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Abstract

Nuclear large subunit ribosomal DNA is widely used in fungal phylogenetics and to an increasing extent also amplicon-
based environmental sequencing. The relatively short reads produced by next-generation sequencing, however, makes
primer choice and sequence error important variables for obtaining accurate taxonomic classifications. In this simulation
study we tested the performance of three classification methods: 1) a similarity-based method (BLAST + Metagenomic
Analyzer, MEGAN); 2) a composition-based method (Ribosomal Database Project naı̈ve Bayesian classifier, NBC); and, 3) a
phylogeny-based method (Statistical Assignment Package, SAP). We also tested the effects of sequence length, primer
choice, and sequence error on classification accuracy and perceived community composition. Using a leave-one-out cross
validation approach, results for classifications to the genus rank were as follows: BLAST + MEGAN had the lowest error rate
and was particularly robust to sequence error; SAP accuracy was highest when long LSU query sequences were classified;
and, NBC runs significantly faster than the other tested methods. All methods performed poorly with the shortest 50–
100 bp sequences. Increasing simulated sequence error reduced classification accuracy. Community shifts were detected
due to sequence error and primer selection even though there was no change in the underlying community composition.
Short read datasets from individual primers, as well as pooled datasets, appear to only approximate the true community
composition. We hope this work informs investigators of some of the factors that affect the quality and interpretation of
their environmental gene surveys.
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Introduction

Nuclear ribosomal DNA (rDNA) markers are widely used in

fungal phylogenetic and systematic studies [1–4]. In most fungi,

rDNA includes the small subunit (SSU, 18S), internal transcribed

spacer (ITS, ITS1+5.8S+ITS2), and large subunit (LSU, 25–28S)

regions. Though ITS has been proposed as the official fungal

‘barcode’, there are some situations where LSU may be specifically

targeted, with or without the adjacent ITS region in amplicon-

based environmental sequencing studies [5–13].

In contrast with ITS, LSU can be aligned across the diverse

range of fungi recovered from environmental samples. The ability

to create inclusive alignments means that communities can be

analyzed in a phylogenetic context. This approach leverages the

observation that closely related taxa often share features such as

trophic status in mushroom-forming fungi [14]. In addition to

binning sequences by similarity into equally-weighted operational

taxonomic units (OTUs), an approach often used with ITS

sequences, globally aligned LSU sequences can also be weighted

by branch length in a phylogeny. Methods such as the P-test or

UniFrac utilize the information content in branch lengths to detect

significant differences between communities and to visualize

community shifts [15–17].

Phylogeny-based community comparison tools can be used with

LSU rDNA because it is a mosaic, comprised of both highly

variable sequence that provides discriminatory power anchored by

highly conserved sequence that can be aligned [18–20]. The LSU

divergent domains (D), or expansion regions, can show great

sequence and length variation among species. An early study

described 12 divergent domains responsible for the size increase in

the LSU ribosomal RNA (rRNA) gene from prokaryotes to

eukaryotes [19]. A more recent study detected 22 variable

domains in the eukaryote LSU rRNA gene [20]. Descriptions of

these variable regions and secondary structures in eukaryotes have

been compared across a range of taxa [19–24]. In fungi, an

assessment of LSU regions suitable for phylogenetic analysis was

conducted, and a suite of primers was developed [18]. Large

collections of LSU reference sequences have since been compiled,

such as for mushroom-forming fungi [14,25]. Historically, the D1/

D2 region has been used, with or without the corresponding ITS

sequence, to identify yeast species [26,27]. Recently, a 1,500 bp

sequence spanning the 39 SSU+ITS+59 LSU has been recom-

mended as the barcoding region for arbuscular mycorrhizal fungi

[28]. In most fungi, 59-LSU rDNA is used for genus or higher level

taxonomic classifications [29]. Many LSU rDNA sequences are

available from GenBank, but additional reference sequences from
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a broad array of fungi identified by specialists can also be found

from the Assembling the Fungal Tree of Life Project (AFTOL) and

UNITE databases [2,30,31].

This study was prompted by two observations. First, compared

with Sanger sequencing, next-generation sequencing (NGS) results

in large collections of relatively short reads. This makes primer

choice a particularly important variable to target the most

informative regions to classify unknown amplicon sequences from

environmental sequencing studies. It is currently unknown

whether some primer combinations are better than others in

terms of LSU classification accuracy. Second, even without

cloning, sequence error can still be introduced during mixed-

template PCR and NGS [32–34]. The extent that this sequence

error may affect LSU classification accuracy is unknown. To

address these points, we specifically tested the effect of sequence

length, primer choice, and sequence error on classification

accuracy. We also present a comparison of three automated tools

appropriate for use with amplicon-based environmental sequenc-

es. The tools we compared are fundamentally different in that they

use sequence similarity, sequence composition, or phylogeny as a

basis for classification. We hope that this study helps investigators

with their experimental design and choose the methods best suited

for analyzing their environmental LSU rDNA amplicon sequenc-

es.

Methods

Mapping primers and variable regions of LSU rDNA
To show the relationship between primers and the variable

regions of LSU rDNA we created a map based on the RDN25-1

gene from Saccharomcyes cerevisiae GenBank accession

NC_001144:455181-451786. We show the 12 divergent domains

responsible for the size increase in the large subunit rRNA gene

from prokaryotes to eukaryotes [19]. For comparison we also show

the 22 variable regions in the eukaryote large subunit rRNA gene

[20]. We also mapped the location of primers commonly used in

previous environmental sampling studies (Table 1).

