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Abstract

Gremlin-1, a bone morphogenetic protein (BMP) antagonist, is overexpressed in various cancerous tissues but its role in
carcinogenesis has not been established. Here, we report that gremlin-1 binds various cancer cell lines and this interaction is
inhibited by our newly developed gremlin-1 antibody, GRE1. Gremlin-1 binding to cancer cells was unaffected by the
presence of BMP-2, BMP-4, and BMP-7. In addition, the binding was independent of vascular endothelial growth factor
receptor-2 (VEGFR2) expression on the cell surface. Addition of gremlin-1 to A549 cells induced a fibroblast-like morphology
and decreased E-cadherin expression. In a scratch wound healing assay, A549 cells incubated with gremlin-1 or transfected
with gremlin-1 showed increased migration, which was inhibited in the presence of the GRE1 antibody. Gremlin-1
transfected A549 cells also exhibited increased invasiveness as well as an increased growth rate. These effects were also
inhibited by the addition of the GRE1 antibody. In conclusion, this study demonstrates that gremlin-1 directly interacts with
cancer cells in a BMP- and VEGFR2-independent manner and can induce cell migration, invasion, and proliferation.

Citation: Kim M, Yoon S, Lee S, Ha SA, Kim HK, et al. (2012) Gremlin-1 Induces BMP-Independent Tumor Cell Proliferation, Migration, and Invasion. PLoS ONE 7(4):
e35100. doi:10.1371/journal.pone.0035100

Editor: Ju-Seog Lee, University of Texas MD Anderson Cancer Center, United States of America

Received December 9, 2011; Accepted March 8, 2012; Published April 13, 2012

Copyright: � 2012 Kim et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by a grant (2011K000737) from Korea Biotech R&D Group of Next-generation growth engine project of the Ministry of
Education, Science and Technology, Republic of Korea. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jjhchung@snu.ac.kr

Introduction

Gremlin-1 is a 20.7-kDa protein consisting of 184 amino acids

with a cysteine-rich region, a cysteine knot motif, and a structure

shared by members of the TGF-b superfamily. This protein is

evolutionarily conserved and the human gremlin gene (GREM1)

has been mapped to chromosome 15q13-q15 [1,2]. Gremlin-1 is a

secreted protein and three isoforms have been reported [3].

Isoform 1 is the most common isoform and isoforms 2 and 3 have

deletions of amino acids 39–79 and 10–79, respectively. Gremlin-1

forms heterodimers with BMP-2, BMP-4, and BMP-7 and thus

inhibits their binding to receptors on the cell surface [4–6]. In

addition, Gremlin-1 plays an important role in regulating BMPs

during lung, limb, and kidney development as well as during

neural crest cell differentiation [7,8]. In addition to its antagonistic

effect on soluble ligands, gremlin-1 interacts intracellularly with

the BMP-4 precursor protein and downregulates BMP-4-mediated

signaling activity in embryonic lungs [9]. Gremlin-1 also interacts

with Slit proteins, a family of secreted axonal guidance proteins,

and acts as an inhibitor of monocyte chemotaxis [10]. Recently it

was reported that gremlin-1 binds vascular endothelial growth

factor receptor-2 (VEGFR2) in a BMP-independent manner and

modulates angiogenesis [11]. Gremlin-1 is overexpressed in

various human tumors including carcinomas of the cervix,

endometrium, lung, ovary, kidney, breast, colon, and pancreas

[12,13] but its role in carcinogenesis has not been studied in detail.

In this study, we report that gremlin-1 directly binds to the

cancer cell lines A549, HeLa, A172, and A431. In A549 cells,

gremlin-1 induces cell migration, proliferation, and invasion. The

interaction with cancer cells was not mediated by VEGFR2, the

only known cell surface receptor of gremlin-1, and was unaffected

by the presence of BMPs. Gremlin-1-transfected A549 cells

showed increased tumor growth in vivo, suggesting that gremlin-1

overexpression may play a role in tumorigenesis.

