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Abstract

Background: Abdominal aortic aneurysm (AAA) is a complex multi-factorial disease with life-threatening complications.
AAA is typically asymptomatic and its rupture is associated with high mortality rate. Both environmental and genetic risk
factors are involved in AAA pathogenesis. Aim of this study was to investigate telomere length (TL) and oxidative DNA
damage in paired blood lymphocytes, aortic endothelial cells (EC), vascular smooth muscle cells (VSMC), and epidermal cells
from patients with AAA in comparison with matched controls.

Methods: TL was assessed using a modification of quantitative (Q)-FISH in combination with immunofluorescence for CD31
or a-smooth muscle actin to detect EC and VSMC, respectively. Oxidative DNA damage was investigated by
immunofluorescence staining for 7, 8-dihydro-8-oxo-29-deoxyguanosine (8-oxo-dG).

Results and Conclusions: Telomeres were found to be significantly shortened in EC, VSMC, keratinocytes and blood
lymphocytes from AAA patients compared to matched controls. 8-oxo-dG immunoreactivity, indicative of oxidative DNA
damage, was detected at higher levels in all of the above cell types from AAA patients compared to matched controls.
Increased DNA double strand breaks were detected in AAA patients vs controls by nuclear staining for c-H2AX histone.
There was statistically significant inverse correlation between TL and accumulation of oxidative DNA damage in blood
lymphocytes from AAA patients. This study shows for the first time that EC and VSMC from AAA have shortened telomeres
and oxidative DNA damage. Similar findings were obtained with circulating lymphocytes and keratinocytes, indicating the
systemic nature of the disease. Potential translational implications of these findings are discussed.
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Introduction

The human telomere is a simple repeating sequence of six bases,

TTAGGG, located at the ends of chromosomes [1–3]. Normal

human diploid cells possess limited capacity for proliferation in

culture and this finite replicative lifespan has frequently been used

as model of human aging in mitotic tissues and organs [4–6]. Each

replicative cycle is associated with progressive reduction in

telomere length (TL). So TL is an effective indicator of the

number of cell divisions undergone. When telomere shortening

reaches a critical threshold, cell senescence is triggered [7–12].

Telomere shortening may be accelerated by iatrogenic (e.g.

telomere shortening occurs after bone marrow transplantation)

or environmental factors (e.g. oxidative stress, inflammation and

smoke) [13–15].

AAA is a complex multi-factorial disease with life-threatening

complications and is characterized by a progressive enlargement of

the infra-renal abdominal aorta, spontaneously evolving toward

rupture [16–22]. Aneurysms typically have no signs or symptoms,

and rupture of AAA has a high mortality rate. The current

management strategy for patients with AAA includes a combina-

tion of anatomical imaging, watchful waiting and surgical

intervention to prevent deadly ruptures. Decision to intervene

surgically depends on the size and location of the AAA [16–22].

The timing of therapy and imaging is difficult but crucial, since

both invasive repair and progressive disease carry significant risks.

Smaller AAA may rupture between successive scheduled imaging
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sessions, while some large but relatively stable AAA are treated

surgically, exposing patients to unnecessary risks. Multiple

environmental and genetic risk factors are involved in AAA

formation and progression [16]. AAA is typically a disease of

adulthood [17], but it can develop also in childhood in association

with Marfan, Ehlers-Danlos, and Loeys-Dietz genetic syndromes

[18]. Furthermore, AAA has been reported in children with X-

linked immunodeficiency and Wiskott-Aldrich syndrome [19]. It

has been demonstrated that mutations in ACTA2 gene, coding

smooth muscle a-actin, and in MYH11 gene, coding smooth

muscle myosin heavy chain, are responsible for 14% of inherited

ascending thoracic aortic aneurysms and dissections (TAAD)

[20,21]. Genome wide association studies have led to the

identification of common sequence variants on chromosomes

19q13, 4q31, 9q33 and 9p21 predisposing to AAA in non-

syndromic individuals [22–24].

Insight into the pathobiology of AAA is evolving quickly, and

increasing evidence points to an important role for innate immune

cells [25,26]. Monocytes/macrophages infiltrate the vessel wall

and release proteases, among them elastase and metalloprotei-

nases, that compromise the integrity of the vascular wall through

degradation of the extracellular matrix [27–31]. Monocytes/

macrophages also secrete inflammatory cytokines in the media and

adventitia of aneurysmatic vessels, such as TNFa, IFNc and IL-6

[27–31]. Neutrophils produce large amounts of proteases, and

recent experimental studies have pointed out the determinant role

of neutrophils in AAA development [27,28]. The inflammatory

process leads to protease-mediated degradation of the extracellular

matrix and apoptosis of vascular smooth muscle cells (VSMC),

which are the predominant matrix synthesizing cells of the

vascular wall [32]. These processes act in concert to progressively

weaken the aortic wall resulting in dilation and aneurysm

formation. Oxidative stress, that can contribute to inflammation,

has been shown to be involved in AAA pathogenesis [32–37].

