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Abstract

Background: Cystic fibrosis (CF) is an autosomal recessive disorder characterized by a chronic neutrophilic airways
inflammation, increasing levels of oxidative stress and reduced levels of antioxidants such as glutathione (GSH). Gamma-
glutamyltransferase (GGT), an enzyme induced by oxidative stress and involved in the catabolism of GSH and its derivatives,
is increased in the airways of CF patients with inflammation, but the possible implications of its increase have not yet been
investigated in detail.

Principal Findings: The present study was aimed to evaluate the origin and the biochemical characteristics of the GGT
detectable in CF sputum. We found GGT activity both in neutrophils and in the fluid, the latter significantly correlating with
myeloperoxidase expression. In neutrophils, GGT was associated with intracellular granules. In the fluid, gel-filtration
chromatography showed the presence of two distinct GGT fractions, the first corresponding to the human plasma b-GGT
fraction, the other to the free enzyme. The same fractions were also observed in the supernatant of ionomycin and fMLP-
activated neutrophils. Western blot analysis confirmed the presence of a single band of GGT immunoreactive peptide in the
CF sputum samples and in isolated neutrophils.

Conclusions: In conclusion, our data indicate that neutrophils are able to transport and release GGT, thus increasing GGT
activity in CF sputum. The prompt release of GGT may have consequences on all GGT substrates, including major
inflammatory mediators such as S-nitrosoglutathione and leukotrienes, and could participate in early modulation of
inflammatory response.
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Introduction

Cystic fibrosis (CF) is an autosomal recessive disorder due to

mutations in the cystic fibrosis trans-membrane conductance

regulator protein (CFTR) [1,2], a cyclic AMP-regulated anion

channel primarily involved in chloride and bicarbonate transport

but also permeable to other larger organic anions such as

glutathione (GSH) [3,4]. CFTR impairment has a wide impact

on the functions of several tissues but, in particular, it is associated

with alterations of biophysical properties of airway secretions [5]

leading to chronic airway infection and inflammation, the latter

mainly dominated by neutrophils [6,7]. Such conditions are

associated with increased levels of oxidative stress in the lung and

several studies have therefore focused on the antioxidant/oxidants

balance in CF, with particular interest on GSH and GSH-

associated enzymes [1,2]. GSH is one of the major water-soluble

antioxidants and its chemical properties make it able to play a role

also in mucolysis, regulation of inflammation, immune response

and cell viability [1]. Interestingly, GSH concentrations are

markedly reduced in CF airways and plasma [8], and several

factors (e.g. chronic inflammation, oxidative stress, impaired

CFTR-mediated GSH transport) may contribute to this effect.

Gamma-glutamyltransferase (GGT) is a membrane-bound

enzyme involved in the metabolism and recuperation of

extracellular glutathione by cells. GGT is also involved in S-

nitrosoglutathione and leukotrienes metabolisms [9,10] and

several studies documented its role in promoting pro-oxidant

reactions, thanks to the highly reactive GSH-derivative cysteinyl-

glycine [11]. Indeed, cysteinyl-glycine can be considered as a

marker of GGT activity and its ability in promoting protein S-

thiolation was also shown [12].

GGT expression can be induced by oxidative stress [13,14] and

inflammatory cytokines, such as TNF-alpha, IFN-alpha and –beta

(see [11] for a recent review). Interestingly, a significant increase in
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GGT activity was described in the bronchoalveolar lavage of

young children with pulmonary inflammation due to CF [15] and

such increase was interpreted as a response to inflammation-

related oxidative stress, likely providing bronchial cells with a

mechanism for an increased recovery of extracellular glutathione

[1,15]. Higher GGT activities were also detected in vitro in cultured

CF cell lines [4,16], suggesting that the GGT increase in CF lungs

may be directly related with CFTR defective function. Neverthe-

less other non-epithelial sources should be taken into account

when considering the GGT increase in CF lungs. In particular,

some studies demonstrated the expression of GGT in human

lymphoid cells and an increase of GGT activity was described in

the granulocytic cell lineage along with cell maturation [17],

during differentiation of lymphocytes [18] and monocytes/

macrophages [19]. In neutrophils GGT is localized in microsomal

and granular fractions and released upon neutrophils activation

with calcium-ionophore A23187 [9,17,20].