Materials and Methods

Cell culture
A549, HeLa, A172, and A431 cells were obtained from the

Korean Cell Line Bank (Seoul, Republic of Korea) and human

umbilical vein endothelial cells (HUVECs) were obtained from

Invitrogen (Carlsbad, CA). A549, A172 and A431 cells were

grown in RPMI-1640 media (Welgene, Seoul, Korea) supple-

mented with 10% FBS (GIBCO, Grand Island, NY). HeLa cells

were cultured in MEM media (Welgene) supplemented with 10%

FBS. HUVECs were cultured in endothelial cell growth media-2

(EGM-2, Lonza, Walkersville, MD).
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Cell transfection
A549 cells (5.06105 cells) were plated 1 day prior to transfection

to achieve 70% confluency at the time of transfection. The gremlin

cDNA was amplified from a human cervical tissue cDNA library

as described previously [12]. HindIII and XhoI restriction sites were

introduced at the 59 and 39 ends, respectively, using the following

PCR primers: 59 CCC AAG CTT ATG AGC CGC ACA GCC

TAC AC 39 and 59 CCG CTC GAG ATC CAA ATC GAT GGA

TAT GC 39. The PCR product was digested with HindIII and

XhoI and then ligated into the pcDNA3.1/myc-His vector

(Invitrogen). This expression vector was transfected into cells

using the Lipofectamine 2000 reagent (Invitrogen) according to

the manufacturer’s instructions. To transfect a 100 mm dish of

A549 cells, 24 mg of plasmid was mixed with 60 ml of

Lipofectamine. Antibiotic selection was performed using 1.0 mg/

ml of G418 (Invitrogen). The selected cells are termed gremlin-1-

A549 cells. In a parallel experiment, A549 cells were transfected

with pcDNA3.1/myc-His vector alone and used as mock-A549

cells.

Expression and purification of gremlin-1
Gene encoding human gremlin-1 and human IgG1-Fc fusion

protein was constructed using overlapping PCR as described

previously [15]. The linker primer sequences (forward and

backward for gremlin-1) are as follows; 59 GGC CCC ACC

GGC CCC ATC CAA ATC GAT 39, and 59 GGG GCC GGT

GGG GCC TCG GGT GGC GGT GGC 39. The linker primer

sequences forward and backward for human IgG1-Fc are as

follows; 59 AAG CTT GTG GCC CAG GCG GCC ATG AGC

CGC ACA GCC TAC 39, and 59 GGA TCC TCA TTT TGG

CGG GGA CAG GGA GAG 39. The PCR products were

digested with HindIII and BamHI and cloned into the pCEP4

expression vector (Invitrogen). HEK293F cells (Invitrogen) were

cultured in GIBCO FreeStyleTM 293 Expression media (Invitro-

gen) at a cell density between 0.16106 and 2.06106 cells/ml. Cells

were grown in disposable Erlenmeyer tissue culture flasks with

vented caps (Corning Inc.) at 135 rpm on an orbital shaking

incubator (37uC, 8% CO2, Minitron, INFORS HT, Switzerland).

One day prior to transfection, cell cultures were diluted with fresh

media to achieve a density of 1.06106 cells/ml, which resulted in a

density of 2.06106 cells/ml on the day of transfection. HEK293F

cells were transfected with pCEP4 expression vector using

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s

instructions. Transfected cells were again cultured in the orbital

shaking incubator and culture supernatants were harvested the

third day after transfection. The gremlin-1-Fc fusion protein was

purified using protein A affinity gel chromatography as described

previously [15].

Generation of gremlin-1 antibody (GRE1)
New Zealand white rabbits were immunized with gremlin-1-Fc

and a rabbit immune library was constructed using total RNA

prepared from the bone marrow and spleen of the immunized

rabbits, as described previously [14]. Single-chain variable

fragment (scFv) clones were selected from the library using phage

display as described previously [15]. The scFv fragments were

converted to full length IgG and overexpressed as described

previously [16]. The specificity of the GRE1 antibody was

determined using western blot analyses (Fig. S1).