There is, therefore, a need for better risk prediction in order to

personalize strategies for the individual patient. Recent studies

suggest that biological ageing of the vasculature may play a role in

AAA pathogenesis [38,39]. Thus, TL in circulating blood

lymphocytes from AAA patients was found to reflect that in

aortic wall, suggesting that lymphocytes DNA content may

represent a surrogate marker of vascular ageing [38,39]. A

limitation of the latter study deals with the lack of information

about the cell types undergoing telomere shortening in the aortic

wall from AAA patients.

In this study, we explored TL in endothelial cells (EC) and

VSMC from aortic segments in close proximity to aneurysm, as

well as in blood lymphocytes and epidermal cells, from AAA

patients and concomitantly studied oxidative stress in the same cell

types. The results obtained demonstrate for the first time that EC

and VSMC from patients with AAA displayed shorter TL and

markers of augmented oxidative stress.

Results

Telomere length in endothelial cells, vascular smooth
muscle cells, blood lymphocytes and epidermal cells
from patients with abdominal aortic aneurysms (AAA)

Telomere length (TL) was measured using quantitative

fluorescence in situ hybridization (Q-FISH) [40–43] the only

technique suitable to perform this analysis in individual cells. The

telomere hybridization fluorescence intensities were expressed in

arbitrary telomere fluorescence units (TFU) (Table 1). We have

here developed a new modification of conventional Q-FISH

allowing to quantify telomere repeat length in kilobase (Kb) by

calibration with a panel of five tumor cell lines of known TL

(Fig. 1). The resulting calibration line was used to express arbitrary

TFU in Kb only for FISH performed in cultured or cytospined

cells, but not in paraffin-embedded tissue.

We first investigated TL in aortic tissue from AAA patients and

controls. Serial tissue sections were stained with CD31 and anti a-

SMA mAbs by immunofluorescence in order to identify EC and

VSMC, respectively (Fig. 2, A and C), and tested for TL in these

cell types by Q-FISH (Fig. 2, B and D). Telomeres were

significantly shorter in EC from AAA patients (median: 0.097

TFU; 1st–3rd q: 0,094–0.100) than in EC from normal aorta

(median: 0.103 TFU; 1st–3rd q: 0.102–0.103) (p,0.0001) (Fig. 3

A). Likewise, telomeres were significantly shorter in VSMC from

AAA patients (median: 0.097 TFU; 1st–3rd q: 0.094–0.100) than in

VSMC from normal aorta (median: 0.106 TFU; 1st–3rd q: 0.104–

0.107) (p,0.0001) (Fig. 3 B).

Subsequent experiments were performed measuring TL in

epidermal cells from skin biopsies tested as control cells not

involved in vascular lesions. Q-FISH revealed that telomeres in

epidermal cells from patients with AAA were significantly shorter

(median: 0.098 TFU; 1st–3rd q: 0.096–0.100) than in the same cells

from controls (median: 0.102 TFU; 1st–3rd q: 0.101–0.102)

(p = 0.010) (Fig. 3 C).

We next analyzed TL in peripheral blood lymphocytes from 23

AAA patients and 34 age-matched healthy donors (Fig. 3 D).

Telomeres were significantly shorter in AAA patients (median:

0.099 TFU; 1st–3rd q: 0.092–0.101) than controls (median: 0.106

TFU; 1st–3rd q: 0.103–0.109) (p,0.0001) (Fig. 3 D) and this

difference remained significant after adjusting for age (p,0.0001).

Then the calibration line was used to convert telomere

fluorescence intensity in Kb for each lymphocyte sample. There

was a median difference of 2 Kb in TL between lymphocytes from

AAA patients and control group. Fig. 4 A shows TL in

lymphocytes from each individual AAA patient and control tested,

while Fig. 4 B shows a representative experiment in which patient

lymphocytes were hybridized to a pan-telomeric probe.

In AAA patients, no correlation was found between blood

lymphocyte TL and age (r = 0.56). Subjects with a positive family

history of AAA had a significantly shorter mean blood lymphocyte

TL compared to individuals without a family history of AAA.

Positive family history of AAA was the only risk factor among

those tested (aneurism size, smoking, hypercholesterolemia,

hypertriglyceridemia, hypertension, body mass index) to be

significantly associated with short lymphocyte TL (p = 0.012).