The aim of the present work was to assess the origin and the

biochemical characteristics of the GGT detectable in CF sputum

in comparison with the enzyme released by activated neutrophils,

in order to appraise the contribution of inflammation-derived

GGT to the increased activity described in CF lungs.

Materials and Methods

Chemicals
Unless otherwise indicated, all reagents were from Sigma

Chemical Co. (St. Louis, MO, USA).

Ethics Statement
The study was approved by Human Ethics Committee of

Azienda Ospedaliera of Verona and all subjects gave a written

informed consent. A written informed consent was also obtained

from the next of kin on the behalf of the minors participants

involved in the study.

Processing of cystic fibrosis sputum samples for GGT
assays

Spontaneously produced sputum samples (N. 7 specimens

obtained from 7 distinct CF patients) were collected from patients

affected by classical cystic fibrosis attending the Cystic Fibrosis

Center of Verona. The group included 4 males and 3 females with

age ranging from 15 to 36 years and different severity of lung

function impairment (forced expiratory volume in one second

(FEV1) ranging from 29% to 86% expected value). Samples from

bronchiectasis patients (2 males, 3 females; age from 61 to 78) were

used as neutrophils-dominated, chronic airways inflammation

control. For total GGT measurements, samples were diluted 8-

fold in 10 mM Tris-HCl pH 7.8, including Triton X-100 (1% v/v)

and sonicated. For soluble GGT measurements, sputum samples

were diluted with an equal volume of 0.1% w/v dithiothreitol

(Sputasol; Unipath, Basingstoke, UK), incubated in a shaking bath

at 37uC for 15 min, then gently mixed to further dissolve mucus

plugs. At the end of incubation, samples were filtered through a

53 mm nylon gauze to remove debris [21]. Filtered samples were

centrifuged at 4006g (7 min, RT), then at 10,0006g (10 min, 4uC).

Both soluble fraction (supernatant) and insoluble pellet (resuspended

in PBS) were collected. All samples were stored at 280uC.

Determination of low molecular weight thiols in cystic
fibrosis sputum

Determination of low molecular weight thiols was performed as

previously described [12] on whole sputum samples acidified with

10% trichloroacetic acid. Samples were reduced with tris(2-

carboxyethyl)phosphine (Molecular Probes), and derivatized with

the thiol-reagent 7-fluorobenzo-2-oxa-1,3-diazole-4-sulfonate

(Fluka). Thiols concentration was determined by HPLC system.

Cytochemical staining for GGT activity
Cystic fibrosis sputum smears were fixed in a phosphate-

buffered acetone formaldehyde mixture (PBAF) and stained with

gamma-glutamyl-4-methoxy-2-naphtylamide and Fast Garnet

GBC as previously described [17]. Nuclei were counterstained

with Mayer’s hemalum solution.

Isolation and activation of neutrophils
Neutrophils were isolated from the blood of healthy donors as

described [22]. Fresh buffy coats were incubated with 1% Dextran

T500. Leukocyte-rich supernatants were recovered and contam-

inating erythrocytes lysed with distilled water; neutrophils were

separated by centrifugation on Histopaque-1077. Cell number and

viability were assessed by Turk’s staining and Trypan blue

exclusion. All manipulations were performed under sterile

conditions at 4uC. Neutrophils (56106 cells/ml) were incubated

in RPMI-1640 at 37uC and challenged with 0.5 mM ionomycin

(15 min) or 1 mM formyl-methionyl-leucyl-phenylalanine (fMLP,

120 min); cell viability was assessed by Trypan blue exclusion.

Finally samples were centrifuged at 3006g (5 min, 4uC) then at

10,0006g (10 min, 4uC) before GGT determinations.

