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Abstract

The Receptor for Advanced Glycation Endproducts (RAGE) is a scavenger ligand that binds glycated endproducts as well as
molecules released during cell death such as S100b and HMGB1. RAGE is expressed on antigen presenting cells where it
may participate in activation of innate immune responses but its role in adaptive human immune responses has not been
described. We have found that RAGE is expressed intracellularly in human T cells following TCR activation but constitutively
on T cells from patients with diabetes. The levels of RAGE on T cells from patients with diabetes are not related to the level
of glucose control. It co-localizes to the endosomes. Its expression increases in activated T cells from healthy control
subjects but bystander cells also express RAGE after stimulation of the antigen specific T cells. RAGE ligands enhance RAGE
expression. In patients with T1D, the level of RAGE expression decreases with T cell activation. RAGE+ T cells express higher
levels of IL-17A, CD107a, and IL-5 than RAGE2 cells from the same individual with T1D. Our studies have identified the
expression of RAGE on adaptive immune cells and a role for this receptor and its ligands in modulating human immune
responses.
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Introduction

Adaptive T cell responses are modified by T cell activation

signals delivered through the T cell receptor (TCR) and

costimulatory ligands, as well as environmental factors [1,2].

The effects of cytokines on T cell differentiation have been

appreciated for many years, but nutrients including glucose,

metabolites, and other molecules such as products of cell death

may affect the activation signals and transcriptional machinery

that control cell differentiation [3,4]. These factors, which serve as

modulators rather than primary initiators of immune responses, have

not been well studied; in part because their role may be defined by

the setting of the immune responses in vivo which is difficult to

recreate in vitro. For example, cytokines that are products of an

activated immune response may lead to activation induced cell

death of T cells, but nutrient deprivation may be an equally

important factor leading to the death of T cells in tumors or

ischemic tissue [5,6]. In settings of autoimmunity, these environ-

mental factors may be particularly important since destruction of

organ tissues such as thyroid, adrenal, or the islets of Langerhans

may change the environment. The importance of hyperglycemia,

following destruction of b cells may be reflected by the more rapid

decline in b cell function in T1D after the onset of hyperglycemia

compared to prior to hyperglycemia, and the amelioration of b cell

decline with tight glycemic control in the Diabetes Control and

Complications Trial [7].

One of the molecules that may play a pivotal role in linking

environmental factors and immune responses is the Receptor for

Advanced Glycation Endproducts (RAGE) [8,9,10,11]. RAGE

was originally identified as a receptor for glycosylated proteins and

has been postulated to be involved in the pathogenesis of

secondary end organ complications of diabetes [12,13,14,15,

16,17]. It is expressed on parenchymal tissues including pulmonary

alveoli and endothelial cells where it is thought to participate in

atherogenesis [18,19,20,21,22,23,24,25,26,27,28,29]. In addition

to glycated proteins, RAGE binds molecules such as HMGB1,

S100b, calgranulins and others [30,31], hence its designation as a

scavenger receptor that may play a role in immune responses at

sites of tissue destruction. Its ability to bind ligands found at sites of

cell death and inflammation (so called ‘‘damage associated

molecular patterns’’ or DAMPs) has led many to conclude that

RAGE is involved in immune responses associated with these

events, and may modulate inflammatory and adaptive immune

responses [31]. RAGE activation has been shown to play a role in

diverse settings including sepsis and atherosclerosis as well as

disease processes including diabetic nephropathy, rheumatoid

arthritis, and Alzheimer’s disease and hypoxia/reoxygenase injury

[11,18,32,33,34,35,36,37,38,39,40,41,42,43].

RAGE is a type I transmembrane protein composed of three

extracellular immunoglobulin-like domains (V, C1, and C2), a

single transmembrane domain and a short cytoplasmic tail thought

to be important in signal transduction [19,31,44,45]. Signaling

through RAGE induces several intermediaries including NF-kB,
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MAPKs, PI3K/Akt, Rho GTPases, Jak/STAT, and Src family

kinases [8,21,46,47,48,49,50] [45]. RAGE is found on human and

murine antigen presenting cells even in the absence of inflamma-

tion [27,51,52,53,54]. Some investigators have described a

cooperative relationship between RAGE and TLR 2, 4, and 9

activation as well with the IL-1 receptor [54,55,56,57]. [57].

In murine models, we identified RAGE on activated T cells and

were able to modulate diabetogenic T cell responses with sRAGE.