We next investigated correlations among TL of blood

lymphocytes, EC, VSMC and epidermal cells from AAA patients.

A strong correlation was identified between lymphocytes and

epidermal cells (rS = 0.84), lymphocytes and EC (rS = 0.80), VSMC

and epidermal cells (rS = 0.80), lymphocytes and VSMC

(rS = 0.74), EC and VSMC (rS = 0.72), and EC and epidermal

cells (rS = 0.72).

Taken together, these results demonstrate unambiguously that

telomere shortening in AAA patients is a systemic phenomenon

involving different cell types in different anatomical locations.

Oxidative DNA damage in endothelial cells and vascular
smooth muscle cells from aortic aneurysmatic wall

ROS, being products of normal cellular metabolism, exert a

substantial influence on cell senescence, partly related to their

ability to react with DNA [44]. ROS production may be assessed

using antibodies against the specific ‘‘footprints’’ of oxidative

damage. 7, 8-dihydro-8-oxo-29-deoxyguanosine (8-oxo-dG) is a

commonly used marker of oxidative stress-derived DNA damage

Abdominal Aortic Aneurysm and Telomere Attrition
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Table 1. Median telomere fluorescence.

Lymphocytes (TFU) Endothelial cells (TFU) Smooth muscle cells (TFU) Epidermal cells (TFU)

Patient 1 0.10390 0.10110 0.09960 -

Patient 2 0.10325 0.09570 0.09465 -

Patient 3 0.09955 0.09950 0.09670 -

Patient 4 0.09710 0.09730 0.09345 -

Patient 5 0.09365 0.08975 0.09485 -

Patient 6 0.09475 0.09515 0.09675 -

Patient 7 0.10215 0.10170 0.10035 -

Patient 8 0.09240 0.09375 0.09435 -

Patient 9 0.09200 0.08885 0.09365 -

Patient 10 0.08985 0.09435 0.09110 0.09105

Patient 11 0.09230 0.09660 0.09925 0.09555

Patient 12 0.09695 0.09615 0.09060 0.09640

Patient 13 0.09230 0.09790 0.10075 -

Patient 14 0.09985 0.09565 0.09655 0.10010

Patient 15 0.09910 0.09985 0.10040 0.10050

Patient 16 0.10070 0.10190 0.09750 0.09975

Patient 17 0.10435 0.09240 0.09380 0.09405

Patient 18 0.09020 0.10450 0.10350 0.10360

Patient 19 0.09905 0.10165 0.10290 0.10075

Patient 20 0.10425 0.09275 0.09590 0.09845

Patient 21 0.10115 0.09860 0.09610 0.09785

Patient 22 0.09940 - - -

Patient 23 0.09375 - - -

Control 1 0.11300 0.10190 0.10265 0.10195

Control 2 0.11100 0.10420 0.10700 0.10120

Control 3 0.10700 0.10285 0.10355 0.10325

Control 4 0.10565 0.10135 0.10340 0.10240

Control 5 0.11240 0.10425 0.10600 0.10190

Control 6 0.10385 0.10330 0.10375 0.10065

Control 7 0.10840 0.10235 0.10325 -

Control 8 0.10905 0.10300 0.10615 -

Control 9 0.10490 0.10270 0.10365 -

Control 10 0.11220 0.10330 0.10695 -

Control 11 0.10655 0.10335 0.10560 -

Control 12 0.10565 0.10295 0.10665 -

Control 13 0.10380 0.10305 0.10595 -

Control 14 0.10165 0.10285 0.10570 -

Control 15 0.11445 0.10300 0.10485 -

Control 16 0.11425 0.10270 0.10660 -

Control 17 0.10190 0.10320 0.10552 -

Control 18 0.10470 0.10255 0.10650 -

Control 19 0.10325 0.10305 0.10715 -

Control 20 0.09825 0.10315 0.10565 -

Control 21 0.11515 - - -

Control 22 0.10725 - - -

Control 23 0.10990 - - -

Control 24 0.10210 - - -

Control 25 0.11110 - - -

Control 26 0.10425 - - -
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after ROS attack [45], and can be measured by immunofluores-

cence.

Fig. 4 C shows the percentage of 8-oxo-dG+ lymphocytes from

each individual AAA patient and control tested. Fig. 4 D shows a

representative nuclear staining of lymphocytes from an AAA

patient, while Fig. 4 E shows 8-oxo-dG+ blood lymphocytes from

an healthy donor displaying only occasional low level staining. We

found that the percentage of 8-oxo-dG+ nuclei in peripheral blood

lymphocytes was significantly augmented in AAA patients (n = 19,

median: 36.1%; 1st–3rd q: 24.2–47.6) compared to controls

(n = 23, median: 8.5%; 1st–3rd q: 3.2–12.8) (p,0.0001) (Fig. 5).