Isolation of neutrophils granules on Percoll gradients
Neutrophils granules were separated as described [23]. Isolated

neutrophils (2–56107 cells/ml) were pressurized in a nitrogen

bomb and the samples were collected dropwise. Nuclei and intact

cells were separated by centrifugation and the supernatants were

stored on ice. A discontinuos Percoll gradient was prepared by

stratifying three Percoll solutions with densities of 1.120, 1.090 and

1.050 g/ml. Supernatants were applied on top of the gradients

and centrifuged at 37,0006g (30 min, 4uC). Four main bands were

thus identified corresponding to (from bottom): a-band (containing

azurophil granules), b1-band (specific granules), b2-band (gelati-

nase granules), and c-band (secretory vesicles and plasma

membranes). Cytosol was separated on top of upmost band. The

five fractions and fractions among them were harvested through a

Pasteur pipette and stored at 220uC.

Fractional GGT analysis by high-performance gel-
filtration chromatography

Determination of GGT fractions was performed as previously

described [24,25] by a FPLC system (AKTA-purified-10, GE-

Healthcare). Separation and quantification of GGT fractions was

performed by gel-filtration chromatography (Superose 6 10/300,

GE Healthcare) followed by post-column injection of the

fluorescent substrate gamma-glutamyl-7-amido-4-methylcou-

marin. Intensity of the fluorescence signal was expressed in

arbitrary fluorescence units (f.u.) and the area under chromato-

graphic peaks was proportional to GGT activity.

Fractional GGT analysis on activated neutrophils supernatants

and solubilised sputum samples were both performed after

centrifugation at 10,0006g (30 min, 4uC) followed or not by

100,0006g (120 min, 4uC) ultracentrifugation.

Cell lines and culture conditions
CFTR-mutated IB3-1 cells derived from bronchial epithelium

of a CF patient [26] were obtained from Dr. P. Zeitlin (Johns

Hopkins University, MD, USA). IB3-1 cells were routinely grown

Gamma-Glutamyltransferase in Cystic Fibrosis
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in LHC-8 medium (Gibco) supplemented with 5% (v/v) foetal

bovine serum (FBS). Human alveolar basal epithelial A549 cells

[27] were grown in DMEM supplemented with 10% (v/v) FBS

and 2 mM L-glutamine (L-Gln). Cell lines were cultured at 37uC
in a 5%/95% CO2/air atmosphere.

Western blot analysis
The extracellular and cytoplasmatic levels of neutrophilic

myeloperoxidase (MPO) were evaluated by western blot analysis

of the solubilised sputum supernatants and cells lysates, respec-

tively. The sputum cells were directly lysed in sample buffer

(40 mM Tris-HCl pH 6.8, 183 mM b-mercaptoethanol, 1% (w/v)

SDS, 5% (v/v) glycerol), heated at 95uC for 5 min and passed

through a 23 gauge needle to fragment DNA. All samples were

separated by 12% SDS-PAGE and gels were blotted onto

nitrocellulose membrane (Hybond ECL; Amersham, UK). Mem-

branes were stained with Ponceau S to verify loading and transfer

efficiency. Nonspecific binding on the membrane was blocked with

5% (w/v) bovine serum albumin (BSA) in TBS-T buffer (0.2%

Tween 20 in Tris-buffered saline pH 7.5) for 1 hour at room

temperature. Membranes were incubated with 1:1,000 dilution of

rabbit polyclonal antibody raised against human MPO (Enzo Life

Sciences Inc, NY, USA) or 1:2,000 mouse monoclonal anti-

GAPDH (Life Technologies, Grand Island NY, USA) in TBS-T

with 1% BSA, overnight, at 4uC. Blot was washed three times in

TBS-T and then incubated for 1 hour at room temperature with

donkey anti-rabbit IgG secondary antibody or sheep anti-mouse

IgG conjugated to horseradish peroxidase (Amersham, NJ, USA)

diluted 1:15,000 in TBS-T. Bound proteins were visualized using

the ECL detection system (Amersham).

For western blot determinations of GGT, isolated neutrophils

and epithelial cell monolayers – harvested in hypotonic lysis buffer

(10 mM Tris–HCl, pH 7.8) – or aliquots of CF sputum were used.