Assembling LSU rDNA datasets
We compiled a well-annotated LSU rDNA sequence set for our

simulations using BioPerl (scripts available from T.M. Porter) [35].

We used the following GenBank search terms: Fungi[Organism]

AND (‘‘large ribosomal subunit’’ OR 28S OR 26S OR 25S) NOT

(mitochondrial OR mitochondrion OR ‘‘uncultured’’[TITL] OR

‘‘environmental’’[TITL] OR ‘‘endophyte’’[TITL] OR

‘‘cf.’’[TITL] OR ‘‘sp.’’[TITL] OR ‘‘aff.’’[TITL]) AND ‘‘AF-

TOL’’ [Sept. 21, 2011]. We limited our search to sequences

generated by the Assembling the Fungal Tree of Life project

(AFTOL) because fungal systematists identified these specimens

and classifications represent the current state of taxonomic

knowledge. We initially retrieved 1,201 sequences. Results were

filtered to retain non-redundant sequences identified to the species

level with a minimum sequence length of 100 bp to avoid short

partial sequences. This dataset is referred to as the ‘long’ LSU

rDNA sequence dataset.

To compare the performance of various sub-regions of LSU

rDNA for taxonomic assignment, we subsampled this dataset

according to what would be obtained using primers that have been

previously used in fungal amplicon-based environmental sequenc-

ing and span the 59 LSU rDNA region commonly used in fungal

phylogenetics: LR0R, LR3, LR5, and LR7 (Figure 1; Table 1)

[36,37]. Though this represents only a fraction of the primers

actually used in previous work, the regions targeted by many

primers are similar (Figure 1). We identified the primer binding

regions based on sequence similarity using BioPerl scripts allowing

up to one mismatch with the primer sequence [35]. For each of

these regions, we clipped sequences to various lengths: 50 bp,

100 bp, 200 bp, and 400 bp to simulate the read lengths obtained

from current NGS platforms (Figure 1). These are referred to as

the ‘simulated short read’ datasets. In mixed template PCR, it is

known that primer amplification bias can also have a significant

effect on taxonomic recovery [38]; however, we do not specifically

simulate this here.

Table 1. Nuclear large subunit ribosomal DNA (LSU rDNA) primers.

Primer Sequence (59 to 39)

Coordinates with respect to
Saccharomyces cerevisiae
NC_001144.5: 455181 to
451786 Reference

LR0R ACCCGCTGAACTTAAGC 26–42 Vilgalys lab1

LR12 AGCATATCAATAAGCGGAGGA 40–60 [89]

NL-1 GCATATCAATAAGCGGAGGAAAAG 41–64 [90]

LR3R GTCTTGAAACACGGACC 639–655 Vilgalys lab1

NL-4 GGTCCGTGTTTCAAGACGG 655–637 [90]

TW13 GGTCCGTGTTTCAAGACG 655–638 [91]

LR3 GGTCCGTGTTTCAAGAC 655–639 [36]

NDL223 TGGTCCGTGTTTCAAGACG 656–638 [89]

LR16 TTCCACCCAAACACTCG 691–675 [92]

LR5 ATCCTGAGGGAAACTTC 966–950 [36]

nLSU1221R CTAGATGAACYAACACCTT 1222–1204 [5]

LR7 TACTACCACCAAGATCT 1449–1433 [36]

1Vilgalys mycology lab http://biology.duke.edu/fungi/mycolab/.
2Same as LSU 0061 [93].
3Same as LSU 0599 [93].
doi:10.1371/journal.pone.0035749.t001

LSU rDNA Classification
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Sequence Classification
To assess the performance of LSU rDNA sequences for fungal

classification we used three methods: 1) BLAST followed by

Metagenomic Analyzer parsing (BLAST + MEGAN) [39–41]; 2)

the Statistical Assignment Package (SAP) [42,43]; and, 3) the

Naive Bayesian Classifier (NBC) available through the Ribosomal

Database Project (RDP) website (http://rdp.cme.msu.edu)

[44,45]. Each method classifies sequences to a variety of

taxonomic ranks using fundamentally different methods such as

local sequence similarity, phylogenetic signal, or sequence

composition, respectively. SAP and NBC also provide a measure

of confidence that can be used to predict correct taxonomic

assignments. The usage details for each method are described

below.

For each simulation, we measured recovery, erroneous recov-

ery, and coverage. Recovery was measured as the proportion of

queries that were correctly classified. Erroneous recovery was

measured as the proportion of queries that were incorrectly

classified. Coverage was measured as the total number of (correctly

or incorrectly) classified sequences. The proportion of queries that

could not be classified is equal to the original number of queries

submitted minus coverage. Coverage reflects the differential ability

to classify reads to different taxonomic ranks because of

incomplete sequence annotations in the GenBank nucleotide

database or NBC fungal training set, because of methodological

differences during classification, or because of the amount of

variation present in the query sequence. We did not account for

synonyms or anamorph-teleomorph names because there is no

automated way to do this. It is possible that this may contribute to

a small number of false negatives during classification.

