Infected BMDMs on coverslips were
incubated with FAM-YVAD-FAM 9 hr post-infection stained for active caspase-1 (green) for 1 hr and PI uptake (red) immediately before observation.
Representative images of phase, green and red signals were captured by digital photomicroscopy.
doi:10.1371/journal.pone.0036019.g009
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al. studied activation of the NLRP3 inflammasome in response to

phagocytosis of amyloid-beta and showed reduced secretion of IL-

1b in cathepsin B knockout macrophages as well as in cathepsin B

inhibitor-treated wild type cells [81]. However, off target effects of

the inhibitors on caspase-1 activation in KIM5-infected macro-

phages cannot be ruled out. We could show that the inhibitors

reduced IL-1b secretion but not cell death in S. Typhimurium

infected macrophages undergoing pyroptosis (Figure S2). There-

fore, cathepsin B may be specifically required for activation of

inflammasomes that are dedicated to processing of pro-IL-1b [19].

In Brodsky et al. [47], Y. pseudotuberculosis ectopically expressing

YopP was more attenuated than the same strain expressing

YopJYPTB in a mouse oral infection model. The authors suggested

that the hypercytotoxic strain eliminated infected macrophages

that served as a niche for Yersinia survival in vivo [47]. Another

study showed that a Y. pestis strain ectopically expressing YopP was

attenuated in a mouse bubonic infection model [49]. In addition,

mice infected with the hypercytotoxic attenuated strain were

protected against concurrent challenge with fully virulent Y. pestis

[49]. We hypothesized that the highly cytotoxic YopP could

stimulate efficient caspase-1 activation in vivo leading to caspase-1-

based protection. In an in vitro macrophage infection, Y.

pseudotuberculosis expressing YopP, the same strain used in a

previous study [47] triggered high levels of secreted IL-1b and

cytotoxicity (Figure 10A and 10B). However, there was no

difference in survival for wild type and caspase-1 knockout mice

infected with the hyercytotoxic Y. pseudotuberculosis strain

(Figure 11). Thus, it seems that caspase-1 does not protect mice

from oral infection with Yersinia strains with enhanced cytotoxicity.

Zauberman et al. showed that increased protection of mice against

a hypercytotoxic Y. pestis strain was seen in subcutaneous

challenge, but not in intranasal or intravenous infection, revealing

that infection route is important [49]. Our findings do not rule out

the possibility that caspase-1 activation is important for protection

of mice against subcutaneous infection with a hypercytotoxic Y.

pestis. In addition, caspase-1-mediated protection of mice against

oral challenge with a hypercytotoxic strain may not be measurable

using a survival assay, but could significantly impact organ

burdens and serum cytokine levels.

In summary, in this paper, we studied the mechanism of

caspase-1 and cell death mediated by YopJKIM and tried to find

the relationship between them. Our results indicate that

macrophages died by necrosis rather than apoptosis. Caspase-1

activation through the NLRP3/ASC inflammasome may result

from K+ efflux and lysosome rupture that occur during necrosis.

Furthermore, most of the active caspase-1 is located in necrotic

cells, and levels of secreted IL-1b could be positively correlated to

levels of YopJ/P cytotoxicity. According to the evidence, we

hypothesize that necrosis may activate caspase-1 in KIM5-infected

Figure 10. Enhanced YopP-mediated macrophage cell death is
associated with elevated levels of IL-1b release. Y. pseudotuber-
culosis IP26 (DyopJ) carrying the empty pACYC184 plasmid (pACYC) or
pACYC184 encoding the indicated YopP or YopJ isoforms was used to
infect BMDMs. Twenty four hours post-infection, medium was collected
for IL-1b ELISA (A) and LDH release assay (B). Results shown are the
averages from three independent experiments. Error bars represent
standard deviations (ww, P,0.01; www, P,0.001 as determined by
one way ANOVA as compared to pACYC condition).
doi:10.1371/journal.pone.0036019.g010

Figure 11. Caspase-1 is not required for innate host protection
against Yersinia endowed with enhanced cytotoxicity. (A) Six to
eight-week old Casp1+/+ (wild type, WT) or Casp12/2 (Casp1-) C57BL/6J
mice were infected orogastrically with 16109 CFU of Y. pseudotubercu-
losis IP26 carrying pACYC184 encoding YopP or YopJYPTB. Mouse
survival was monitored for 21 days. Results shown are pooled from two
independent experiments. Total numbers of mice infected are shown in
parenthesis. (B) Data from (A) are reformatted by grouping mice
according to infecting strain. Significant difference between survival
curves was determined by log rank test.
doi:10.1371/journal.pone.0036019.g011
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macrophages though cathepsin B leaking from lysosome and K+

efflux.

Materials and Methods

Ethics Statement
All animal use procedures were conducted following the NIH

Guide for the Care and Use of Laboratory Animals and performed

in accordance with institutional regulations after review and

approval by the Institutional Animal Care and Use Committee at

Stony Brook University.