A small molecule inhibitor of RAGE, TTP488, delayed islet

allograft rejection in BALB/c mice and RAGE2/2 mice showed

delayed rejection of islet allografts consistent with more recent

studies showing that HMGB1 and RAGE are involved in islet

graft loss [58,59,60]. These studies identified a role of RAGE on

the differentiation and activation of murine T cells [61].

There is, however, no information about RAGE expression and

function on human T cells despite a predicted effect and support

from preclinical studies. We therefore, studied expression and

function of RAGE on human T cells in patients with diabetes in

Figure 1. Expression of RAGE on human APC’s and T cells. A: Surface RAGE expression was studied on CD11c+ PBMC before (top) and after
(bottom) culture with LPS for 7 days. (solid line = staining with anti-RAGE antibody, dashed line = staining with isotype control) B: Cell surface (L and
intracellular RAGE expression was studied on CD4+ T cells before (top) and after 7 days in culture with anti-CD3 mAb (bottom). A single experiment
representative of cultures with more than 4 donors is shown. C: PBMC were activated with anti-CD3 mAb for 48 hrs and lysed or separated into CD4+
and CD8+ T cells with magnetic beads and lysed. A blot of the lysates was probed with anti-RAGE antibody. The arrow identifies RAGE in the cells.
doi:10.1371/journal.pone.0034698.g001

Figure 2. RAGE is seen in a granular pattern in T cells and colocalizes with endosomes. A: Jurkat cells were transfected with GFP-RAGE (A)
or control GFP vector (B) and photographed. A granular pattern of staining is seen within the RAGE transfected cells. C–E: HEK293 cells were
transfected with GFP-RAGE (D and E) and fixed and stained with RhoB (C and E). Panel E shows the merged staining. The arrows indicate cells+ for
RhoB and RAGE.
doi:10.1371/journal.pone.0034698.g002

RAGE Expression in Human T Cells
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whom RAGE ligands are increased, and in healthy control

subjects. We found that RAGE is constitutively expressed in T

cells from patients with diabetes. RAGE+ T cells have a skewed

phenotype suggesting that environmental RAGE ligands may

affect adaptive immune responses.

Results

Intracellular RAGE expression is increased in activated T
cells from healthy control subjects

We first studied the expression of RAGE on human T and

CD11c+ cells in peripheral blood from healthy control subjects

under basal conditions and after activation. Consistent with

previous reports, we identified RAGE surface expression on

CD11c+ cells, which increased following activation of the cells

for 6 days with LPS (Figure 1A). We did not detect RAGE

expression on resting T cells. Moreover, activation of resting T

cells with anti-CD3 mAb, also failed to increased RAGE

expression on the surfaces of the T cells. However, intracellluar

staining of T cell revealed RAGE expression in activated cells

(Figure 1B). RAGE was expressed in both CD4+ and CD8+ T

cells at similar levels. We confirmed the expression of RAGE on

activated CD4+ and CD8+ T cells by staining on Western blot

(Figure 1C).

To determine the intracellular location of RAGE expression, we

transfected HEK293 and Jurkat cells with GFP-RAGE. In living

Jurkat cells, RAGE staining appeared as a granular pattern in the

cytoplasm. We co-stained transfected HEK 293 cells (with RHOB-

N-RFP) and found co-localization of RAGE with early endosomes

(Figure 2).

T cell activation and RAGE ligands enhance RAGE
expression on T cells

Our findings with anti-CD3 mAb suggested that antigen

stimulation induces RAGE expression on T cells. To test this

directly, we cultured PBMC from HLA-A2+ subjects with or

without EBV peptide for 7 days. The antigen specific T cells were

identified by staining with Class I MHC (HLA-A2.1) tetramers in

the two cultures. Compared to the cultures without peptide, the

cultures with peptide showed an increase of 2.560.15 fold in the

percentage of EBV-reactive CD8+ T cells. In addition, a greater

proportion of tetramer+ cells were also RAGE+ (21.364.36% vs

52.668.58%, p = 0.02) (Figure 3).