All samples were separated by 12% SDS-PAGE and gels were

blotted onto nitrocellulose membranes. Nonspecific binding on the

membrane was blocked with 5% (w/v) non-fat milk/16 PBS-

0.01% Tween 20 for 30 min at room temperature. Blots were

incubated overnight, 4uC, with rabbit anti-GGT IgG (1:1000 in

2.5% (w/v) non-fat milk/16 PBS-0.01% Tween 20) directed

against the C-terminal 20 amino acids of human GGT heavy

chain and prepared as described [28]. Visualization of protein

bands was obtained using a horseradish peroxidase-conjugated

anti-rabbit IgG antibody (Santa Cruz Biotechnology, Santa Cruz,

CA, USA) diluted 1:5,000 in 2.5% (w/v) non-fat milk/16 PBS-

0.01% Tween 20 (1 hour, room temperature), and the ECL

detection system (Roche, Basel, Switzerland).

Bands were quantified by densitometric analysis with a Bio-Rad

ChemiDoc apparatus equipped with the QuantityOne software.

Other determinations
GGT activity was determined according to Huseby and

Strömme [29]. Protein content was determined by the method

of Bradford using the Bio-Rad protein assay reagent. Statistical

analysis of data was performed by linear regression analyses,

Student’s t-test and one-way ANOVA with Newman–Keuls test

for multiple comparisons.

Results

Characterization of GGT activity in whole CF sputum
The analysis of the whole CF sputum homogenates revealed the

presence of a mean GGT activity of 17.264.1 mU/mg of protein.

The presence of a catalytically active GGT in CF sputum was also

confirmed by the significant correlation between GGT activity and

both free cysteinyl-glycine (R2 = 0.811, p,0.01; Fig. 1A) and

protein bound cysteinyl-glycine (R2 = 0.917, p,0.001; Fig. 1B),

the latter being about five times higher than the free compound.

Interestingly, a significant (R2 = 0.717, p,0.02), inverse correla-

tion was found between sputum GGT and FEV1 values of

enrolled patients (Fig. 2).

As expected, sputum smears revealed the presence of bacteria,

epithelial cells and a rich neutrophilic infiltrate, the latter

expressing significant levels of GGT activity (Fig. 3). No

correlation was found between GGT activity and microbiological

parameters (type of microorganism, early or chronic infection; see

Table 1).

Characterization of cell-free GGT activity in CF sputum
Gel-filtration chromatography of solubilised, cell-free sputum

samples revealed the presence two peaks of GGT activity eluting

respectively at 12.5 ml (‘‘b-GGT’’, MW.2000 kDa) and at

23.1 ml (‘‘f-GGT’’, 66 kDa) (Table 2). The same two peaks were

also found in bronchiectasis sputum samples used as control (data

not shown). The ratio between the two fractions varied

considerably among the samples analyzed, b-GGT being anyway

the prevalent fraction (Table 2). Gel-filtration chromatography of

ultracentrifuged solubilised sputum showed that b-GGT fraction

was mainly (90%) recovered in the pellet (Fig. 4A–B), while f-

GGT was almost totally found in the supernatant (Fig. 4A).

Interestingly, when MPO expression in cellular fraction of

Figure 1. Relationship between GGT activity and cysteinyl-
glycine (CysGly) levels in whole sputum. Data were obtained from
seven different samples of CF sputum. (A) Free and (B) protein bound
CysGly. A) R2 = 0,811, p,0.01; B) R2 = 0,917, p,0.001.
doi:10.1371/journal.pone.0034772.g001

Gamma-Glutamyltransferase in Cystic Fibrosis

PLoS ONE | www.plosone.org 3 April 2012 | Volume 7 | Issue 4 | e34772



solubilised sputum were analyzed by SDS-PAGE, a significant

correlation (R2 = 0.683; p = 0.02) was found with total GGT

activity in the supernatants (Fig. 5). A significant correlation

(R2 = 0.594; p = 0.04) was also found between MPO levels and

GGT activities revealed in solubilised sputum supernatants (data

not shown).