We next stained aortic tissue sections from AAA patients with anti-

8-oxo-dG mAb and found significantly higher percentage of 8-

oxo-dG+ nuclei in EC from AAA patients (median: 78.8%; 1st–3rd

q: 71.1–82.1) than in EC from normal aorta (median: 14.4%; 1st–

3rd q: 13.7–15.2) (p,0.0001) (Fig. 5 A). Furthermore, the

percentage of 8-oxo-dG+ nuclei was significantly increased in

VSMC from AAA patients (median: 81.1%; 1st–3rd q: 77.2–83.6)

compared to VSMC from normal aorta (median: 15.4%; 1st–3rd q:

14.5–16.1) (p,0.0001) (Fig. 5 B).

Finally, 8-oxo-dG+ nuclei in epidermal cells from AAA patients

were significantly more abundant (median: 19.1%; 1st–3rd q: 18.5–

20.9) than in the same cells from controls (median: 10.5%; 1st–3rd

q: 8–11.2) (p = 0.0065) (Fig. 5 C).

Taken together, these experiments demonstrated that, in

analogy to that observed for TL, oxidative DNA damage was

significantly higher in EC, VMSC, epidermal cells and lympho-

cytes from AAA patients than in the corresponding normal cellular

counterparts.

Table 1. Cont.

Lymphocytes (TFU) Endothelial cells (TFU) Smooth muscle cells (TFU) Epidermal cells (TFU)

Control 27 0.10855 - - -

Control 28 0.10725 - - -

Control 29 0.09750 - - -

Control 30 0.09960 - - -

Control 31 0.10340 - - -

Control 32 0.10465 - - -

Control 33 0.10665 - - -

Control 34 0.10090 - - -

A minimum of 20 nuclei were scanned for every sample and the mean value of the fluorescence ratios of all cells analyzed was calculated.
doi:10.1371/journal.pone.0035312.t001

Figure 1. Calibration of quantitative FISH analysis. Telomere fluorescence values (TFU), obtained after hybridization with Cy3 pan-telomeric
probe, are converted into kb by external calibration with the L5178Y-S and L5178Y-R murine lymphoma cell lines, MEF murine fibroblast cell line,
MCF7 and HeLa human tumor cell lines with known TL of 10.2 Kb, 79.7 Kb, 47 Kb, 4.07 Kb, and 3.44 Kb respectively. Fluorescence intensity (TFU)
plotted against the size of TTAGGG repeats sequences (Kb) of the five tumor cell lines. The resulting calibration line was used to transform arbitrary
fluorescence intensity units into telomere length in Kb by means of the formula Y = 216.1546+287.22336X (R = 0.997).
doi:10.1371/journal.pone.0035312.g001
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Focal expression of phosphorylated histone H2AX
(cH2AX) in endothelial cells and vascular smooth muscle
cells from aortic aneurysmatic wall

The histone protein H2AX is a central component of numerous

signaling pathways in response to DNA double-strand breaks

(DSBs), which becomes rapidly phosphorylated to form cH2AX at

nascent DSB sites [46]. Shortened telomeres fail to protect the end

of chromosomes. The uncovered DNA double-stranded end

induces formation of cH2AX foci that represent excellent markers

of telomere erosion and hence replicative senescence [47].

We next investigated by immunofluorescence cH2AX expres-

sion in EC and VSMC from AAA vs control aortic walls. EC and

VSMA were detected by staining with CD31 and anti-a-SMA

mAbs, and cH2AX positivity was assessed by enumeration of foci

(Fig. 6 A, B). The mean percentage of cH2AX foci in EC from five

AAA aortic tissue samples was 38% (range 22%–64%), while that

in VSMC was 35% (range 28%–59%). In EC and VSMC from six

control aortic tissues, mean percentages of cH2AX foci were 2%

(range 0.1%–6%) and 1.7% (range 0.15%–5.7%), respectively.

cH2AX-positive foci were significantly more abundant in EC and

VSMC from AAA wall compared to controls (p = 0.006 and

p = 0.010, respectively) (Fig. 6 C). These results indicate increased

occurrence of DSBs in EC and VSMC from AAA vs normal aortic

tissue, consistent with reduced TL and replicative senescence of

these cell types.