Search Scenarios
To simulate searching a complete database, the GenBank

accession of the query sequence was left in the database and

permitted to be a valid search result; this is referred to as a

‘complete’ database search. To simulate searching a database that

is potentially incomplete, we repeated the analyses using a cross-

validation (‘leave one out’) search similar to that used by Liu et al.

[46]. In the ‘leave one out’ search scenario we excluded the

GenBank accession of the query from the search results. In this

situation, more than one LSU rDNA sequence per species would

be needed in the nucleotide database for a correct classification to

the species rank; and more than one sequence per genus would be

needed for a correct classification to the genus rank, and so forth.

Incorrect classifications would then be due to a lack of sequence

variation, misidentified database sequences, or insufficient data-

Figure 1. Schematic diagram of large subunit ribosomal DNA (LSU rDNA). In the top frame, the LSU rDNA region for Saccharomyces
cerevisiae (RDN25-1) NC_001144.5: 455181-451786 is shown. In the second frame, variable sequence regions from Schnare et al. [24] (top) and
Hassouna et al. [20] (bottom) have been mapped with respect to the S. cerevisiae sequence. In the third frame, the position of some commonly used
LSU rDNA primers are shown. In the bottom frame, the position and length of fragments simulated for this study are shown.
doi:10.1371/journal.pone.0035749.g001
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base coverage. The problem of incomplete reference databases

can be a significant barrier with using DNA sequences for

taxonomic classification and we wanted to reflect this in our

simulations [47–50]. To facilitate comparisons among all three

methods, we did not enforce any minimum measure of confidence

for assignments. However, to see the effect of enforcing a

minimum measure of confidence, we repeated some analyses

using the default cutoffs recommended by NBC and SAP.

BLAST + MEGAN: Sequence similarity-based classification
MEGAN parses BLAST reports or NBC classifications and

summarizes results at a variety of taxonomic ranks according to

the GenBank taxonomy using a Lowest Common Ancestor (LCA)

algorithm [39–41]. MEGAN has been previously used to classify

LSU rDNA/cDNA amplicon sequences produced by NGS [9,12].

When we use MEGAN to parse BLAST output comprised of local

pairwise alignments, the BLAST + MEGAN method can be

thought of as a sequence similarity-based approach. We used

BLAST 2.2.24+ with the blastn algorithm, default settings, both

with and without the ‘-negative_gilist’ option to search a local

installation of the GenBank nucleotide database for ‘leave one out’

and ‘complete’ searches [October 2011]. The LCA algorithm

assigns taxa to the lowest possible taxonomic rank that presumably

reflects the level of sequence variation present in the query

sequence compared with reference sequences. The LCA settings

we used to parse BLAST reports were minimum support = 1,

minimum score = 50 (for 50 bp fragments) or 100 (for all other

sequence lengths), top percent = 1.0, and winscore = 0.0. We

disabled all taxa in the NCBI taxonomy that MEGAN uses except

for Eukaryotes to try to avoid parsing insufficiently identified

sequences from environmental samples. If we were working with

field samples, parsing environmental sequences with MEGAN

may help to classify reads similar to sequences currently only

known from other environmental sequencing studies [49]. We

compared the taxonomic lineage of the original dataset with

MEGAN classifications using the [R] Bioconductor package

‘genomes’ and custom Perl scripts [51].

The RDP naı̈ve Bayesian classifier: sequence composition-
based taxonomic assignment

NBC uses a naı̈ve Bayesian approach to classify sequences to a

variety of taxonomic ranks from domain to genus and provides a

confidence estimate for each assignment [44]. Briefly, the bacterial

16S rDNA classifier is a text-based Bayesian classifier that uses a k-

mer based approach. The classifier is ‘trained’ using a database of

well-identified sequences. The classifier uses the 8 bp oligonucle-

otide ‘words’ or 8-mers in a query sequence that match words

contained in taxa that comprise a genus in the training set to

calculate a score. Placement is made to the genus with the highest

score. Confidence is estimated using 100 bootstrap replicates. This

method is a composition-based method because classifications

depend on the k-mer composition of query and reference

sequences. Though this tool has been available for bacterial

classifications for some time, a fungal LSU rDNA classifier has

only recently become available [45]. Their classifier was trained

with a 1,400 bp portion of the 59 end of LSU rDNA from a

database of 8,506 sequences. Here, we used the RDP naı̈ve

Bayesian rRNA Classifier version 2.2 with fungal LSU training set

1, with and without the recommended confidence thresholds of

50% for sequences less than 250 bp or 80% for longer sequences.

We compared the taxonomic lineage of the original dataset with

NBC classifications using custom Perl scripts.

SAP: Phylogeny-based taxonomic assignment
SAP automates the process of conducting BLAST searches,

homolog compilation, alignment, and phylogenetic analysis

[42,43]. SAP also provides classifications to a variety of taxonomic

ranks providing a statistical measure of confidence for each

assignment. This method is a phylogeny-based tool that uses global

alignments of similar sequences retrieved by BLAST. Though SAP

implements a rigorous Bayesian assignment algorithm, here we

only use the faster neighbor joining algorithm since it has been

previously shown that results from both methods provided similar

classifications with ITS rDNA [52]. We used the ‘NJConstrained’

algorithm with and without the default 95% neighbor joining

bootstrap proportion to filter results considered good taxonomic

assignments. After testing numerous variations of parameters, we

ultimately used the following settings: hits were retained if the local

sequence similarity with the query was at least 90%; homologs

were compiled that represent at least one phylum, two classes,

three orders, five families, ten genera, and one individual per

species if possible. We repeated these analyses both with and

without the ‘–forceexcludegilist’ option for ‘leave one out’ and

‘complete’ database searches. We compared the taxonomic lineage

of the original dataset with SAP classifications using custom Perl

scripts.