Bacterial strains and growth conditions
The Y. pestis strains used in this study, KIM5 and KIM5

expressing YopJC172A, lack the chromosomal pigmentation locus

(pgm) and are exempt from select agent guidelines [35]. The

pACYC184 plasmids encoding Y. enterocolitica 8081 YopP or Y.

pseudotuberculosis IP2666 YopJ (termed as YopJYPTB) were a kind

gift of Dr. Igor Brodsky [47]. Condon changes were introduced

into the plasmid encoding YopJYPTB to yield YopJKIM (F177L) or

into the plasmid encoding YopP to yield YopPC172A (C172A) using

Quikchange (Invitrogen). Y. pseudotuberculosis strain IP2666DyopJ

(termed as IP26) [35] was transformed with pACYC184 or

pACYC184 plasmids encoding the different YopP or YopJ

isoforms. Plasmid transformation of IP26 was achieved by

electroporation, followed by selection on Luria Broth (LB) plates

containing chloramphenicol (30 mg/ml) [35]. Cultures of Y. pestis

and Y. pseudotuberculosis for macrophage infection were prepared as

described [35].

S. Typhimurium SL1344 culture was prepared as described

[82]. Briefly, overnight culture was diluted 1:15 in LB supple-

mented with 0.3M NaCl and grown at 37uC for 3 hr without

shaking.

BMDM isolation and culture conditions
BMDMs were isolated from bone marrow taken from femurs of

6- to 8-week old C57BL/6J female mice (Jackson Laboratories) as

previously described [83]. Frozen stocks of bone marrow cells from

C57BL/6 mice deficient for Bax and Bak (Bax2/2Bak2/2) or

heterozyous (Bax+/2Bak+/2) [84] (obtained from Tullia Lindsten,

University of Pennsylvania and Craig Roy, Yale University) were

propagated in DMEM GlutaMax supplemented with 20% fetal

bovine serum, 30% L-cell-conditioned medium and 1% 0.1 M

sodium pyruvate (BMM-high) to obtain BMDM.

Macrophage infection
Twenty-four hours before infection, BMDMs were seeded in

24-well plates at a density of 1.56105 cells/well in DMEM

GlutaMax supplemented with 10% fetal bovine serum, 15% L-

cell-conditioned medium and 1% 0.1 M sodium pyruvate (BMM-

low). The next day, macrophages were infected with Yersinia at a

MOI of 10 as described [35]. For SL1344 infection, cells were

infected at an MOI of 10 without a centrifugation step.

Gentamicin (15 mg/ml) was added 2 hr post infection, and culture

medium was collected following a 2 hr incubation. In some

experiments, cells were treated with 10 mM of NAC (Sigma), or

10 mM of DPI (Sigma) for 2 hr before infection. In other

experiments the BMDMs were treated with 30 mM of necrosta-

tin-1 (Biomol), 25 mM of CA-074 Me (Biomol), 40 mM of IETD-

CHO (Calbiochem) or 25 mM of E64d (Biomol) for 1 hr before

infection and during the remainder of the infection period. For the

caspase-8 inhibitor positive control experiment, cells were

pretreated with 5 mM of MG-132 (Sigma) for 30 min with or

without 40 mM of IETD-CHO and then incubated with 1 mg/ml

of LPS for 3 hours.

Microscopic assay to detect surface staining with annexin
V and PI uptake

BMDMs were plated on glass coverslips in 24-well plates and

infected as described above. At 4, 8 and 12 hr post infection,

Annexin V and PI were diluted in Hank’s balanced salt solution

(HBSS) according to manufacturer’s protocol (Roche) and added

to the cells. After 15 minutes of staining, the reagents were

removed and cells were washed with phosphate buffered saline

(PBS). Cells were maintained in PBS and visualized by

fluorescence microscopy using a Zeiss Axiovert S100 microscope

equipped with a 406objective. Images were captured using a Spot

camera (Diagnostic Instruments, Inc.) and processed by Adobe

Photoshop 7.0. Quantification of percent caspase-1 positive

BMDMs was performed by scoring macrophages for positive

signal in three different randomly selected fields (,70–130 cells

per field) on a coverslip.

Microscopic assay to detect PI uptake and active
caspase-1

BMDMs were plated on glass coverslips in 24-well plates and

infected as described above. Nine hours post-infection, macro-

phages were stained with 6-carboxyfluorescein–YVAD– fluoro-

methylketone (FAM-YVAD-FMK; Immunochemistry Technolo-

gies) as described before [35] and 1 mg/ml PI immediately before

observation. Cells were maintained in PBS and visualized by phase

and fluorescence microscopy. Images were captured and processed

as mentioned above. Quantification of caspase-1 positive or PI

positive cell percentages was performed by counting for positive

cells in randomly selected fields (,100–300 cells/field) from three

independent experiments.