Characterization of GGT activity in resting and activated
neutrophils

When a subcellular fractionation of neutrophils on a Percoll

density gradient was performed, the presence of GGT activity was

detected in the c-band, containing secretory vesicles and plasma

membranes, and in the b1-band, containing the specific granules

(Fig. 6). Very low or no detectable GGT activity was found in a-

band and b2-band, corresponding to azurophil and gelatinase

granules, respectively.

Neutrophils were then exposed to activating substances

promoting granules release, and GGT activity was measured in

the incubation media. A time-dependent release of GGT was

observed in basal conditions (Fig. 7A), possibly as the result of a

weak activation during incubations [17,22]. Noteworthy, this

effect was significantly increased when neutrophils were activated

with the calcium ionophore ionomycin (Fig. 7B) or with the

formyl peptide fMLP (Fig. 7C).

Characterization of GGT released by activated
neutrophils

In order to better characterize the GGT released by activated

neutrophils, incubation media were centrifuged at 10,0006g, then

at 100,0006g. The 10,0006g supernatants of both ionomycin

(Fig. 8A) and fMLP (data not shown) activated neutrophils

displayed the presence of one major peak of activity, correspond-

ing to b-GGT observed in CF sputum, while only traces of f-GGT

were detectable. On the contrary, the corresponding pellet showed

no GGT activity (data not shown). When 100,0006g supernatants

and pellets were analyzed, b-GGT was found in both fractions

with a ratio of peak areas (corrected for the volumes) of 1:1

(Fig. 8B–C). Again, only minor f-GGT peaks were found in the

supernatants, while no f-GGT was detectable in the pellet

(Fig. 8B–C).

Comparison of sputum GGT with neutrophilic and
epithelial GGT

The possible origin of CF sputum GGT was investigated by

means of SDS-PAGE analysis with an antibody directed against

GGT heavy chain. Different whole sputum samples presented with

a single band, corresponding to the MW of GGT heavy chain

(75 kDa; Fig. 9A). A band with the same MW was observed in

healthy donors neutrophils homogenates (Fig. 9B), in soluble/

insoluble fractions of CF sputum (Fig. 9C) and in bronchiectasis

sputum samples (data not shown). Conversely, a different MW was

Figure 2. Relationship between sputum GGT activity and FEV1
values of CF patients. R2 = 0,717, p,0.02.
doi:10.1371/journal.pone.0034772.g002

Figure 3. Cytochemical staining for GGT enzyme activity in
sputum samples. (A) Neutrophils with different levels of GGT activity
in sputum films of patients with cystic fibrosis. (B) GGT-negative
epithelial cell surrounded by GGT-positive neutrophils is also shown.
Magnification 1006.
doi:10.1371/journal.pone.0034772.g003

Table 1. Microbiological characterization of CF sputum
samples.

Pt# Pseudomonas aeruginosa Staphylococcus aureus

1 No Yes, chronic

2 Yes, chronic Yes, chronic

3 No No

4 Yes, chronic Yes, chronic

5 Yes, chronic No

6 Yes, chronic No

7 Yes, chronic No

doi:10.1371/journal.pone.0034772.t001

Gamma-Glutamyltransferase in Cystic Fibrosis

PLoS ONE | www.plosone.org 4 April 2012 | Volume 7 | Issue 4 | e34772



determined for GGT heavy chain in homogenates of different

epithelial and endothelial cell lines used for comparison: CF

bronchial epithelium IB3-1 cell line (Fig. 9B), human carcinoma

epithelial cell line A549 (Fig. 9C) and human endothelial cell line

HUVEC (data not shown), the latter employed as a model for the

highly represented endothelial cells in the lung.

Discussion

GGT plays an important role in the metabolism of GSH, S-

nitrosoglutathione [10] and leukotrienes [9], i.e. compounds

playing a central role as inflammatory mediators, and changes

occurring in the compartmentation of this enzyme activity can

therefore represent a critical process during the immune response.

