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Abstract

Purpose: Classification is an important and widely used machine learning technique in bioinformatics. Researchers and
other end-users of machine learning software often prefer to work with comprehensible models where knowledge
extraction and explanation of reasoning behind the classification model are possible.

Methods: This paper presents an extension to an existing machine learning environment and a study on visual tuning of
decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable
decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in
classification, no classification performance measure is used during the tuning of the model that is constrained exclusively
by the dimensions of the produced decision tree.

Results: The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning
problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in
classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision
trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics
datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly
lower for the proposed method in comparison to manual tuning of the decision tree.

Conclusions: The empirical results demonstrate that by building simple models constrained by predefined visual
boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not
differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our
study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high
number of possibly redundant attributes that are very common in bioinformatics.
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Introduction

Decision trees are one of the most popular classification

techniques in data mining [1]. One of the main reasons for this

is decision trees’ ability to represent the results in a simple decision

tree format which is easy to interpret for experts, as they can see

the structure of decisions in the classifying process. The basic idea

of the decision tree format is to construct a tree whose leaves are

labeled with a particular value for the class attribute and whose

inner nodes represent descriptive attributes. Given an inner node

N, the children of N correspond to different possible values of the

associated descriptive attribute. Once a decision tree is built,

determining the class value for a new instance is achieved by

following a path from the root to a leaf according to the values of

the descriptive attributes of the instance. The class value assigned

will be that labeling the leaf. Following this process one can easily

extract classification rules that can be readily be expressed so that

humans can understand them. In addition to their simplicity,

building decision trees is often a less time consuming classification

process compared to other classification techniques [2], and

decision tree rules can be directly used as statements in a database

access language (e.g. SQL).

Decision trees can be built with several different approaches

where the most popular are C4.5 [3] and CART [4]. Due to their

popularity, decision trees have been applied to different research

fields including bioinformatics [5,6], medicine [7] and image

classification [8]. In addition, several commercial products use

decision trees for knowledge discovery, predictive analysis and

other purposes. For instance, KnowledgeSeeker [9] offers business

intelligence software for customer analytics and marketing

analytics.

From the knowledge discovery perspective, the ability to track

and evaluate every step in the decision-making process is one of

the most important factors for trusting the decisions gained from

data-mining methods. Examples of such techniques are decision

trees that possess an important advantage in comparison with

competitive classification methods - i.e., the symbolic representa-

tion of the extracted knowledge. Decision trees, along with rule-

based classifiers, represent a group of classifiers that perform

classification by a sequence of simple, easy-to-understand tests

whose semantics are intuitively clear to domain experts [10].

Although current state-of-the art classifiers (e.g. Support Vector

Machines [11]) or ensembles of classifiers (e.g. Random Forest

[12] or Rotation Forest [13]) significantly outperform classical
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decision tree classification models in terms of classification

accuracy or other classification performance metrics, they are

not suitable for knowledge discovery process.

When decision trees are used in knowledge discovery, one

should usually include domain experts in the analysis process.

Therefore, in most cases the final decision trees will be presented

to domain experts for evaluation of extracted knowledge – i.e.,

rules that can be derived from a decision tree. In such cases the

complexity of decision trees, which is usually measured as the

number of nodes or the number of rules that can be extracted from

a tree, is of high importance and can influence the evaluation of

the discovered knowledge by domain experts [14]. Decision tree

complexity has been studied in terms of reducing the complexity

and maintaining or improving the accuracy at the same time.

Bohanec and Bratko [15] studied the difference between pruning a

decision tree for better approximation of the target concept and

pruning the decision tree to make it practical for communication

and understanding by the user. Their study focused on developing

algorithms for obtaining the smallest pruned decision trees that

represent concepts within some chosen accuracy. Oates and

Jensen [16] studied the influence of database size on decision tree

complexity. They demonstrated that the tree size strongly depends

on the training set size. Therefore, many approaches that are

based on removing training instances prior to tree construction

[17,18,19] could result in smaller trees just because of the training

set reduction.

Different visual representations of decision trees like the classical

node-link diagrams [20,21], treemaps [22,23], concentric circles

[24,25], and many others have been proposed in the past. A major

consideration in evaluation of decision trees is also how efficiently

they use screen space to communicate the tree information [26].

Through application of decision trees to different fields of research

and their use in open source and commercial software for machine

learning and data mining, it has been demonstrated that end-users

still prefer node-link diagrams although their space covering is not

optimal. Huysmans et al. [27] observe that currently, most

research focuses on improving the accuracy or precision of

predictive models and comparatively little research has been

undertaken to increase their comprehensibility to the analyst or

end-user. They empirically investigated suitability of decision

tables, (binary) decision trees, propositional rules, and oblique rules

in environments where interpretability of models is of high

importance. The results showed that users prefer decision tables,

followed by decision trees to other compared knowledge

representations, but authors admitted that only inexperienced

users were included in the study.