Caspase-3/7 luminol assay
Caspase 3/7 activity was measured by Caspase-Glo 3/7 Assay

Kit (Promega) according to manufacturer’s instruction. BMDMs

were seeded in a 96-well white-walled plate at a concentration of

104cells/well in 100 ul medium. Infection was performed as

described above. At each time point, a 100 ul of detection buffer

was added to a well and the plate was read using a luminescence

reader (SpectraMax M2, Molecular Devices).

Immunoblot analysis
For detection of HMGB1 and PARP by immunoblotting,

macrophages were infected as above except that BMDMs were

seeded in 6-well plates at a concentration of 106cells/well. Infected

cells were maintained in 1 ml of culture medium per well

supplemented with 4.5 mg/ml of gentamicin for 24 hours. For

detection of HMGB1, harvested culture medium was centrifuged,

the supernatant mixed with the same volume of 26Laemmli

buffer, and boiled samples were resolved by SDS-PAGE (15%

gels). BMDMs were lysed in 16Laemmli buffer to obtain a sample

of lysate for use as a positive control. Cell lysates for PARP

immunoblotting were prepared by removing the media overlaying

BMDM monolayers and adding 16Laemmli buffer into the wells.

Boiled lysate samples were resolved SDS-PAGE (8% gels).

Uninfected BMDMs were treated with staurosporine (1 mM,

Biomol) 16 hours before lysis to provide a control for cleaved

PARP. Proteins were transferred from gels to polyvinylidene

fluoride (PVDF) membranes and the membranes were probed

sequentially with rabbit anti-HMGB1 (Abcam) or anti-PARP

(Santa Cruz) primary antibodies, and goat anti-rabbit HRP
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conjugated secondary antibody (Jackson). Signals on blots were

detected with enhanced chemiluminescence reagents (Perkin

Elmer Life Sciences, Inc.).

IL-1b ELISA
IL-1b was measured from supernatants by ELISA [35]

according to manufacturer’s instructions (R&D).

LDH Release
Cell death was determined by CytoTox-96 nonradioactive

cytotoxicity assay (Promega) from supernatants following manu-

facturer’s instructions. The total LDH release was made by

freezing and thaw untreated cells. The percentage of dead cells

was calculated as follows: (sample LDH - background LDH)/(total

LDH-background LDH)6100%.

Mouse infection assay
Caspase-1-deficient (Casp12/2) mice on the C57BL/6 back-

ground [85] were obtained from Richard Flavell and Craig Roy,

Yale University. The Casp12/2 mice upon receipt had been

backcrossed to C57BL/6 mice for 7 generations. The Casp12/2

mice were backcrossed to C57BL/6J mice (Jackson Laboratories)

for an additional three generations. The offspring were mated to

generate colonies of Casp12/2 or Casp1+/+ mice that were used

for infection at 8–10 weeks of age. Y. pseudotuberculosis cultures were

grown overnight with shaking in LB at 26uC. Bacteria were

harvested by centrifugation and resuspended in PBS. Male and

female mice were fasted for 14–16 hr prior to infection. Infection

was achieved orogastrically with 16109 colony forming units of

bacteria in 0.2 ml of HBSS using a 20-gauge feeding needle. Mice

were monitored three times a day for 21 days. Mice displaying

severe signs of disease and deemed unable to survive were

euthanized by CO2 asphyxiation.

Statistical analysis
Statistical analysis was performed with Prism 4.0 (Graphpad)

software. The tests used are as indicated in the figure legends or

main text. P values of less than 0.05 were considered significant.

Supporting Information

Figure S1 Transfer of media from KIM5-infected macrophages

to uninfected macrophages does not lead to increased cell death or

IL-1b release. BMDMs in 6-well plates with 3 ml of medium per

well were infected with Y. pestis expressing YopJKIM or YopJC712A

or left infected (U). Twenty four hours post-infection, supernatants

(1 ml) were collected and transferred into wells of a 24 well dish

containing uninfected BMDMs or empty wells as background (B)

control. Supernatants were collected after an addition 24 hours.

IL-1b and LDH were measured by ELISA (panel A) or

CytoTox96 assay (panel B), respectively. Results are averaged

from three independent experiments and error bars represent

standard deviations.

(TIF)

Figure S2 Cathepsin B inhibitors reduced IL-1b release, but not

cell death in macrophages infected with S. Typhimurium SL1344.

BMDMs were left untreated or pretreated with 25 mM of E64d or

CA-074 Me (CA) for 1 hr. Untreated BMDMs were left

uninfected (U) or infected with SL1344 at an MOI of 10 for

4 hours. Treated BMDMs were infected with SL1344 under the

same conditions in the presence of the inhibitors. Medium was

collected for IL-1b ELISA (A) and LDH release assays (B). Results

shown are the average of two independent experiments. Error bars

represent standard deviations.

(TIF)
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