RNA isolation and RT-PCR
Total RNA was isolated from A549 cells, HeLa cells, and

HUVECs using the TRIzol reagent (Invitrogen) according to the

manufacturer’s instructions. cDNA was synthesized using the

SuperscriptH III First-Strand Synthesis system (Invitrogen).

The primer sequences were as follows: VEGFR-2 forward: 59-

TGATCGGAAATGACACTGGA-39, VEGFR-2 reverse: 59-

TGCTTCACAGAAGACCATGC-39, gremlin-1 forward: 59-AA-

CAGTCGCACCATCATCAA-39, gremlin-1 reverse: 59-

AATTTCTTGGGCTTGCAGAA-39, GAPDH forward: 59-

AGGTGAAGGTCGGAGTCAACG-39, GAPDH reverse: 59-

AGGGGTCATTGATGGCAACA-39. The PCR mixtures were

prepared according to the manufacturer’s instructions with PCR

conditions of 35 cycles of 30 sec at 94uC, 30 sec at 56uC, and

1 min at 72uC on a 2720 Thermal Cycler (Applied Biosystems,

Foster City, CA).

Flow cytometry
Adherent cells were trypsinized and washed with 1% (w/v) BSA

in phosphate-buffered saline (PBS). Suspension cells were collected

by centrifugation at 5006g for 2 min and washed with 1% (w/v)

BSA in PBS. All cells were incubated with His-tagged gremlin-1

(R&D Systems, Minneapolis, MN) at a final concentration of

100 nM in 1% (w/v) BSA in PBS for 1 h at 37uC. The cells were

then washed twice with 1% (w/v) BSA in PBS and incubated for

30 min at 37uC in the dark with a FITC-conjugated His antibody

(Abcam, Cambridge, UK) at a final concentration of 5 mg/ml.

Cells were then washed twice with 1% (w/v) BSA in PBS and

resuspended in 500 ml of PBS prior to analysis on a FACSCanto II

flow cytometer (BD Biosciences, San Jose, CA).

To determine the neutralizing efficacy of the gremlin-1 antibody

GRE1, cells were incubated with 100 nM of His-tagged gremlin-1

and 10 mM of GRE1 in 1% (w/v) BSA in PBS for 1 h at 37uC and

probed with a FITC-conjugated His antibody (Abcam).

A549 cells were treated with 1 mM of BMP-2, BMP-4, or BMP-

7 (R&D Systems, Minneapolis, MN) and 100 nM of gremlin-1-Fc

simultaneously and incubated for 1 h at 37uC. Cells were probed

with FITC-conjugated IgG-Fc specific antibody (5 mg/ml, Invi-

trogen). Cells were then analyzed on a FACSCanto II flow

cytometer.

Western blot analyses
HUVECs, A549 cells, and HeLa cells were lysed in ice-cold lysis

buffer [50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 2 mM EDTA,

1% Triton-X 100, 0.1% SDS, 1 mM PMSF] containing a

protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO).

Western blots were performed as described previously [14]. E-

cadherin (1:1,000 dilution; Abcam), VEGFR-2 (1:1,000 dilution;

Cell Signaling Technology, Danvers, MA), and b-actin (1:10,000

dilution; Applied Biological Materials, Richmond, BC) antibodies

were used as the primary antibodies. The secondary antibodies

were horseradish peroxidase (HRP)-conjugated anti-mouse IgG

(1:1,000 dilution; Pierce Chemical Co., Rockford, IL) or HRP-

conjugated anti-rabbit IgG (1:1,000 dilution; Pierce Chemical

Co.). Blots were visualized using an enhanced chemiluminescence

system (Pierce) per the manufacturer’s instructions.

To analyze E-cadherin expression, A549 cells (1.06105 cells/

well) were seeded onto a 60-mm dish and grown to 50%

confluence. Cells were treated with 100 nM of His-tagged

gremlin-1 for 3 days. Cells were lysed and analyzed by western

blot as described above.