Error simulations
There are many points during data generation where sequence

errors may be introduced, such as during mixed-template PCR,

cloning, and sequencing [32–34]. We simulated errors in our data

to test classification robustness. We used our original 200 bp short

datasets, one from each primer (LR0R, LR3, LR5, and LR7) to

represent mock communities. We then created four more mock

communities for each primer with varying levels of per-base error

rates: 0.01%, 0.1%, 1%, and 10% using a custom Perl script.

Classifications were made using BLAST and a ‘leave one out’

approach followed by MEGAN parsing. NBC was used ‘as is’ from

the RDP website with the recommended 50% confidence cutoff

for fragments shorter than 250 bp. Classifications were summa-

rized to the genus rank. We tracked sequences that were correctly

classified with 0% error, and followed their change in recovery as

levels of simulated sequence error were increased to 10%.

Chimeric sequences are another source of error, however, we

did not specifically simulate this. Though not used in this study,

LSU rDNA chimera detection from field samples can be

performed using UCHIME [53].

We also compared taxonomic composition similarity across

mock communities using the comparison tools in MEGAN.

Classifications from BLAST and NBC were imported into

MEGAN and summarized at the order rank. LCA parameters

for processing BLAST reports were as described above. LCA

parameters for processing NBC classifications were minimum

support = 1, minimum score = 50 (recommended for fragments

,250 bp), and top percent = 100. Distance matrices were

generated in MEGAN using two ecological indices. The Bray-

Curtis statistic quantifies dissimilarity among samples in pairwise

comparisons, and has been found to be a robust measure of

ecological distance [54,55]. A phylogeny-based metric, UniFrac,

emphasizes the amount of branch length unique to either of two

datasets compared with the total amount of branch length in a

phylogeny. In environmental sequencing studies, this is interpreted

as representing evolution among lineages unique to a site that may

reflect adaptation to a specific environment [16]. MEGAN

calculates a simplified UniFrac distance based on GenBank

taxonomy. The distance matrices calculated by MEGAN were

visualized using non-metric multidimensional scaling (NMDS) in

LSU rDNA Classification
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R using the ‘ecodist’ package with default settings (2 dimensions,

10 iterations, maximum stress = 1e-12) [56].

To control for variable community sizes, we only analyzed

simulated short read sequences (200 bp) generated from the same

parent sequence where all four primers could be detected [57].

This resulted in four equally sized datasets (33 taxa each). For

comparison, we also analyzed the taxonomic assignments from the

parent sequences (average length 3,098 bp) referred to as the

reference set and this represents the true community composition

(Figure S1). We confirmed that BLAST using a complete database

search followed by MEGAN classifications resulted in no

classification errors in the parent sequences. Finally, we pooled

the simulated short read assignments from four primers to see if

the resulting community composition was similar to the true

community composition.

Results

Taxonomic assignments using ‘long’ LSU rDNA
The taxonomic breakdown and average sequence length of the

‘long’ rDNA dataset is shown in Table 2. The relatively short

average lengths for the Ascomycota and Basidiomycota are

artifacts of database composition. Unfortunately, most of the fully

identified fungal sequences in the GenBank nucleotide database

are partial and only 500–700 bp in length (Figure S2, File S1).

Complete species names and GenBank accession numbers for the

long LSU rDNA dataset are shown in Table S1.

We directly compared five classification methods with the ‘long’

LSU rDNA dataset (Figure 2). Using the ‘complete’ search

scenario recovery was highest using BLAST + MEGAN. Using the

‘leave one out’ search scenario, SAP with no statistical cutoff

performed best for genus and family level assignments, and

BLAST + MEGAN performed best for order level assignments.

Recovery decreases when the recommended minimum measures

of confidence are enforced with NBC and SAP.

Taxonomic assignments using simulated short reads
The taxonomic breakdown for the ‘simulated short read’

datasets is shown in Table S2. The performance of three

classification methods is compared in Figures 3 and 4. Recovery

increases with increasing read length for each method. Bars

indicate standard error of the mean from four different primers. In

Figure 3, BLAST + MEGAN is distinguished by a very low rate of

erroneous recovery compared to other methods. In Figure 4, the

recommended cutoffs for statistical support are enforced with SAP

and NBC. All three measures of SAP performance decrease

substantially, indicating that the default statistical cutoff may be

too stringent for LSU rDNA. When the NBC default cutoffs are

applied, rates of erroneous recovery decrease, especially for the

simulated 50 bp reads. Note that the NBC error rate can be even

further reduced when NBC results are imported into MEGAN

(Figure S3). Corresponding recovery and coverage are only

slightly reduced. Because NBC results imported by MEGAN are

subject to LCA parsing, any differences in the taxonomy used by

GenBank and NBC (family to phylum) result in taxonomic

assignments that are collapsed to more inclusive taxonomic ranks.