Vascular remodeling in aortic aneurysmatic wall
EC from patients with atherosclerosis, aorta manifests high rates

of proliferation and increased cellular turnover that may

contribute to age-dependent attrition of telomeres [48]. It has

been hypothesized but never demonstrated that a similar

mechanism operates in EC from AAA patients [49]. To test this

hypothesis, tissue sections of aortic wall from AAA patients or

controls were stained by immunofluorescence with an anti-Ki-67

mAb in combination with CD31 or anti a-SMA mAbs. Ki-67

represents an excellent marker of the growth fraction of a given

cell population while is not expressed in resting cells [50]. The

proportion of Ki-67+ EC from AAA patients was significantly

higher than that detected in EC from control aorta (0.8560.6

versus 0.160.2%; p = 0.005). Likewise, Ki-67+ VSMC were

significantly more abundant in aortic tissue from AAA patients

than controls (0.5660.4 versus 0.160.2%; p = 0.005). These

findings indicate that EC and VSMC from AAA patients contain

a higher fraction of proliferating cells than their normal

counterparts, conceivably indicative of increased vascular remod-

eling [49] in AAA.

Oxidative DNA damage and telomere shortening in
blood lymphocytes

Blood lymphocytes are easily obtained from AAA patients and

various studies [38,39] including this indicate that analysis of TL

in these cells provides a reliable estimate of vascular aging. We

next correlated TL and extent of oxidative DNA damage in blood

lymphocytes from AAA patients and found a moderate statistically

significant inverse correlation (rS = 20.57; p,0.0001) (Fig. 7).

Discussion

AAA originates from the interaction of genetic predisposition

with environmental factors that concur at weakening the wall of

abdominal aorta and promote its progressive dilation [16–18].

Inflammation is not only associated with clinically overt AAA but

may play also a role in disease pathogenesis [18,27–31].

Aneurisms are often infiltrated with activated lymphocytes,

macrophages and neutrophils that release matrix metalloproteases

and serine proteases which degrade structural proteins of the

aortic wall such as elastin, collagen and laminin [18,27–31].

Figure 2. Telomere length of EC and VSMC from patients with AAA measured using Q-FISH and immunofluorescence. A) Aortic
aneurysmatic wall derived EC stained with anti-CD31 mAb (green). The inset shows the nuclei analyzed by Q-FISH. B) EC interphase nuclei hybridized
with Cy3-PNA telomeric probe (red signals). C) Aortic aneurysmatic wall derived VSMC stained with anti-a-smooth muscle actin mAb (green). D)
VSMC nuclei hybridized with Cy3-PNA telomeric probe (red signals). DAPI was used to label nuclei.
doi:10.1371/journal.pone.0035312.g002
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Furthermore, infiltrating cells release pro-inflammatory cytokines

such as IL-6, osteopontin and the chemokine CCL-2 that recruit

additional inflammatory cells [32].

Oxidative stress is always associated with inflammation and

determines tissue damage due to increased production or impaired

clearance of ROS. Previous studies have shown that markers of

oxidative stress, e.g. inducible nitric oxide synthase, nitrotyrosine,

nitrites, NADPH oxidase, and p22phox are increased in the media

and adventitia of human AAA tissues as compared to normal

aorta. These findings have been reproduced in different animal

models of human AAA [18,25,26,33,34].

Oxidative stress is also involved in telomere shortening. In this

respect, it was shown recently that VSMC present in human

arterial atherosclerotic plaques exhibited oxidative DNA damage

and short telomeres, suggesting a potential relation between these

findings [51]. The issue of oxidative DNA damage in EC and

VSMC present in the AAA aortic wall has never been investigated

before.

Interest in telomere research in AAA has been fueled by some

studies showing that telomeres are shortened in AAA patients and

that TL in circulating lymphocytes correlates with that in the

aortic wall [38,39].

In this study we investigated TL in different cell types from

patients with AAA and matched controls including EC and

VSMC from the aortic wall, epidermal cells and blood

lymphocytes using Q-FISH [40–43]. This technique allowed us

to estimate accurately TL in each individual cell type and to

perform correlative analyses. Telomeres were found to be

significantly shortened in EC, VSMC, epidermal cells and blood

lymphocytes from AAA patients compared to matched controls,

indicating that AAA is a systemic disorder involving different cell

types in different anatomical locations and conceivably related to

genetic predisposition [22–24] and/or life style [16–18].

We next investigated the occurrence of oxidative DNA damage

in EC and VSMC, as well as in epidermal cells and blood

lymphocytes, from AAA patients using immunofluorescence for 8-

oxo-dG. Oxidative damage to telomeric DNA provoked by ROS

[45] results in the formation of 8-oxo-dG which contributes to

impair physiological maintenance of TL in vitro [14,15,44]. Recent

data indicate that triplet guanines present in telomeric TTAGGG

repeats contribute to the preferential accumulation of oxidative

base damage in telomeres in vivo [15]. 8-oxo-dG in some telomere

structures (e.g., fork-opening, 39-overhang, and D-loop) are less

effectively removed and the presence of 8-oxo-dG can lead to

telomere shortening accompanied by strand breakage [44].