To determine the neutralizing efficacy of the gremlin-1 antibody

GRE1, gremlin-1-A549 cells and mock-A549 cells (1.06105 cells/

well) were seeded onto a 60-mm dish to 50% confluence. Mock-

A549 cells were cultured without treatment and Gremlin-1-A549

cells were cultured for 24 h in the presence of 10 mM GRE1 or

control antibody (Palivizumab, Synagis, Abbott Laboratories,

Tumor Cell Proliferation and Invasion by Gremlin-1
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Abbott Park, IL). Cells were lysed and analyzed by western blot as

described above.

To analyze gremlin-1 expression, the culture supernatants from

mock-A549 and gremlin-1-A549 cells were resolved by SDS-

PAGE as described above. The blots were incubated for 1 h at

room temperature with HRP-conjugated -His antibody (1:1000

dilution, R&D Systems). Blots were visualized using an enhanced

chemiluminescence system (Pierce) per the manufacturer’s in-

structions.

Enzyme immunoassay
Microtiter plates (Corning Costar Corp., Cambridge, MA) were

coated with 100 nM of BMP-2, BMP-4, or BMP-7 (R&D Systems)

and blocked with 1% (w/v) skim milk in PBS. Gremlin-1-Fc

(10 nM) or gremlin-1-Fc (10 nM) plus 500 nM of GRE1 antibody

were added to the wells. After washing, plates were incubated with

an HRP-conjugated IgG-Fc specific antibody (1:5,000 dilution;

Pierce Chemical Co.). 2,29-azino-bis(3-ethylbenzothiazoline-6-

sulphonic acid (ABTS) substrate solution (Amresco, Solon, OH)

was used for the coloring reaction as described previously [17].

Experiments were performed in triplicate.

Crystal violet staining assay
A549 cells were seeded in 24-well plates (1.06104 cells/well)

and treated with 100 nM of His-tagged gremlin-1 for 3 days.

Media was removed and cells were washed with PBS and fixed

with 4% paraformaldehyde in PBS for 10 min. Cells were stained

with 0.05% crystal violet in distilled water for 30 min. The staining

solution was removed and the cells were washed 3 times with PBS

as described [18]. Images were obtained using a Leica DFL290

camera (Leica Microsystems, Wetzlar, Germany) and analyzed

using Leica application suite software (Leica Microsystems)

Immunofluorescence staining
A549 cells (1.56104 cells/well) were seeded on glass coverslips

coated with poly-L-lysine (100 mg/ml, Sigma) and grown to 50%

confluence. Cells were treated with 100 nM of His-tagged

gremlin-1 for 3 days, rinsed in PBS, and fixed in 4%

paraformaldehyde in PBS for 30 min at room temperature. Fixed

cells were permeabilized with 0.2% Triton X-100 in PBS (PBST)

at room temperature for 10 min and then blocked with 1% gelatin

in PBST for 30 min at room temperature. Immunofluorescent

staining was performed using an E-cadherin antibody (Abcam)

followed by an Alexa 488-conjugated secondary antibody

(Invitrogen). Nuclei were stained with DAPI (1:1,000 dilution;

Invitrogen) and actin filaments were stained using rhodamine-

phalloidin (1:1,000 dilution; Invitrogen). Coverslips were mounted

on glass slides using aqueous mounting medium with anti-fading

agents (Biomeda Corp., Foster City, CA). Images were acquired

using a LSM 5 PASCAL Laser Scanning Microscope (Carl Zeiss,

Germany) and analyzed using LSM 5 PASCAL software.

Cell migration assay
Cells were seeded in 24-well plates at a density of 1.06105 cells

per well. A scratch wound was generated by scratching with a

pipette tip. After rinsing with media to remove detached cells,

100 nM of His-tagged gremlin-1 was added to the cultures for

24 h. Photographic images were taken from each well immediately

and again after 24 h using a Leica DFL290 camera (Leica

Microsystems). Images were analyzed using Leica application suite

software (Leica Microsystems). The distance that cells migrated

through the area created by scratching was determined by

measuring the wound width at 24 h and subtracting it from the

wound width at the start. The values obtained were then expressed

as % migration, setting the migrating distance of cells untreated as

100% as described [19].