Interestingly, we also found increased RAGE expression on

other CD8+ T cells in the cultures suggesting that factors other

than direct TCR stimulation were responsible for RAGE

expression. The most likely factor(s) were RAGE ligands

themselves, and therefore to examine this in more detail, we

tested the effects of RAGE ligands and TCR activation on the

expression of RAGE on other T cells during the cultures. We

cultured PBMC from a (HLA-A2.1+) healthy control subjects with

HLA-A2.1-restricted EBV peptide in the presence or absence of

the RAGE ligand S100b, and studied the expression of RAGE in

CD4+ as well as CD8+ T cells (Figure 4). Consistent with our

findings in Figure 3 in the antigen specific T cells, there was an

increase in the number of cells that expressed RAGE after 7 days

in culture with peptide on unselected CD8+ T cells but also on

‘‘bystander’’ CD4+ T cells. When S100b was added to the

cultures, the proportion of cells expressing RAGE was increased

more than 25 fold whereas culture with S100b alone did not

increase the proportion of RAGE+ T cells.

T cells from patients with T1DM express intracellular
RAGE under basal conditions

These findings indicated that RAGE ligands enhanced RAGE

expression on activated T cells. We reasoned that since RAGE

ligands are found in the serum of patients with diabetes, RAGE

expression might distinguish T cells from patients, and therefore

examined RAGE expression on peripheral blood T cells from

patients with Type 1 (T1D) and Type 2 diabetes (T2D). Similar to

our findings in healthy control subjects, we did not detect RAGE

expression on unstimulated cells from patients. However, we found

that the unstimulated cells from diabetic patients with T1D and

T2D diabetes expressed intracellular RAGE on CD4+ and CD8+
T cells (Figures 5A and B). The level of expression in freshly

isolated cells was similar to that found on T cells from healthy

control subjects that had been activated with anti-CD3 mAb

(p,0.001 vs staining of unstimulated cells from healthy control

subjects), and was not directly related to the ambient glucose level

reflected by the hemoglobin A1c (Figures 5B and C) or duration of

disease (not shown). RAGE expression was not a general feature of

autoimmunity or inflammatory conditions because it was not

Figure 3. RAGE is expressed on antigen specific CD8+ T cells during culture. Peripheral blood cells from HLA-A2.1+ healthy control subjects
that were cultured with or without EBV peptide were stained with Class I MHC tetramer loaded with EBV peptide and for intracellular RAGE. Culture
with the peptide increased the proportion of tetramer+ T cells increased 2.5-fold. On the tetramer+ T cells, the proportion that were RAGE+ increased
2.5 fold (p = 0.02). Data from 3 individuals are shown.
doi:10.1371/journal.pone.0034698.g003

RAGE Expression in Human T Cells
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found on unstimulated T cells from patients with rheumatoid

arthritis or Sjogren’s syndrome (Figure 5B).

In addition to the basal levels, the effects of T cell activation on

RAGE expression also differed in healthy control subjects and

patients. In healthy control subjects the level of RAGE expression

increased from 3.860.5% to 31.764.6% of CD4+ (p = 0.01) and

from 4.760.85% to 34.866.79% (p = 0.03) on CD8+ T cells

following culture with anti-CD3 Ab, whereas it decreased from

28.063.8% to 11.364.8% (p,0.05) on CD4+ and 29.463.5%

and 13.765.9% on CD8+ T cells in patients with T1D (p,0.05)

(Figure 6).

RAGE+ T cells have a naı̈ve phenotype but produce
increased levels of IL-17

To understand the significance of RAGE expression on T

cellular function, we studied the phenotype of RAGE+ and

RAGE2 CD4+ and CD8+ T cells from patients with diabetes.

The majority of the RAGE+ cells were CD45RA+ and CCR7+
similar to RAGE2 cells. The CD8+ T cells were CD252 whereas

30–45% of the RAGE+ CD4+ T cells were CD25+ suggesting

prior activation (Figure 7).

Figure 4. RAGE ligand enhances RAGE expression on T cells. Peripheral blood cells were cultured with or without EBV peptide and IL-2 with
or without S100b. After 7 days, CD4+ and CD8+ T cells were analyzed for the expression of RAGE. The percentages shown in each panel indicate the
percentage of RAGE+ T cells (minus background staining with control Ig) of CD4+ or CD8+ cells. A single experiment representative of 3 is shown.
doi:10.1371/journal.pone.0034698.g004
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We then studied the secretion of cytokines by RAGE+ and 2 T

cells. We activated PBMC from patients with T1D with PMA/

ionomycin for 6 hrs and compared the percentage of cytokine+
cells in the RAGE+ and 2 CD4+ and CD8+ T cell subsets

(Figures 8A and B). There was a greater proportion of IL-17+,

CD107a, as well as IL-5+ CD4+ T cells in the RAGE+ vs

RAGE2 subsets (Figure 8A). A similar trend was seen for IL-17,

CD107a, and IL-5 among CD8+ T cells (not shown).