Recovery and coverage using four different primers are shown

in Figure 5. Results were averaged across the three methods used

to create Figure 3. We compared 200 bp sequences classified to

the genus rank. Bars indicate standard error of the mean when

three classification methods are used. We suggest that differences

in recovery and coverage may be due to different levels of

sequence variation targeted by the primers. For instance, LR0R

and LR3 target sequence in the long D1 and D2 divergent

domains whereas LR5 and LR7 target relatively more conserved

sequence regions (Figure 1). This is consistent with a previous

study that found relatively high levels of pairwise sequence

divergence in the D1–D3 regions of 59 LSU rDNA [18].

Table 2. Taxonomic and sequence length breakdown for the
‘long’ LSU rDNA data set.

Taxonomic group
Number of
sequences Average length (bp)

Ascomycota 447 1341

Basidiomycota 323 1337

Chytridiomycota 22 3154

Kickxellomycotina 7 3690

Mucoromycotina 7 3188

Glomeromycota 5 3241

Blastocladiomycota 4 3264

Entomophthoromycotina 3 3054

Zoopagomycotina 3 3327

Neocallimastigomycota 1 3273

Olpidiaceae 1 3237

Rozella clade 1 3189

Total 824

doi:10.1371/journal.pone.0035749.t002

Figure 2. Comparison of methods to classify ‘long’ large
subunit ribosomal DNA sequences. Classifications at the genus
(G), family (F), and order (O) ranks are shown on the x-axis. Recovery on
the y-axis refers to the percentage of queries recovered with a correct
classification. Results from BLAST + MEGAN and SAP are directly
compared using a ‘complete’ and ‘leave one out’ search scenario.
Results from SAP with the default 95% neighbor joining bootstrap
cutoff enforced is also shown (SAP NJ 95). Results from NBC run ‘as is’
from the Ribosomal Database Project website are shown separately.
Results from NBC with the recommended 80% confidence cutoff are
also shown (NBC 80).
doi:10.1371/journal.pone.0035749.g002

LSU rDNA Classification
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Taxonomic assignments after simulating sequence error
Recovery at several levels of simulated sequence error is shown

in Figure 6. Recovery decreased starting at about 0.1% to 1%

simulated error using BLAST + MEGAN. Recovery decreased

starting at 0.01% simulated error using NBC. The composition-

based classification method, NBC, appears to be more sensitive to

sequence error compared with the similarity-based method,

BLAST + MEGAN. This may be because in a k-mer based

method, any single error in a sequence is propagated into ‘k’

number of words used for classification.

Effect of primer choice and sequence error on
community comparisons

At the cost of reduced specificity, we chose to summarize

classifications used in Figure 7 at the order rank to minimize the

effect of misidentified or misclassified taxa on taxonomic

community comparisons (Figure S4). As expected, we found that

each primer individually detects most order-level lineages truly

present in the parent community. Even after summarizing

classifications at the order rank, we observed community shifts

caused by the differential detection of lineages by each primer

even though there was no change in the underlying community

composition. For example, an order-level lineage, the Leucospor-

idiales, was detected by the LR7 primer although it was not

present in the original parent community.

When BLAST + MEGAN classification was used, the greatest

observed community shifts were due to primer choice. This is

consistent with the differential recovery we observed among the

tested primers (Figure 5). Observed community shifts due to

primer selection are reduced with NBC + MEGAN classification

where sequence error appears to have a larger effect. This

correlates with NBC’s increased sensitivity to error shown in

Figure 6. Using either classification method, simulated short read

primer datasets only approximate the true taxonomic composition.

When data from multiple primers for the same marker are

available, the question of whether to pool the data becomes

relevant. We observed that the relative configuration of points

Figure 3. Comparison of classification methods using simulated short read sequences. Simulated read length is shown on the x-axis. In
the top row, recovery is shown on the y-axis and refers to the proportion of queries with a correct taxonomic classification. In the middle row,
erroneous recovery is shown on the y-axis and refers to the proportion of queries with an incorrect taxonomic classification. In the bottom row,
coverage is shown on the y-axis and refers to the proportion of queries for which a classification could be made (correct or incorrect). The results for
six taxonomic ranks are shown: kingdom (blue), phylum (red), class (green), order (purple), family (teal), and genus (orange). A ‘leave one out’ search
approach was used with BLAST + MEGAN and SAP. The asterisk indicates that NBC was run ‘as is’ from the Ribosomal Database Project website. Bars
indicate standard error of the mean using four primers. Statistical cutoffs were not enforced with SAP or NBC to facilitate comparisons with BLAST +
MEGAN.
doi:10.1371/journal.pone.0035749.g003

LSU rDNA Classification
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using two different ecological measures differ, especially for the

pooled primer dataset. The Bray-Curtis statistic quantifies

dissimilarity among sites regardless of their taxonomic composi-

tion. The resulting pooled dataset point falls nearly midway

between the four contributing primer datasets. The simplified

UniFrac metric implemented in MEGAN, however, measures the

proportion of unique branch lengths among datasets. Compared

with the pooled dataset, each primer differentially detects lineages

represented by varying amounts of branch length (Figure S4). The

result is that the pooled dataset falls outside the cluster formed by

the four contributing primer datasets. Using either ecological

measure, our pooled primer datasets only approximate the true

community composition. We suggest that when working with field

data, identifying community shifts among ecologically distinct sites

may be easier to visualize when data from multiple primers are

pooled into a single point.