To determine the neutralizing efficacy of the gremlin-1 antibody

GRE1, scratched cells were incubated for 24 h with His-tagged

gremlin-1 alone or plus 10 mM GRE1 (or 10 mM control

antibody). The distance was determined as described above.

Using the same protocol, mock transfected A549 cells and

gremlin-1 transfected A549 cells were seeded and scratched.

Mock-A549 cells were cultured without any treatment while

Gremlin-1-A549 cells were cultured for 24 h in the presence of

10 mM GRE1 or control antibody. The distance was determined

as described above. The results were representative of three

independent experiments.

Cell invasion assay
Cell invasion assays were performed using ECM coated inner

chambers (Chemicon, Temecula, CA) per the manufacturer’s

instructions. Mock-A549 cells and gremlin-1-A549 cells (3.06105

cells per well) were suspended in 300 ml of serum-free media.

Complete media (500 ml) containing 10% FBS was added to the

bottom wells of the plate. Cells were incubated for 48 h. Non-

migrating cells were wiped away and washed with PBS. The

membranes were fixed with 4% paraformaldehyde in PBS and

stained with a crystal violet stain solution (Chemicon). Images were

acquired using a Leica DFL290 camera (Leica Microsystems) and

analyzed using Leica application suite software. Migrated cells

were counted in four separated fields per well. The values obtained

were then expressed as % invasion, setting the cell counts of mock-

A549 cells as 100%. The results were representative of three

independent experiments.

Cell proliferation assay
Cell proliferation was determined using CellTiter 96 Aqueous

One Solution Cell Proliferation Assay (Promega, Madison, WI)

following the manufacturer’s protocol. Experiments were per-

formed in 96-well plates in RPMI-1640 media supplemented with

10% FBS. Mock-A549 cells and gremlin-1-A549 cells were seeded

at a density of 1,000 cells per well. After 24 h, cells were washed

twice with serum-free media and cultured in 100 ml of complete

media with or without 3 mM of GRE1 antibody. Cell proliferation

was determined by using Labsystems Multiskan Ascent Photomet-

ric plate reader (Thermo Labsystems, Franklin, MA) for a 96 well

plate with a 492 nm filter. Experiments were performed in

triplicate.

In vivo tumorigenesis
All animal experiments were authorized by the Institute of

Laboratory Animal Resources Seoul National University and Use

Committee (Permit number: SNU-11-0207). Gremlin-1-A549 cells

and mock-A549 cells (1.06106 cells/mouse) were injected

subcutaneously in the right flank of 4- to 6 week-old female,

athymic nude mice (7 mice in each treatment group). Tumor

formation and size were assessed weekly by caliper measurements

of the length and width of the tumors. Tumor volumes were

calculated using the following formula: (Length6Width6Height)/

2 [20].

Statistical analyses
Statistical significance was determined using a Student’s t-test

and P values,0.05 were considered statistically significant. All

statistical tests were performed using SPSS version 17.0 software

(SPSS, Chicago, IL).

Tumor Cell Proliferation and Invasion by Gremlin-1
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Results

Gremlin-1 directly interacts with human cancer cell lines
The interaction of gremlin-1 with cancer cell lines was analyzed

by flow cytometry. Four cancer cell lines, including A549 cells,

interacted with gremlin-1 (Fig. 1). The gremlin-1 antibody GRE1

inhibited the binding of gremlin-1 to all cell lines, including A549

(Fig. 1). These data indicate that gremlin-1 directly interacts with

cancer cells depending on a motif either co-localized with the

epitope of antibody GRE1 or affected by the binding of GRE1.

Next, we evaluated whether the interaction of gremlin-1 with the

cell lines was mediated by VEGFR2, the only known cell surface

receptor of gremlin-1 [11]. In HUVECs, the binding of gremlin-1

was not significant (Fig. 2A) but VEGFR2 mRNA and protein

expression was confirmed using RT-PCR and immunoblot

analyses (Fig. 2B and 2C). However, although gremlin-1 interacted

with A549 and HeLa cells (Fig. 1), VEGFR2 mRNA and protein

were not detected in these cells as measured by RT-PCR and

immunoblot analyses (Fig. 2B and 2C). Therefore, we conclude

that gremlin-1 can interact with cancer cells directly and this

interaction does not have to be mediated by VEGFR2.