Discussion

We have found RAGE expression in human T cells after

activation in healthy control subjects and under resting conditions

in patients with diabetes. Unlike antigen presenting cells, in which

RAGE is expressed on the cell surface and in granules, RAGE

expression in T cells was intracellular and colocalized with

endosomes. Increased RAGE expression in diabetes is most likely

due to the availability of RAGE ligands in these patients since it

was found on T cells in patients with T1D and T2D but not in T

cells from patients with other autoimmune diseases, and RAGE

expression was further enhanced in activated T cells in the

presence of RAGE ligands. The RAGE+ T cells generally

displayed a naı̈ve phenotype but a percentage of CD4+ T cells

showed increased expression of CD25 suggesting prior activation

and consistent with the need for TCR activation to induce RAGE

on T cells. Finally, RAGE expression also coincided with higher

levels of IL-17, IL-5, and CD107a compared to RAGE2 T cells.

These findings suggest a new mechanism whereby RAGE ligands,

commonly found at sites of inflammation and in diabetes, may

modulate adaptive immune responses.

Our findings in humans T cells confirm our previous

observations in mice in which we found RAGE expression on

activated T cells [58,59,61]. In mice, however, we identified

RAGE expression on the surfaces of diabetogenic T cells in NOD

mice, but in humans we find that RAGE expression was

exclusively intracellular. The receptor/ligand interactions in T

cells are not clear since RAGE ligands, including S100b, advanced

glycation endproducts, HMGB1 and others, are found extracel-

lularly. One possibility is that RAGE may serve as an intracellular

scavenger receptor under conditions of cellular stress and may

modulate the activation and differentiation of T cells that have

been previously activated or exhibit intracellular stress. For

example, active secretion of HMGB1 requires the shuttling of

the protein from the nucleus into the cytosol [62,63]. There are

several forms of post-translational modifications that result in the

accumulation of HMGB1 in the cytosol and the protein is released

via a nonclassical secretory pathway that involves specialized

vesicles of the endolysosomal compartment. Therefore, it is likely

that under conditions of cellular stress, HMGB1, a ligand for

RAGE may be available in the cytosol. It is also possible that

RAGE ligands may be available in the endosomes complexed with

ligands for other receptors that are engulfed in the endosomes.

This mechanism has been proposed in APCs as a means of

activating endosomal TLR9 by DNA bound to the RAGE ligand

HMGB1 [54].

Figure 5. Expression of RAGE on T cells from patients with T1D and T2D. A:PBMC were isolated from patients with T1D (top two rows) and
T2D (bottom row). They were stained with CD4+ or CD8+ Abs and for surface or intracellular RAGE. Two single experiments, representative of 7 are
shown. B. The level of RAGE expression in unmanipulated CD4+ (solid symbols) and CD8+ (open symbols) T cells from patients with T1D, T2D, and
healthy control subjects (HC) or patients with rheumatoid arthritis (RA) and Sjogren’s syndrome (SS) are shown (*p,0.05, *** p,0.01). C. The
relationship between hemoglobin A1c levels and the percentage of RAGE in CD4+ T cells in patients with T1 and T2D is shown (p = ns).
doi:10.1371/journal.pone.0034698.g005
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It was unexpected to find a decrease in the level of RAGE

expression following activation of T cell from patients with

diabetes. The relationship between increased levels of RAGE

ligands and increased RAGE expression in activated T cells

suggests a ‘‘feed forward’’ mechanism that may explain the

common finding of increased RAGE expression on T cells from

patients with T1 and T2D. A limitation of our studies is that since

RAGE undergoes a variety of post-translational modifications, it is

possible that an isoform of the molecule is expressed by activated

T cells that is not identified by the antibody we used for detection.

In tissues, the full length form of RAGE is found most frequently,

but RAGE undergoes a variety of splice events resulting, most

commonly, in the production of a secreted form of RAGE

(sRAGE) from a frameshift at the C terminus which removes

transmembrane and cytoplasmic domains [19,21,64]. In patho-

logic states the level of expression of the splice variant may change

which results in increased levels of sRAGE in plasma [63,65,66].

Nonetheless, our studies of unactivated cells indicate that there are

clear differences in the patterns of RAGE expression on T cells

from healthy control subjects and patients with diabetes.