Discussion

Trends in species assignment
Species assignment methods fall into several broad categories.

First, similarity-based methods, such as BLAST, are commonly

used for amplicon-based environmental sequence classification. It

Figure 4. Comparison of classification methods using short read sequences while enforcing a statistical cutoff. Simulated read length
is shown on the x-axis. In the top row, recovery is shown on the y-axis and refers to the proportion of queries with a correct taxonomic classification.
In the middle row, erroneous recovery is shown on the y-axis and refers to the proportion of queries with an incorrect taxonomic classification. In the
bottom row, coverage is shown on the y-axis and refers to the proportion of queries for which a classification could be made (correct or incorrect).
The results for six taxonomic ranks are shown: kingdom (blue), phylum (red), class (green), order (purple), family (teal), and genus (orange). A ‘leave
one out’ search approach was used with SAP. The asterisk indicates that NBC was run ‘as is’ from the Ribosomal Database Project website. Bars
indicate standard error of the mean using four primers. The default statistical cutoffs for SAP (95% neighbor joining bootstrap proportion) and NBC
(50% for sequences less than 250 bp, otherwise 80% confidence) are enforced.
doi:10.1371/journal.pone.0035749.g004

Figure 5. Effect of primer choice on recovery and coverage.
Results are shown for 200 bp fragments classified to the genus rank
averaged across three methods. We used a ‘leave one out’ approach
with BLAST + MEGAN and SAP. NBC was run ‘as is’ from the RDP
website. Recovery (blue) and coverage (red) are shown for four primers.
Bars indicate standard error of the mean using three classification
methods.
doi:10.1371/journal.pone.0035749.g005

LSU rDNA Classification
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has been observed, however, that the top BLAST hit may not

necessarily be the closest phylogenetic neighbor [58]. Additionally,

BLAST alone does not automatically make classifications to higher

taxonomic ranks where the accuracy for an assignment may be

higher. Neither BLAST nor MEGAN provides any measure of

confidence for a classification. However, it has been previously

shown with ITS rDNA, and in the current study with LSU rDNA,

that MEGAN has lower erroneous recovery rates than BLAST,

SAP, or NBC [52]. There is a new method developed for

classifying pyrosequencing reads using BLAST that does calculate

a corresponding probability that the top hit is correct, and this

measure would add value to classifications based on BLAST [59].

Second, phylogeny-based classification methods are available

such as SAP, pplacer, and the Evolutionary Placement Algorithm

(EPA) [42,43,60,61]. These methods use a variety of phylogenetic

frameworks such as neighbor joining, maximum likelihood, and

Bayesian analysis. Unless SAP can be run in parallel, this method

may be best suited for small datasets, because even with the faster

neighbor joining algorithm, the BLAST searches, homolog

compilation, alignment, and tree-building steps necessary to

classify each individual query can be relatively time consuming.

A previous study showed that SAP recovery with ITS rDNA was

more sensitive to query length than other methods [52]. The

current study with LSU rDNA, however, showed that each of the

tested methods is similarly sensitive to query length. EPA and

pplacer were developed to classify reads from amplicon-based

environmental sequencing. They can implement a variety of

nucleotide substitution models, and are faster because they use a

pre-existing alignment to place unknown sequences onto a

reference tree. These particular methods are perhaps best suited

for bacterial 16S rDNA classifications because extensive align-

ments are already publically available [31,62,63]. The ARB

project provides tools so that new data can be integrated with large

sets of pre-aligned sequences facilitating alignment and phyloge-

netic analyses with a graphical user interphase. The SILVA

database does provide a high quality reference LSU alignment

(n = 1278, $1900 bp) that can be downloaded and used with

ARB; however, the hand-curated dataset used to train the RDP

fungal LSU classifier is more extensive (n = 8506, 1400 bp)

[31,64]. Though the RDP does support an LSU classifier and a

library comparison tool, LSU alignment downloads are not

currently available.

Third, composition-based methods are available such as naı̈ve

Bayesian classifiers [44,65]. In this study, we show that the number

of sequences classified per minute with NBC far exceeds that using

MEGAN or SAP (Figure S5). When processing thousands of

OTUs, the difference in run-time can be from hours to days for

BLAST-based methods (such as BLAST + MEGAN and SAP)

compared with minutes for the composition-based NBC. Addi-

tionally, as the reference set of sequences used to train the classifier

increases, so too should the number of accurate of classifications.

For composition-based methods, a ‘detector’ has recently been

developed that improves the performance of a naı̈ve Bayesian

classifier by flagging query sequences with no match in the

reference set [66]. As shown in this study and elsewhere, the

accuracy of nearly all sequence classification methods depends on

query length. One newly developed method addresses this

problem using a k-mer based approach and mixture modeling to

be sequence length independent [67]. This method is currently

only available for prokaryote classifications.