The most characterized function of gremlin-1 is as a BMP

antagonist. Therefore, we investigated the influence of BMPs on

the interaction of gremlin-1 with A549 cells. Gremlin-1 forms

heterodimers with BMP-2, BMP-4, and BMP-7 and interrupts the

binding of BMPs to their receptors. In an enzyme immunoassay,

gremlin-1 interacted with BMP-2 and BMP-4. Gremlin-1 did not

interact with BMP-7 in our experimental conditions and the

reason for this is unclear. Addition of the neutralizing antibody

GRE1 did not inhibit the interaction of gremlin-1 with BMP-2 or

BMP-4 (Fig. 3A, *P,0.05). In flow cytometric assays, the presence

of a molar excess of BMPs did not affect the interaction of gremlin-

1 with A549 cells (Fig. 3B). These results indicate that there are

likely two separate motifs in gremlin-1 that mediate its interaction

with A549 cells and BMPs, and these motifs do not co-localize.

Gremlin-1 induces A549 cell scattering and migration
When A549 cells were treated with gremlin-1 for 3 days, the cell

morphology became fibroblast-like and the cells became scattered

(Fig. 4A). E-cadherin expression was markedly reduced in A549

cells cultured with gremlin-1 as evaluated by immunoblot analysis

and immunofluorescence staining (Fig. 4B and 4C). In a scratch

wound healing assay, treatment with gremlin-1 for 24 h

significantly increased the migration of A549 cells (Fig. 4D,

***P,0.001). This effect was completely abolished upon addition

of the neutralizing antibody GRE1 (Fig. 4D, **P,0.01).

Characterization of gremlin-1 transfected A549 cell lines
Next, we generated stably transfected A549 cell lines containing

gremlin-1 (gremlin-1-A549) or empty vector (mock-A549). Using

RT-PCR and western blot analyses, we confirmed increased levels

of gremlin-1 transcript and protein in the gremlin-1-A549 cells

(Fig. 5A). E-cadherin expression was reduced in gremlin-1-A549

cells as compared with mock-A549 cells. However, its expression

slightly increased upon addition of the neutralizing antibody

GRE1 to the culture media (Fig. 5B). For cell invasion assays,

gremlin-1-A549 cells or mock-A549 cells were plated on the upper

surface of ECM coated membrane of inner chambers. After 48 h,

the cells that migrated through ECM and attached to the bottom

of the membrane were stained with crystal violet. We determined

that a higher number of gremlin-1-A549 cells migrated as

compared to mock-A549 cells (Fig. 5C, ***P,0.001). In a scratch

wound healing assay, gremlin-1-A549 cells also showed increased

migration as compared with mock-A549 cells, and migration was

Figure 1. Gremlin-1 interacts with human cancer cell lines. Cells were incubated with gremlin-1, in the presence or absence of the neutralizing
antibody GRE1 as described. The four cancer cell lines interacted directly with gremlin-1 and this interaction was inhibited upon the addition of the
neutralizing antibody GRE1.
doi:10.1371/journal.pone.0035100.g001

Tumor Cell Proliferation and Invasion by Gremlin-1
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significantly inhibited upon addition of the neutralizing antibody

GRE1 (Fig. 5D, **P,0.01, ***P,0.001). To identify whether

gremlin-1 influences cell growth, a cell proliferation assay was

performed. Gremlin-1-A549 cells had a higher growth rate

compared to mock-A549 cells or untransfected A549 cells

(Fig. 5E, *P,0.05). The increased growth rate of gremlin-1-

A549 cells was inhibited by the addition of the neutralizing

antibody GRE1 (Fig. 5E).

Gremlin-1 enhances tumor growth in vivo
To evaluate the effect of gremlin-1 on tumorigenesis, gremlin-1-

A549 cells or mock-A549 cells were injected subcutaneously into

nude mice. Tumor size was measured weekly using a digital

caliper. The tumor volume in mice injected with gremlin-1-A549

cells increased more rapidly than those injected with mock-A549

cells, with an approximately 500 mm3 difference in tumor volume

at 14 weeks post injection (Fig. 5F, *P,0.05). This result suggests

that increased expression of gremlin-1 may play a role in

tumorigenesis.