RAGE appears to modulate the phenotype of CD4+ T cells. In

mice, we found reduced expression of IFNc by RAGE deficient

cells and our studies with human cells show increased expression of

IL-17 and CD107a in RAGE+ T cells. Signaling through RAGE

has been shown to involve interactions between the FH1 domain

of mammalian Diaphanous-1 that interacts with the cytoplasmic

tail of RAGE and induces several intermediaries including NF-kB,

MAPKs, PI3K/Akt, Rho GTPases, Jak/STAT, and Src family

kinases [47,49,67]. Modulation of TCR signaling via these

intermediates may affect the phenotype of activated cells. This

observation may help to explain the observations of others

concerning increased IL-17 production in responses to antigen

in patients with T1DM. Nakamura et al found that circulating

AGEs and sRAGE are independent determinants of serum

monocyte chemoattractant protein-1 (MCP-1) levels in patients

with type 2 diabetes suggesting a direct relationship between

immune cell activation and AGE levels [68]. However, since

RAGE expression on T cells is affected by both the presence of

ligands as well as TCR stimulation, our findings suggest a more

complex control of RAGE expression than simply the availability

of ligands. In addition, the increased proportion of RAGE+ CD4+
T cells in cultures with peptide presented by Class I MHC

molecules raises the possibility that RAGE may be induced on

neighboring T cells possibly by cell:cell contact or by soluble

factors that have not been identified.

Although RAGE expression is associated with hyperglycemia

rather than the autoimmune process that causes T1D, our findings

may have relevance for understanding the more rapid tempo of

the disease that is seen after the development of hyperglycemia.

Beta cell destruction in T1DM is believed to progress in a linear

fashion from the first appearance of autoantibodies until complete

elimination of b cells, the tempo of the disease increases once

hyperglycemia develops but studies have shown a 10 fold greater

loss of insulin secretion after development of hyperglycemia

compared to before diagnosis and analysis of changes in C-peptide

secretion in the DCCT suggested that tight glycemic control was

associated with reduced decline in b cell function [69,70].

In summary, we have described, for the first time, the

expression of RAGE in human T cells, and have explored factors

that control its expression, and the relationship between RAGE

Figure 6. Changes in RAGE expression on activated T cells from patients with T1D and healthy control subjects. RAGE expression was
studied on CD4+ or CD8+ T cells before and 48 hrs after culture with anti-CD3 mAb. RAGE expression was higher on CD4+ (p,0.001) and CD8+
(p,0.001) T cells from patients with T1D vs healthy controls. While the level of RAGE expression increased in CD4+ and CD8+ T cells from healthy
control subjects (p,0.05), it decreased in the patients with T1D (p,0.05).
doi:10.1371/journal.pone.0034698.g006

RAGE Expression in Human T Cells
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expression and T cell function. The role of RAGE in modulating

the function of T cells from patients with diabetes or its role in

normal T cell function warrants further investigation and suggests

a new relationship whereby environmental factors may modulate

adaptive immune responses.

Materials and Methods

Cells and cell lines/Ethics statement
Peripheral blood mononuclear cells (PBMC) were obtained

from blood donors (from the New York Blood Center), healthy

control subjects, and patients with T1D or T2D and healthy

control subjects. The patient groups participated in studies of

cellular immune responses in patients and control subjects (IRB

approval # 0608001773). Hemoglobin A1c levels were measured

at the time of blood draw by Northwest Research Laboratory.

HEK293 and Jurkat cells were obtained from ATCC. PBMC and

cell lines were frozen at the time of acquisition and thawed prior to

use.

Western blot studies
PBMC from healthy blood donors were activated with OKT3

and separated into CD4+ and CD8+ T cells with Dynal beads

(Invitrogen). The cells were lysed off the beads in buffer containing

10 mMTris, ph7.5, 5 mM EDTA, 150 mM NaCl and 1% Triton

X-100 for 30 min on ice. The lysates were separated on a 12%

NuPage pre-cast gel (Invitrogen) run with molecular weight

markers (SeeBlue2, Invitrogen) and transferred to nitrocellulose.

Resulting membranes were blocked with 5% milk in PBS and

incubated with anti-human Rage mouse monoclonal antibody

(Abcam) overnight at 4uC. Bands were detected using HRP-Goat

anti Mouse secondary antibody (Biorad) followed by SuperSignal

West Pico Chemiluminescent Substrate kit from Thermo Scien-

tific. After which, the membrane was exposed to film and

developed.