In this study, we directly compared classification performance

using both complete and incomplete reference databases to

highlight that this can be a major limitation in the taxonomic

assignment process. BLAST + MEGAN recovery was substantially

decreased when working with an incomplete reference database,

and SAP performed best with long LSU rDNA sequences. A

previous study showed dramatic recovery decreases, with BLAST,

BLAST + MEGAN, and SAP when using an incomplete reference

database for ITS rDNA sequence classification [52]. Database

properties that affect classification performance include breadth

and depth of taxonomic representation, classification accuracy of

submitted sequences, as well as underlying sequence quality and

length. Incomplete databases are due to: fungal diversity in

herbaria not represented by sequences in GenBank [47,48];

insufficiently identified environmental sequences representing

newly discovered fungal lineages that are widespread but not

readily cultivable using standard methods [5,49,50,68–73]; within-

individual and within-species rDNA sequence diversity that is not

represented in GenBank [74–76]; the lack of an ‘official’ fungal

barcode [11]; and the sheer diversity of fungal species that need to

be accounted for [77,78]. Even the most advanced taxonomic

assignment method can only be as good as the reference database

upon which classifications rely.

The effect of sequencing error on perceived community
diversity

Sequence error, such as that generated during PCR, cloning, or

sequencing, is a source of noise that can affect the accuracy of

classifications and community comparisons. In amplicon-based

Figure 6. Effect of simulated errors on recovery. Results are
shown for 200 bp fragments classified to the genus rank for four
primers: LROR (blue), LR3 (red), LR5 (green), and LR7 (purple). BLAST +
MEGAN was run with a ‘leave one out’ BLAST search and the asterisk
indicates that NBC was run ‘as is’ from the Ribosomal Database Project
website. Simulated per-base error rates are shown on the x-axis.
Recovery differences compared with correctly classified taxa from the
original 200 bp datasets (0% error) are shown on the y-axis.
doi:10.1371/journal.pone.0035749.g006
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sequencing studies that use OTU-based estimates of richness,

errors can also inflate measurements of alpha diversity such as

richness or estimated richness [34,79]. We show here that error

rates exceeding 0.01–1% can begin to affect the recovery of

correct classifications. Additionally, we show that sequence error

can cause community shifts unrelated to any change in the

underlying simulated community. Since errors may vary according

to PCR conditions and NGS platform, programs that compensate

for this noise need to be used to ensure read quality [80–82].

Additionally, clustering reads by at least 1% sequence similarity

can reveal singleton sequences that tend to contain many sequence

errors [32,34,76,83,84]. In this study we showed that NBC, a k-

mer based taxonomic assignment method, is sensitive to sequence

error making de-noising and/or sequence clustering steps partic-

ularly important when processing field data.

Variable performance of LSU rDNA primers
Though there is a history of using LSU rDNA in fungal

phylogenetic systematics and amplicon-based environmental

sequencing, this is the first simulation study to directly assess the

performance of the LSU rDNA marker (Figure S6, File S1). Based

on our simulations, we found that the LR0R and LR3 primers

targeting the variable D1 and D2 domains yield the highest rate of

correct taxonomic assignments. Despite this, ease of PCR

amplification will likely dictate which primer sets are the most

useful in field studies. Because our study focused on the 59 LSU

rDNA region, our observations do not necessarily reflect the

performance of divergent domains in the 39 LSU rDNA region for

taxonomic assignment. In fact, previous studies have shown that

D2 in the 59 LSU rDNA region and D8 in the 39 LSU rDNA

region show the largest size expansions and most sequence

divergence [18,19]. One potential concern with the LR5 primer is

that it may amplify a group I intron, though in this study we only

detected one taxon with an intron at this position. The presence of

group I introns are known to differ between and within species;

additionally, they may also be acquired by horizontal transfer

[85,86]. As a result, group I introns do not necessarily share the

same evolutionary history as the host genome [87]. Thus care

must be taken when sequencing from the LR5 primer.

Variable performance of classification methods
Compared with the other tested methods, MEGAN produces

the lowest error rates. Error rates from BLAST + MEGAN is

reduced because the LCA algorithm can reconcile taxonomic

Figure 7. Comparison of simulated communities using non-metric multidimensional scaling. The ‘reference set’ (black square) was
comprised of ‘long’ large subunit ribosomal DNA sequences (about 3,000 bp average length) that were classified using MEGAN + BLAST against a
complete database or classifications from NBC run ‘as is’ from the Ribosomal Database Project website and imported into MEGAN (NBC + MEGAN).
Four mock communities comprised of 200 bp sequences were generated from four primers: LR0R (red), LR3 (blue), LR5 (green), and LR7 (orange).
Communities were subjected to per-base error rates of 0% (square), 0.01% (circle), 0.1% (triangle), 1% (+), and 10% (6). Classifications were
summarized at the order rank. Similarity of taxonomic composition was compared using Bray-Curtis dissimilarity and a simplified UniFrac measure in
MEGAN.
doi:10.1371/journal.pone.0035749.g007
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assignments to higher ranks when top BLAST hits have

heterogeneous taxonomic lineages. This reduces coverage and

erroneous recovery at more specific ranks and increases the

number of assignments at more inclusive ranks. In some cases, the

LCA algorithm will not make an assignment at all, further

reducing the rate of incorrect assignments. Although confidence

scores produced by SAP and NBC can be used to help predict

correct assignments, their error rates are still higher than MEGAN

with our dataset. With NBC, this can be partially explained by

variations in the taxonomy (family to phylum) used in the fungal

training set compared with GenBank. Nevertheless, genus level

assignments are still directly comparable so we provide an example

illustrating how erroneous assignments may arise. With NBC, so

long as the query sequence contains the minimum number of

required k-mers, an assignment and confidence value will always

be provided. Even if the query genus is not present in the fungal

training set, an assignment is still made to the genus with the

highest rank-order likelihood score. If this genus assignment

happens to be consistent among bootstrap replicates, although it is

erroneous, the confidence score will be high resulting in an

incorrect assignment supported by a high confidence value. NBC

error rates can be reduced by enforcing statistical cutoffs and by

importing NBC results into MEGAN though at the expense of

slightly reducing recovery, coverage, and taxonomic specificity

(Figure S3).