Figure 3. Telomere length of EC, VSMC, blood lymphocytes and epidermal cells from patients with AAA and controls. A) Telomeres
length in EC from 21 AAA patients and in EC from 20 normal aorta. B) Telomeres length in VSMC from 21 AAA patients and in VSMC from 20 normal
aorta. C) Telomeres length in epidermal cells from patients with 11 AAA and in these same cells from 6 controls. D) Telomeres length in peripheral
blood lymphocytes in 23 AAA patients and in 34 controls.
doi:10.1371/journal.pone.0035312.g003
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A strong 8-oxo-dG immunoreactivity was detected in EC and

VSMC, as well as in epidermal cells and blood lymphocytes from

AAA patients, with the highest percentage of positive cells found in

EC and VSMC. This latter observation is consistent with a

previous report showing a close association between infiltrating

macrophages and the extent of oxidative DNA damage in the

aortic wall from AAA patients [52,53]. Moreover, we demon-

strated that EC and VSMC from aortic aneurysmatic wall

expressed cH2AX histone foci at high level, indicative of DNA

DSB concentrating preferentially in telomeres in a high oxidative

environment [46,47].

The results obtained in this study suggest that oxidative stress,

like telomere shortening, is a systemic phenomenon in AAA

patients. Examples of other systemic disorders characterized by the

occurrence of oxidative stress in multiple cell types are psoriasis

and scleroderma [54].

Recent studies indicate that shortening of telomeres may

promote oxidative stress associated with impaired mitochondrial

biogenesis and function, decreased gluconeogenesis and cardio-

myopathy [55–57]. Thus, the cause and effect relation between

oxidative stress and telomere shortening is still debated.

Oxidative stress promotes EC and VSMC apoptosis [33,34].

The loss of VSMC, which represent the major sources of structural

proteins of the extracellular matrix, and the consequent disorga-

nization of the latter stimulate aneurysm remodeling [33,34]. With

this background, we investigated expression of the proliferation

marker Ki-67 in VSMC from AAA patients and controls as

potential indicator of aneurysm remodeling and found that Ki-67+

VSMC from AAA patients were indeed significantly increased.

Moreover, the percentage of Ki67+ EC was significantly higher in

aortic wall from AAA patients, suggesting that the process of

aneurysm remodeling may involve not only VSMC but also EC.

Blood lymphocytes are an attractive cell fraction for the

investigation of TL and, as shown here for the first time, of

oxidative DNA damage in AAA patients. We therefore asked

whether there was an inverse correlation between TL and

accumulation of ROS-induced oxidative DNA damage, as

assessed by 8-oxo-dG staining, in blood lymphocytes from AAA

patients. We detected a moderate inverse correlation between TL

Figure 4. Telomere length and oxidative DNA damage in lymphocytes from each individual AAA patient and control. A) Telomere
length of peripheral blood lymphocytes from 23 patients with abdominal aortic aneurysms (AAA), and 34 healthy donors. Bars represent the mean. B)
Lymphocytes interphase nuclei from an AAA patient hybridized with Cy3-PNA telomeric probe (red signals). C) Oxidative DNA damage in peripheral
blood lymphocytes from 19 patients with AAA, and 23 healthy donors. D) A representative immunostaining of anti-8-oxo-dG (green) of blood
lymphocytes from an AAA patient. Arrows show nuclei intensively staining for 8-oxo-dG (green). D) Immunostaining of anti-8-oxo-dG (green) of
blood lymphocytes from an healthy donor. Arrow shows nucleus with several small positive regions.
doi:10.1371/journal.pone.0035312.g004
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and oxidative DNA damage, suggesting the involvement of

additional factors (e.g. genetic, environmental) in telomere

shortening. It must be stressed that neither telomere shortening

nor increased oxidative DNA damage are specifically associated

with AAA pathogenesis, but rather represent hallmarks of a wide

spectrum of inflammatory and degenerative disorders [8,18,32].

It has been reported that anti-oxidant drugs such as vitamin E

can reduce the size of AAA as well as the incidence of aortic

rupture in pre-clinical experimental models [58]. Furthermore,

angiotensin II type I receptor blockers or statin were found to

suppress significantly the expression of p22phox in the aortic wall of

patients with thoracic aorta aneurysm [36]. Based upon our

results, we propose that the biological activity of these and other

emerging therapeutic strategies for AAA are monitored through

the simple investigation of TL in circulating lymphocytes by Q-

FISH. This latter technique is easily performed by experienced

personnel and requires small aliquots of cells, as opposed to

Southern blot [38,39] that is cumbersome and time-consuming,

and requires large numbers of cells. Follow-up of this proposal in

future studies is warranted.