Flow cytometry
PBMC were stained with mAbs to surface molecules: CD4,

CD8, CCR7, CD45RA, and CD11c (all from BD/Pharmingen)

Figure 7. Phenotype of RAGE+ T cells. CD8+ T cells, that were not activated from a patient with T1D (R column) or a CD8+ T cells from a HLA-A2+
healthy control subject, activated with anti-CD3+28 mAbs (L column) or from the same HC subject activated with EBV peptide (middle column) were
compared. The RAGE+ T cells from the patient with T1D do not express CD25, are CCR7+ and have a more uniform distribution of CD45RA. Results
from a single donor representative of 3 is shown.
doi:10.1371/journal.pone.0034698.g007

RAGE Expression in Human T Cells
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and FITC labeled anti-human RAGE (Abcam). In certain

experiments, the cells were fixed and permeabilized with Cyto-

fix (BD/Pharmingen) prior to staining.

Cytokine and CD107a expression was also studied in patients

with T1D after activation of the cells from patients with T1D with

PMA (50 ng/ml) and ionomycin (500 ng/ml) for 6 hrs in the

presence of Golgi-stop. The cells were stained for cell surface

markers and then fixed and permeabilized with Cyto-perm. They

were then washed and stained with antibodies to IL-2, IFNc, IL-

17, TNF, IL-17A, and IL-5 (BD/Pharmingen). For staining for

CD107a, the mAb was added to cells during the culture with

PMA/ionomycin and then added after washing, fixation, and

permeabilization. The proportion of positive cells among RAGE+
or RAGE2 cells was determined by gating on CD4+ and CD8+
lymphocytes and then determining the proportion of cytokine+
cells among a RAGE+ and RAGE2 gate.

Cell cultures
Peripheral blood cells were also cultured in AIM V media with

5% FCS with EBV peptide (GLCTLVAML) with or without

S100b (10 mg/ml, Sigma, St Louis, MO). After 7 days in culture,

the cells were stained with antibodies to CD4, CD8, as well as with

Class I MHC tetramers loaded with the EBV peptide. These cells

were also fixed and permeabilized and intracellular RAGE

staining was analyzed. The cells were analyzed by flow cytometry

and the proportion of tetramer+RAGE+CD8+ T cells was

calculated [71].

Transfection of RAGE into cell lines
RAGE cDNA was purchased from Openbiosystems and was

PCR amplified and cloned via BP Gateway recombination

(Invitrogen) into the pDONR221 vector. The cDNA was then

transferred via an LR Gateway recombination reaction into a

modified pcDNA-DEST40 expression vector so that the C-

terminus of RAGE protein is fused in frame with the N-terminus

of mKate2 fluorescent protein or GFP (Evrogen, Moscow, Russia).

As control vectors, the original mKate2-expressing plasmid or with

a plasmid expressing GFP were used. The transfected cells were

co-stained with RHOB- N-RFP (OriGene,Rockville, MD) to

identify early endosomes respectively. Pictures were taken on an

inverted Olympus fluorescence microscope equipped with a

standard red, green, blue set of filters, using either the 106 or

206objective. Jurkat cells were studied at 24 or 48 hrs, under the

inverted fluorescent microscope after electroporation with the

RAGE-GFP plasmid using a BioRad Xcell Gene Pulser.

Statistical analysis
Multiple groups were compared by ANOVA. Comparisons of

cytokine protein expression among RAGE+ and RAGE2 T cells

was done using a paired Student’s t-test after ln transformation of

Figure 8. Phenotype of RAGE+ T cells. A: The phenotype of RAGE+ and 2 PBMC from patients with T1D were studied by flow cytometry (n = 4).
PBMC were activated with PMA/ionomycin for 6 hours and the percentage of cytokine+ RAGE+ or RAGE2 T cells was determined in the same
individual and compared by paired t-test. The percentages that are shown (mean6 SEM) represent the percent of the RAGE+ or RAGE2 T cells that
were cytokine+. (*p,0.05). B. A single representative experiment showing staining with RAGE and CD107a and IL-17 are shown. Gates were placed
around CD4+ T cells. The inserts show the the percentage of total CD4+ cells in each quadrant.
doi:10.1371/journal.pone.0034698.g008

RAGE Expression in Human T Cells
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the data. For IL-17A, the percentage of positive cells were

compared after log transformation. The data are presented as

mean6SEM. All analyses were performed using GraphPad Prism

5. Two sided tests were performed and a p,0.05 was considered

statistically significant.
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