The results obtained in this study suggest that GGT activity

present in CF sputum can originate – at least in part – from

polymorphonuclear granulocytes, as a result of their accumulation

and activation in CF airways. Increasing GGT levels in sputum

were correlated with both free and protein-bound levels of

cysteinyl-glycine (Fig. 1A–B), i.e. the highly reactive GSH

catabolite produced by GGT in the extracellular compartment.

The finding is in support of a direct role of GGT activity in

modulating both low molecular weight thiols balance (Fig. 1A)

and proteins thiols redox status (Fig. 1B) in CF lung. Previous

studies have shown that GGT can produce the cysteinyl-

glycylation of proteins, thus altering the levels of protein-bound

GSH and the overall protein S-thiolation status [12]. In the case of

Figure 4. High-performance gel filtration chromatography of
soluble fraction of CF sputum. Supernatants obtained from sputum
solubilisation and centrifugation at 10,0006g were ultracentrifuged
again at 100,0006g before analysis. A) 100,0006g supernatant; B)
100,0006g pellet. Data represent one representative separation out of
three and are expressed as arbitrary units (a.u.) of fluorescence.
doi:10.1371/journal.pone.0034772.g004

Figure 5. Relationship between GGT activity and MPO levels in
CF sputum samples. MPO levels were detected by western blot
analysis in samples of solubilised sputum pellets and correlated with
GGT activity of solubilised sputum supernatants. A) Lane 1–7, CF
samples; lane 8, control (neutrophils). B) Data reported are expressed as
a ratio of MPO against GADPH band densities, while GGT values are
normalized on protein content. R2 = 0.683; p = 0.02.
doi:10.1371/journal.pone.0034772.g005

Table 2. Total and fractional GGT activity in CF sputum.

Pt# Total GGT b-GGT f-GGT

1 13.1 5.2 4.7

2 19.6 9.8 5.2

3 21.6 14.1 2.1

4 28.1 15.8 12.2

5 48.2 29.3 18.9

6 84.1 46.8 37.3

7 90.2 50.9 30.4

CF sputum samples were solubilised, centrifuged at 10,0006g and the
supernatants analyzed by high-performance gel filtration chromatography. The
table reports the whole GGT activity of each solubilised sputum and the
activities corresponding to the two different GGT fractions identified by gel
filtration chromatography. Data were are expressed as U/L.
doi:10.1371/journal.pone.0034772.t002

Gamma-Glutamyltransferase in Cystic Fibrosis
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sputum, such effects could play a role in modulating the function/

solubility of airways proteins, such as thiols rich lung fluid mucins

[30].

Notably, we found a significant, inverse correlation between

sputum GGT activities and FEV1 values of corresponding patients

(Fig. 2). Nevertheless, no correlation was found between GGT

activity and parameters of microbial infection (see Table 1). The

number of samples studied is quite small and future studies –

enrolling a larger number of patients – will probably help to clarify

these specific points. Anyway, functional data seems to associate

the worsening of respiratory function with an increase of airways

GGT, thus prompting the question of the source of sputum GGT

(parenchimal or inflammatory).

In this respect, cytochemical staining for GGT activity

confirmed the presence of rich GGT-positive neutrophilic

infiltrates in all sputum samples. Neutrophils displayed different

levels of the enzyme (Fig. 3), possibly ensuing from differences in

GGT expression or activation. When solubilised cell-free samples

were analyzed by gel-filtration chromatography (Table 2), two

peaks of GGT activity were apparent displaying the same

molecular weights of two of the four GGT fractions found in

human plasma, b-GGT (MW.2000 kDa) and f-GGT (66 kDa)

[24], the former possibly representing a high molecular weight

protein aggregate and the latter corresponding to the free enzyme.

The same two peaks were also observed in solubilised, cell-free

samples of bronchiectasis patients sputum, used as a control for a

neutrophils-dominated, chronic airway inflammation process (data

not shown), thus suggesting an inflammatory origin of the

observed findings, rather than a specificity for cystic fibrosis.