Discussion

Gremlin-1 has a critical role regulating BMPs during embryonic

development but its expression is down-regulated in normal adult

tissues [7,8]. Differential display RT-PCR analysis revealed that

gremlin-1 is overexpressed in various human tumors including

carcinoma of the lung, ovary, kidney, breast, colon, pancreas, and

cervix [12]. It was also reported that gremlin-1 is overexpressed in

Figure 2. The interaction of gremlin-1 with cancer cells is
independent of VEGFR2 expression. (A) Gremlin-1 does not
interact with HUVECs as measured by flow cytometry. (B) RT-PCR
analysis of VEGFR2 mRNA indicates the presence of VEGFR2 in HUVECs
but not in A549 or HeLa cells. (C) Immunoblot analysis using a VEGFR2
antibody indicates that A549 and HeLa cells do not express VEGFR2.
doi:10.1371/journal.pone.0035100.g002

Figure 3. Addition of the neutralizing antibody GRE1 does not
interrupt the interaction between gremlin-1 and BMPs. (A)
Interaction of gremlin-1 with BMP-2, BMP-4, and BMP-7 as measured by
enzyme immunoassay. The neutralizing antibody GRE1 does not affect
the interaction between gremlin-1 and BMPs. *P,0.05, Student’s t test.
(B) The interaction of gremlin-1 with A549 cells is unaffected by
treatment with a 10 times molar excess of BMP-2, BMP-4, and BMP-7 as
measured by flow cytometry.
doi:10.1371/journal.pone.0035100.g003

Tumor Cell Proliferation and Invasion by Gremlin-1
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the stroma of basal cell carcinoma (BCC) but not in normal skin

according to immunohistochemical analysis. In in situ hybridiza-

tion analyses, elevated gremlin-1 mRNA levels were detected in

various cancer tissues, including esophagus, bladder, and prostate

[21]. However, the function of gremlin-1 in carcinogenesis has not

yet been elucidated.

In this study, we report that gremlin-1 interacts with various

cancer cell lines (Fig. 1). Recently it was reported that gremlin-1

interacts with VEGFR2 and induces angiogenic responses in vitro

and in vivo [11]. We evaluated whether VEGFR2 was responsible

for the interaction of gremlin-1 with cancer cells. We did not

detect VEGFR2 expression in A549 or HeLa cells though both

cell lines strongly interacted with gremlin-1 (Fig. 2). Therefore, we

conclude that gremlin-1 can bind cancer cells and this binding is

not mediated by VEGFR2.

Gremlin-1 is a BMP antagonist that specifically binds to and

inhibits the activity of BMP-2, BMP-4, and BMP-7 [4,5]. BMPs

are multi-functional growth factors known to play important roles

in morphogenesis and homeostasis of many tissues. In addition,

BMP-2, BMP-4, and BMP-7 are frequently overexpressed in

various cancers including breast and prostate [22–24]. It was

reported that BMP-4 reduced the proliferation of BCC cells and

Figure 4. Gremlin-1 induces the scattering and migration of A549 cells in vitro. (A) A549 cells appear fibroblast-like after incubation with
gremlin-1 for 3 days. (B) E-cadherin protein expression is reduced in A549 cells after incubation with gremlin-1 for 3 days. (C) E-cadherin
immunofluorescence (green) in A549 cells is reduced after incubation with gremlin-1 for 3 days. Nuclei were counterstained with DAPI (blue) and
actin filaments were counterstained with rhodamine-phalloidin (red). (D) Migration of A549 cells after incubation with gremlin-1 only or gremlin-1
plus GRE1. Addition of the neutralizing antibody GRE1 abolishes gremlin-1 induced migration. **P,0.01, ***P,0.001, Student’s t test.
doi:10.1371/journal.pone.0035100.g004