A multi-criteria approach to evaluation of decision trees that

also includes size of the built decision trees was proposed by Osei-

Figure 1. Comparison of the original J48 decision tree (upper image) and visually tuned version from VTJ48 (lower image) on the
letter dataset.
doi:10.1371/journal.pone.0033812.g001
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Bryson [28]. It aims to make the data mining process simpler for

data mining project teams, especially when they have to evaluate

significant number of decision trees. The proposed project uses

three measures to evaluate appropriateness of the decision trees:

stability, simplicity and discriminatory power. Simplicity, or

equivalently complexity is further divided in the number of rules

that can be extracted from the tree and the average length of the

extracted rules.

Due to their popularity and a need to build simple decision trees

with as little effort as possible, this paper proposes a novel method

called Visual Tuning of Decision Trees (VTDT). This method

helps data analysts in building effective decision tree representa-

tions with spending less time on setting and tuning the parameters

of decision tree induction algorithm when compared to classical

methods. From the analyst’s perspective it is very important that

the produced representation of the decision tree allows effective

Table 1. Basic information on 40 datasets from UCI repository used in this study including information about number of instances,
attributes, classes, length of longest attribute name (LAN) and length of the longest nominal attribute value (LAV).

Dataset Samples Attributes Nominal Numeric Classes LAN LAV

anneal 898 39 33 6 6 22 5

anneal.orig 898 39 33 6 6 22 5

arrhythmia 452 280 74 206 16 28 2

audiology 226 70 70 0 24 23 32

autos 205 26 11 15 7 17 13

balance-scale 625 5 1 4 3 14 1

breast-cancer 286 10 10 0 2 11 20

breast-w 699 10 1 9 2 21 9

colic 368 23 16 7 2 27 29

colic.orig 368 28 21 7 2 27 7

credit-a 690 16 10 6 2 5 2

credit-g 1000 21 14 7 2 22 30

diabetes 768 9 1 8 2 5 15

ecoli 336 8 1 7 8 5 3

glass 214 10 1 9 7 4 20

heart-c 303 14 8 6 5 8 21

heart-h 294 14 8 6 5 10 21

heart-statlog 270 14 1 13 2 36 7

hepatitis 155 20 14 6 2 15 6

hypothyroid 3772 30 23 7 4 25 23

ionosphere 351 35 1 34 2 5 1

iris 150 5 1 4 3 11 15

kr-vs-kp 3196 37 37 0 2 5 5

labor 57 17 9 8 2 30 13

letter 20000 17 1 16 26 5 1

lymph 148 19 16 3 4 15 12

mushroom 8124 23 23 0 2 24 1

optdigits 5620 65 1 64 10 7 1

pendigits 10992 17 1 16 10 7 1

primary-tumor 339 18 18 0 22 15 17

segment 2310 20 1 19 7 20 9

sick 3772 30 23 7 2 25 8

sonar 208 61 1 60 2 12 4

soybean 683 36 36 0 19 15 27

splice 3190 62 62 0 3 13 24

vehicle 846 19 1 18 4 25 4

vote 435 17 17 0 2 38 10

vowel 990 14 4 10 11 14 6

waveform-5000 5000 41 1 40 3 5 1

zoo 101 18 17 1 7 8 12

doi:10.1371/journal.pone.0033812.t001
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communication with end-users (i.e. customers) or domain experts

in cases of decision tree applications in research. In addition, from

our own and experience of our colleagues, we know that, although

we live in a digital age, we still meet a lot of experts in different

domains who prefer to have the final decision tree printed out on a

sheet of paper. The result of the VTDT method is a decision tree

that can be printed out on a single page or displayed on a

computer screen without the need for scrolling or zooming. It is

also important to take care of the decision trees that would be too

pruned when using the default parameters of decision tree

induction method. One could also call this type of decision tree

induction ‘‘one-button decision trees’’ as there is no need to tune

the parameters and build multiple decision trees anymore.

Methods

The proposed method in this paper presents an automated

tuning process for the widely used C4.5 decision tree, which was

developed by Quinlan [3]. More precisely, it focuses on C4.5’s

implementation in the Weka machine learning framework [29],

where it is referred to as J48.

2.1 Tuning the Parameters
There are multiple settings that can influence the size of the

generated decision tree. Two types of pruning are available - i.e.,

subtree replacement and subtree raising. Subtree raising uses a

technique where a node may be moved upwards towards the root

of the tree, replacing other nodes along the way during a process of

pruning. In general, subtree raising is computationally more

complex than subtree replacement where the nodes in a decision

tree can be replaced by leafs. Another setting influencing the

pruning process is confidence factor that represents a threshold of

allowed inherent error in data while pruning the decision tree. By

lowering the threshold one is applying more pruning and

consequently generates more general models. To obtain simpler

models where leafs contain higher number of samples, it is possible

to set the minimal number of objects in a single leaf. This setting

can also be used in tuning to achieve simpler and smaller decision

Table 3. Comparison of decision tree dimensions on 40 UCI
datasets including the number of leaves.