Materials and Methods

Study design and tissue samples
Patients and controls were matched not only for age, but also for

absence of neoplasms, infections and chronic inflammation,

chronic obstructive pulmonary disease, diabetes mellitus, nephrop-

athy, liver disease, symptomatic obstructive coronary, cerebrovas-

cular and peripheral diseases, and smoking habits. Twenty-six %

of AAA patients had positive familial history for abdominal aortic

aneurism. Fifty seven subjects were enrolled for TL studies

(Table 1), i.e. twenty three AAA patients whose mean age was 71.3

(range 61–78 years) and 34 apparently healthy control subjects

whose mean age was 68.7 (range 62–77 years). Blood lymphocytes

were obtained from peripheral venous blood sample of the

superficial vein of the arm. Skin biopsies were obtained from

eleven AAA patients (mean age 70, range 76–65) at the time of

aortic surgery and from six control subjects (mean age 69, range

73–65) at the time of blood sampling by a poorly invasive skin

biopsy technique. Aortic tissue samples were obtained from the

aneurismal sac in twenty one of the above mentioned patients.

The processing of these samples was carried out by the Genoa

Figure 5. Oxidative DNA damage of EC, VSMC, blood lymphocytes and epidermal cells from patients with AAA and controls. A) The
percentage of 8-oxo-dG+ nuclei in EC from 20 AAA patients and in EC from 20 normal aorta. B) The percentage of 8-oxo-dG+ nuclei in VSMC from 20
AAA patients compared to VSMC from 20 normal aorta. C) 8-oxo-dG+ nuclei in epidermal cells from 6 AAA patients and in the same cell type from 6
controls. D) The percentage of 8-oxo-dG+ nuclei in peripheral blood lymphocytes from 19 AAA patients compared to 23 controls.
doi:10.1371/journal.pone.0035312.g005
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Vascular Bio-Bank operated by two of us (DP and FD), which

collects and stores for research purposes samples of atherothrom-

botic and aneurysmatic arterial wall obtained intra-operatively,

following strictly standard operating procedures and ethical

regulations. Twenty specimens of control abdominal aortic tissue

were obtained from the Institute of Forensic Medicine of the

Figure 6. cH2AX staining patterns observed in EC and VSMC from patients with AAA. A) Aortic aneurysmatic wall derived EC stained with
anti-CD31 (green) and anti-cH2AX (red) mAbs. B) Aortic aneurysmatic wall derived VSMC stained with anti-a-smooth muscle actin (green) and anti-
cH2AX (red) mAbs. Focal staining for cH2AX is evident (A, B). Nuclei stained with DAPI (A, B). Magnification, 1006 (A, B). C) cH2AX-positive foci were
significantly more abundant in EC and VSMC from AAA wall compared to controls (p = 0.006 and p = 0.010 respectively).
doi:10.1371/journal.pone.0035312.g006

Figure 7. Relationship between telomere shortening and DNA damage in blood lymphocytes from AAA patients. Spearman’s
correlation test. Linear regression analysis between telomere length and accumulation of ROS-induced oxidative DNA damage, assessed by 8-oxo-dG
staining, in blood lymphocytes from 19 AAA patients and from 23 controls. The Spearman’s rank correlation coefficient (rS) is = 20.57.
doi:10.1371/journal.pone.0035312.g007
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University of Genoa (mean age 68.7 years, range 60–81 years).

These samples were from individuals who died of accidental

trauma or suicide and had no autoptic evidence of aortic aneurism

or other medical conditions that precluded recruitment to the

study.

Participation in the study of AAA patients and control subjects

was based upon informed consent of patients or legal represen-

tatives. The study conformed to the principles of the Helsinki

declaration and was approved by the Ethics Committee of the

Azienda Ospedale-Università S. Martino, Genoa, Italy.

Sample Preparation
Mononuclear cells from heparinized peripheral blood were

isolated by Histopaque-1077 (Sigma, St. Louis, MO) gradient

centrifugation and washed three times in phosphate buffered saline

(PBS). Cytospin preparations of peripheral blood lymphocytes

from AAA patients and controls were cytocentrifuged and fixed in

4% paraformaldehyde in PBS. In the operating room, AAA tissues

were rapidly washed in physiological saline. Thereafter they were

fixed in 4% phosphate-buffered formaldehyde, processed into

paraffin blocks, and subjected to sectioning. Formalin-fixed,

paraffin-embedded normal aorta tissue blocks were obtained from

the University of Genoa Bio-Bank and processed as above.