Tumor Cell Proliferation and Invasion by Gremlin-1
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addition of gremlin-1 reduced the anti-proliferative effect of BMP-

4 indirectly [21]. We verified that the mRNA levels of BMP-2 and

BMP-4 were highly expressed in A549 cells (data not shown). We

also evaluated the interaction of gremlin-1 with A549 cells in the

presence of BMP-2, BMP-4, or BMP-7. We determined that

gremlin-1 strongly bound BMP-2 and BMP-4 (Fig. 3A) but this

binding did not affect its interaction with cancer cells (Fig. 3B). In

addition, the neutralizing antibody GRE1 did not inhibit the

binding of gremlin-1 to BMP-2 or BMP-4 (Fig. 3A). Therefore, we

conclude the interaction of gremlin-1 with A549 cells is likely

mediated by a different motif than the motif involved in the

interaction with BMPs.

When A549 cells were incubated with gremlin-1, the cell

morphology became fibroblast-like and cells were scattered

(Fig. 4A). We also found decreased E-cadherin expression when

cells were incubated with gremlin-1 (Fig. 4B, 4C, and 5B). Down-

regulation of E-cadherin is associated with epithelial-mescenchy-

mal transition (EMT) and the suppression of E-cadherin [25] and

EMT are commonly observed in the progression of cancer [26]. In

a scratch wound healing assay, gremlin-1 increased the migration

of A549 cells. Addition of the neutralizing antibody GRE1

Figure 5. Characterization of gremlin-1-transfected A549 cell lines. (A) RT-PCR and western blot analyses indicate gremlin-1 mRNA and
protein are expressed in gremlin-1-A549 cells but not mock-A549 cells. (B) E-cadherin protein expression is reduced in gremlin-1-A549 cells and this
effect is attenuated upon addition of the neutralizing antibody GRE1. (C) Gremlin-1-A549 cells show increased invasiveness in cell invasion assays as
compared to mock-A549 cells. The cells on the underside of the ECM membrane were stained and counted. ***P,0.001, Student’s t test. (D) Gremlin-
1-A549 cells show increased migration compared to mock-A549 cells and this effect is attenuated upon the addition of the neutralizing antibody
GRE1. **P,0.01, ***P,0.001, Student’s t test. (E) Gremlin-1-A549 cells display an increased growth rate compared to mock-A549 cells as determined
by MTS proliferation assay. The neutralizing antibody GRE1 addition blocks this effect. *P,0.05 versus mock-A549, Student’s t test. (F) Gremlin-1-A549
cells injected subcutaneously in nude mice have an increased rate of tumor growth in vivo as compared with injection of mock-A549 cells. Tumor
volume is depicted as the average 6 standard deviation. *P,0.05 versus mock-A549, Student’s t test.
doi:10.1371/journal.pone.0035100.g005
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suppressed the observed increase in migration (Fig. 4D and 5D).

Furthermore, gremlin-1-A549 cells showed increased invasion

through the ECM-coated membrane. It was previously reported

that transfection of A549 cells with gremlin-1 sensitized the cells to

EMT upon treatment with TGF-b1 [27]. However, induction of

an EMT-like phenotype by gremlin-1 alone has not been reported.

Gremlin-1-A549 cells also showed increased proliferation in vitro

and in vivo (Fig. 5E & 5F). In an In vitro setting, the increased

proliferation rate was reduced upon addition of the GRE1

antibody. Experiments are currently underway to investigate if

gremlin-1 directly influences tumor growth. These data suggest

that the secretion of gremlin-1 may increase cell proliferation and

thus affect tumorigenesis.

Supporting Information

Figure S1 The specificity of the GRE1 antibody. Western

blot analysis (A) and Coomassie staining (B) of the culture

supernatant of HEK293F transfected with gremlin-1 indicates that

GRE1 reacts specifically with gremlin-1. Lanes 1 and 2 were

loaded with culture supernatant of HEK293F cells that were

mock-transfected or transfected with gremlin-1, respectively. The

gremlin-1 protein has post-translational modification sites and

exists in two major forms (glycosylated and unglycosylated) [1].

(TIF)
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