With SAP, enforcing the default statistical cutoff to reduce

error rates also drastically reduces recovery and coverage

compared with not enforcing any cutoff at all (Figure 3, 4).

This reflects the instability of many assignments in bootstrap

replicates where characters are re-sampled with replacement.

With short query sequences (#400 bp) and the default cutoff,

SAP is outperformed by BLAST + MEGAN (lower error rates)

and NBC with the default cutoffs (similar error rates but higher

recovery). SAP performs best with long LSU rDNA sequences

(,3000 bp) and no statistical cutoff enforced for genus and

family rank assignments (Figure 2).

Conclusions
For rapid fungal LSU rDNA taxonomic assessments we

recommend the use of the Ribosomal Database Project naı̈ve

Bayesian classifier (NBC). However, if the chance of erroneous

assignments needs to be particularly minimized, then we

recommend MEGAN LCA processing of BLAST or NBC results.

When NBC results are imported into MEGAN, sample compar-

isons using multiple methods can be reached very quickly. If the

query sequences are long (.400 bp) and processing time is not a

pressing issue, then SAP without enforcing any statistical cutoff

may be a good alternative. In all cases, summarizing assignments

to broader taxonomic ranks can increase the rate of accurate

assignments and reduce the error rate, though at the expense of

reduced specificity.

Simulation studies can help to evaluate the most appropriate

methods for analyzing amplicon-based environmental sequencing

data [38,57,88]. We presented results from a cross section of

classification methods as well as the impact of read length,

primer selection, and sequence error on classification accuracy

and community composition. We hope this work informs

investigators of some of the factors that affect the quality and

interpretation of their environmental gene surveys.

Supporting Information

Figure S1 Taxonomic composition of the sequences
used for non-metric multidimensional scaling commu-

nity comparisons. Automated classification of ‘long’ large

subunit ribosomal DNA sequences from 33 parent sequences using

BLAST against a complete database and MEGAN parsing is

shown. This dataset is the ‘reference set’ in Figure 7. All

assignments to the species level were verified to be correct. In

two cases, MEGAN assigned sequences to higher taxonomic ranks

so arrows indicate the species name of the parent sequence.

(PDF)

Figure S2 Sequence length frequency distribution of
fungal ribosomal DNA (rDNA) sequences identified to
the species level in GenBank. Length frequencies for large

subunit rDNA (LSU) (black) and the internal transcribed spacer

region (ITS) (white) are shown. The number of sequences (y-axis)

in each 100 bp bin (x-axis) is shown.

(PDF)

Figure S3 Comparison of NBC classifications using
simulated short read sequences. Simulated read length is

shown on the x-axis. In the top row, recovery is shown on the y-

axis and refers to the proportion of queries with a correct

taxonomic classification. In the middle row, erroneous recovery is

shown on the y-axis and refers to the proportion of queries with an

incorrect taxonomic classification. In the bottom row, coverage is

shown on the y-axis and refers to the proportion of queries for

which a classification could be made (correct or incorrect). The

results for six taxonomic ranks are shown: kingdom (blue), phylum

(red), class (green), order (purple), family (teal), and genus (orange).

NBC was run ‘as is’ from the Ribosomal Database Project website.

Bars indicate the standard error of the mean using four primers. In

the first column, no statistical cutoffs were enforced. In the second

column, the default statistical cutoffs for NBC (50% for sequences

less than 250 bp, otherwise 80% confidence) were enforced. In the

third column, NBC results were imported into MEGAN using the

following LCA parameters: minimum support = 1, minimum

score = 50 (or 80 for sequences longer than 250 bp), and top

percent = 100.

(PDF)

Figure S4 Taxonomic breakdown of non-metric multi-
dimensional scaling community comparisons. Dataset

sizes were normalized in MEGAN and taxonomic assignments of

200 bp sequences generated by four primers are compared with

the reference set from Figure S1. In part (a), results are

summarized at the species rank. In part (b), results are summarized

at the order rank. In part (c), results are summarized at the order

rank showing results for each primer and associated branch

lengths using MEGAN. In each figure, boxes represent the relative

number of sequences classified at each node/leaf and colors match

those used in Figure 7 for each dataset (0% error).

(PDF)

Figure S5 Number of classifications per minute. The

average number of classifications per minute is shown for three

methods. Bars indicate standard error of the mean using four

different primers. For NBC, analysis times for all of our datasets

was less than one minute. For BLAST + MEGAN, only the time to

conduct local BLAST searches using a single processor was

calculated, since MEGAN parsing with our data took less than a

minute. With BLAST, the number of classifications per minute

could be improved by using multiple processors for each search.

For SAP, the total analysis time includes BLAST searches,

homolog compilation, alignment, and neighbor joining analyses.

(PDF)

Figure S6 Articles indexed by Web of Knowledge from
1990–2010. Research articles with the topic of ITS (white) or

LSU rDNA Classification
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LSU (black) phylogenetic systematics and/or barcoding are

shown.

(PDF)
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