According with this interpretation, we found a significant

correlation (R2 = 0.683; p = 0.02) between MPO expression in

cellular fraction of solubilised sputum and total GGT activity in

the supernatants (Fig. 5). MPO is a major constituent of

neutrophil cytoplasmic granules and its activity is proposed to be

a direct measure of neutrophil presence and an indirect indicator

of lung injury [31]. In this perspective, our results only suggest a

direct relationship between neutrophilic infiltrate and soluble

GGT fractions in sputum. With the aim to ascertain whether

neutrophils might be the source of that GGT, additional

experiments were performed with isolated neutrophils.

In agreement with early reports [9,20], our data confirmed the

presence of GGT in neutrophilic granules. In particular, GGT

activity was found in the subcellular fraction corresponding to

secretory vesicles and plasma membranes (c-fraction), as well as in

specific granules (Fig. 6). Actually, the similar density of plasma

Figure 6. GGT activity in neutrophils fractions obtained on
Percoll gradients. A high GGT activity was found in fractions c, b1 and
in the fractions between b2 and b1 (b2b1). Data reported were obtained
from neutrophils isolated from three different healthy donors.
Cy = cytosol; c= secretory vesicles and plasma membranes; b2 = gelati-
nase granules; b1 = specific granules; a= azurophilic granules; cb2, b2b1

and b1a are the fractions recovered among the main bands.
doi:10.1371/journal.pone.0034772.g006

Figure 7. GGT release by neutrophils. Neutrophils isolated from
fresh buffy coats were incubated in (A) RPMI-1640 alone, (B) in the
presence of ionomycin (0.5 mM; 15 min) or (C) fMLP (1 mM; 120 min).
GGT activity was measured in the 10,0006g centrifuged supernatants.
Results are means 6 SD of three separate determinations. Data were
analyzed by Student’s t test; (*) p,0.0001.
doi:10.1371/journal.pone.0034772.g007

Gamma-Glutamyltransferase in Cystic Fibrosis
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membranes and secretory vesicles precludes the complete

separation of these two components of c-fraction, and further

studies are needed to fully elucidate this specific point. On the

other hand, it was shown that secretory vesicles are almost

completely mobilized from neutrophils challenged with fMLP

[22], and that specific granules are mobilized by calcium

ionophore A23187 [20]. In our experiments, stimulation of

isolated neutrophils with fMLP produced a time-dependent release

of GGT activity (Fig. 7C), and the same was observed after

treatment with calcium ionophore ionomycin (Fig. 7B), suggest-

ing that the enzyme may indeed be associated with both secretory

vesicles and specific granules of neutrophils. Gel-filtration

chromatography of such activated neutrophils supernatants

revealed the presence of one major GGT fraction, i.e. b-GGT

(Fig. 8), corresponding to the same high molecular weight fraction

found in cell-free sputum samples (Table 2).

Based on this evidence, the possible neutrophilic origin of the

GGT fractions detected in cell-free sputum samples was further

investigated. When neutrophils or their supernatants were

compared with whole or solubilised CF sputum by SDS-PAGE,

GGT heavy chain presented with the same MW in all sample

analyzed, and this MW was different from GGT of epithelial (CF

bronchial epithelial cells IB3-1 and human alveolar A549 cell line;

Fig. 9) or endothelial origin (human endothelial cell line HUVEC;

used for comparison. Again, similar results

were also obtained from bronchiectasis sputum samples used as

control (data not shown). These findings are of particular interest,

for post translational glycosylation of GGT protein – and thus its

MW – is tissue specific [32], which allows a first, rough assessment

of GGT proteins expressed in different tissues. An amphipathic

GGT is physiologically secreted by alveolar epithelial type 2 cells

in association with lung surfactant [33], and inflammation-related

oxidative stress and cytokines can both induce GGT expression

and release by lung epithelial cells [34]. Our results actually

suggest that cell-free GGT in CF sputum can have a neutrophilic

rather than epithelial origin, even if it can not be excluded that

other GGT expressing inflammatory cells – such as macrophages

[17,35] – might also contribute to the phenomenon. Nevertheless,

the rich neutrophilic infiltrate, the significant correlation between

GGT activity and MPO expression and the ability of activated

neutrophils to release soluble GGT – with biochemical charac-

teristics similar to sputum GGT – are all in support of a

neutrophilic origin of GGT. This effect may be of particular

relevance – even though not specifically related – in cystic fibrosis,

where eosinophils as well as neutrophils have been suggested to

have an increased propensity to release their granule proteins

(ECP and MPO), due to still unknown priming mechanisms (e.g.

cytokines stimulation or upregulation of CR3-receptors) [36].