Telomere length measurement by quantitative
fluorescence in situ hybridization (Q-FISH) in interphase
nuclei

Quantitative fluorescence in situ hybridization (Q-FISH) of

telomeres has been extensively used to obtain quantitative

information on TL distributions [40–43]. In addition, the low

detection limit of Q-FISH (0.1 kb of telomere repeats) allows

quantification of critically short telomeres that go undetected by

Southern blot analysis. Interphase Q-FISH method, which builds

on conventional Q-FISH, combines labeling of telomeres in

interphase nuclei, using a fluorescent peptide nucleic acid (PNA)

probe against telomeric repeats, with automated microscopy. The

PNA probe for telomeric sequences is a ready-to-use probe

included in the Telomere PNA FISH Kit/Cy3 (Dako Cytomation,

Hamburg, Germany). The hybridization was performed according

to the manufacturer’s instructions. Slides were mounted with

antifade solution (Vector Laboratories, Burlingame, CA). Slide

scanning, cell identification, intensity measurement, and quanti-

fication of TL were performed using the fluorescence-based

microscopic scanning system E-1000 Nikon (Nikon, Japan) and a

high-resolution CCD camera. For TL quantification, we measured

Cy3 intensity in single nuclei. The slide scanning and cell analysis

procedures were performed using a 1006 Nikon objective. The

Cy3 pan-telomeric probe intensity was measured by an appropri-

ate filter. Telomere fluorescence signals were quantified by using

the Genikon program (Nikon). A minimum of 20 nuclei were

scanned for every sample and the mean value of the fluorescence

ratios of all cells analyzed was calculated.

Calibration of quantitative FISH analysis
To validate the use of Q-FISH for measurements of the length

of telomeric repeats we hybridized five cell lines with different size

of TTAGGG repeat sequences with the Cy3-PNA telomeric

probe. Telomere fluorescence units (TFU) are converted into

kilobase (Kb) by external calibration with the L5178Y-S and

L5178Y-R murine lymphoma cell lines, MEF murine embryonic

fibroblast cell line, MCF7 and HeLa human tumor cell lines with

known TL of 10.2 Kb, 79.7 kb, 47 Kb, 4.07 Kb and 3.44 Kb,

respectively [42]. For each cell line the median fluorescence

intensity was directly proportional to the size of the TTAGGG

repeats sequences and the resulting calibration line was used to

express telomere fluorescence in TFU with corresponding Kb of

TTAGGG repeats. The resulting calibration line was used to

transform arbitrary TFU (X) into TL in Kb (Y) by means of the

formula Y = 216.1546+287.22336X (R = 0.997) (Fig. 1).

Immunofluorescence studies
Indirect immunofluorescence was performed on 4-mm-thick

formalin-fixed, paraffin embedded tissue sections or cytospins as

previously described [59]. The following primary monoclonal

antibodies were used: anti-human(h)CD31 (diluted 1/50; Dako

Cytomation, Hamburg, Germany), anti-a-smooth muscle actin (1/

60; a-SMA; Dako), anti-human Ki-67 (1/60; Dako), anti-8-oxo-

dG (1/100; Santa Cruz Biotechnology, Europe), anti-c-H2AX (1/

50; Millipore). After antigen retrieval slides were incubated with

primary antibodies overnight at 4uC, followed by AlexaFluor-488

or 568-conjugated anti-mouse immunoglobulin G (1/200 dilution,

Molecular Probes, Eugene, OR, US).

Statistical analysis
Because observed TL had a skewed distribution, the statistical

analyses were performed on natural log-transformed data.

Standard linear regression techniques were used to associate TL

with individual factors and to adjust for age (in years) and gender.

Descriptive statistics were firstly performed; absolute frequencies

and percentages were reported for qualitative data, medians with

quartiles (1st–3rd q) were reported for quantitative variables.

Comparison of categorical variables between cases and controls

was made by the chi-square test or by the Fisher’s Exact test in

case of expected frequencies ,5. Comparison of quantitative

variables between cases and controls was made by the Mann-

Whitney U test. Correlations were evaluated by the Spearman’s

rank correlation coefficient (rS); rS values from 0.40 to 0.59 were

considered moderate, from 0.60 to 0.79 were considered strong,

and from 0.80 to 1 were considered very strong; values,0.4 were

considered weak [60]. All statistical test were two-sided and a P

value,0.05 was considered as statistically significant. The software

‘‘Statistica’’, release 8 (StatSoft Co., Tulsa, OK) was used to

perform all the analyses.
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