Figure 8. High-performance gel filtration chromatography of
ionomycin activated neutrophils supernatants. Samples were
centrifuged at 10,0006g or 100,0006g before analysis. (A) 10,0006g
supernatant; (B) 100,0006g supernatant; (C) 100,0006g pellet.
doi:10.1371/journal.pone.0034772.g008

Figure 9. Western blot analysis of GGT heavy chain in different
biological samples. (A) Lane 1–4, CF sputum; (B) lane 1, CF sputum;
lane 2–3, neutrophils; lane 4, IB3-1 cells; (C) lane 1, soluble fraction of CF
sputum; lane 2, insoluble fraction of CF sputum; lane 3, neutrophils;
lane 4, A549 cells.
doi:10.1371/journal.pone.0034772.g009
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As regards GGT fractions found in both activated neutrophils

supernatants and cell-free sputum samples, most of b-GGT was

recovered in ultracentrifugation pellets (Figs. 4, 8). The fact

that variable amounts of b-GGT were detected in supernatants

suggest a heterogeneous composition of such fraction, possibly

due to different origin/composition (e.g. secretory vesicles vs.

specific granules) or subsequent modification in the inflamma-

tory exudate (sputum). Previous studies showed that several cell

types can shed small vesicles, and two main vesicle-discharge

processes were identified leading to the release of distinct vesicle

types: i) exocytosis of multivesicular bodies, with the ensuing

release of exosomes, and ii) direct budding from plasma

membrane of ectosomes, also termed microparticles [37]. Mixed

vesicle populations were shown to be released upon activation by

different cell types, and the presence of released vesicles has been

detected in different body fluids such as urine, bronchoalveolar

lavage fluid, saliva and blood [37]. Ectosomes were shown to be

released by neutrophils [22,38] and their involvement in

different functions in the immune response was proposed [37].

This could indeed be also the case of neutrophilic GGT that –

similarly to transmembrane receptor CR1 [22] – is comprised in

complexes released upon cell activation with ionomycin or fMLP

(Fig. 7). In this way GGT activity could be increased in the

exudate more rapidly than in the case of its induction in

parenchymal cells, which could help to early modulate

inflammatory response through GGT substrates metabolism

(Fig. 10).

The low mol. weight fraction f-GGT was recovered only from

ultracentrifugation supernatants (Figs. 4, 8). It can be envisaged

that f-GGT might derive from the proteolytic cleavage of larger

aggregate b-GGT by proteases released during immune response.

In agreement with this interpretation, f-GGT was mainly found in

CF sputum (Fig. 4), while only traces were detectable in short-

term activated neutrophils supernatants (Fig. 8).

In conclusion, our data indicate that neutrophilic infiltrates

can explain the increase of GGT activity in neutrophils-

dominated airway inflammation processes, such those commonly

observed in CF lungs. GGT is promptly released upon

neutrophil activation, and this may have rapid consequences

on all GGT substrates, including major inflammatory mediators.

In this perspective, GGT increase in tissues should be interpreted

not only as a consequence of inflammation related oxidative

stress, but also as one of the effects of immune response.

Depending on what effects the increase in this enzyme activity

might produce on selected mediators, GGT could conceivably

represent an interesting pharmacological target in order to

modulate the inflammatory process. Further studies are however

needed to fully elucidate the mechanisms of GGT release, the

composition of GGT-containing particles and their actual role(s)

in the inflammatory process.

Figure 10. Neutrophils activation as a possible source of GGT in the airways during inflammation. GSNO, S-nitrosoglutathione.
doi:10.1371/journal.pone.0034772.g010
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