Leaves Width Height

J48 VTJ48 J48 VTJ48 J48 VTJ48

anneal 37.69 12.98 2753.62 2555.43 670.11 677.68

anneal.ORIG 46.37 11.10 3426.41 1362.30 868.05 546.30

arrhythmia 40.59 10.20 1679.34 1589.04 1555.57 1462.47

audiology 30.25 9.11 3799.18 3781.91 923.98 921.00

autos 45.25 12.77 6527.37 4199.37 654.02 637.58

balance-scale 41.24 25.86 1986.12 1222.98 821.96 747.91

breast-cancer 9.60 4.04 1177.92 1518.04 348.63 354.23

breast-w 12.08 14.23 781.99 967.01 637.84 698.75

colic 6.07 8.76 546.44 1198.39 360.41 424.61

colic.ORIG 1.00 6.83 1.00 480.83 1.00 372.96

credit-a 21.40 12.01 1664.81 1098.50 669.91 619.21

credit-g 89.05 7.07 13906.86 1077.07 877.89 335.60

diabetes 21.87 11.97 1488.65 963.30 830.31 694.87

ecoli 18.70 17.78 1039.47 1055.72 735.37 723.22

glass 23.73 12.23 2293.10 1838.96 827.88 754.41

heart-c 26.05 8.85 3273.48 1399.74 618.49 476.47

heart-h 7.21 8.17 673.28 1042.54 408.37 464.92

heart-statlog 17.85 13.41 1577.55 1309.66 633.84 605.13

hepatitis 9.24 12.41 522.66 754.78 571.69 659.98

hypothyroid 14.39 13.43 1101.64 1070.54 756.02 771.15

ionosphere 13.85 11.59 1070.98 1019.02 775.47 734.02

iris 4.69 4.76 227.87 231.10 428.43 432.21

kr-vs-kp 28.98 13.16 1187.64 1104.25 1091.28 1076.77

labor 4.00 5.20 329.00 464.17 333.06 380.56

letter 1165.00 12.65 63285.55 63344.28 1916.69 1919.54

lymph 17.43 10.12 1863.97 1252.03 580.12 462.35

mushroom 24.93 24.93 1022.25 1022.25 527.00 527.00

optdigits 205.46 16.09 11154.56 11195.65 1330.36 1334.04

pendigits 188.13 16.04 10719.41 10784.98 1297.69 1296.05

primary-tumor 43.18 14.62 3794.33 1797.86 891.43 789.16

segment 41.12 11.09 3749.02 3748.84 1084.95 1085.78

sick 27.59 14.22 1763.57 1087.54 815.68 710.67

sonar 14.71 13.80 1107.13 1089.68 665.59 659.63

soybean 61.28 11.04 6175.62 6180.02 913.67 920.67

splice 173.83 20.78 7537.58 6176.44 759.48 731.51

vehicle 69.22 16.27 5069.70 4183.99 1168.31 1065.60

vote 5.81 6.22 390.94 432.98 508.98 513.86

vowel 126.41 10.58 11046.43 11045.28 985.60 986.01

waveform-5000 295.66 16.82 16325.97 13756.92 1494.51 1386.66

zoo 8.31 8.31 436.69 436.69 567.50 567.50

doi:10.1371/journal.pone.0033812.t003

Table 2. Feature datasets used in protein solubility
classification.

# Name Size

1 MonomersNatural 20

2 DimersNatural 13

3 TrimersNatural 24

4 MonomersHydro 5

5 TrimersHydro 12

6 MonomersConfSimi 7

7 DimersConfSimi 20

8 TrimersConfSimi 15

9 MonomersBlosum 8

10 DimersBlosum 25

11 MonomersClustEm14 14

12 DimersClustEm14 16

13 TrimersClustEm14 22

14 MonomersClustEm17 17

15 DimersClustEm17 27

16 TrimersClustEm17 42

17 MonomersPhysChem 7

18 DimersPhysChem 21

19 Computed 4

20 eSol 22

21 All Features 342

doi:10.1371/journal.pone.0033812.t002
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trees. The final setting that can be used to tune the visual outlook of

the tree is called binary splits selection. This setting forces the

splitting of nodes to only two branches instead of multiple splits. The

default J48 decision tree in Weka uses pruning based on subtree

raising, confidence factor of 0.25, minimal number of objects is set

to 2, and nodes can have multiple splits. To allow automated tuning

in Weka, a package called Visually Tuned J48 (VTJ48, available at

http://ri.fzv.uni-mb.si/vtj48/) was developed during this study.

All parameters, mentioned in the previous paragraph, are

automatically tuned in VTJ48 to allow the so called ‘‘one-button

data mining’’. However, it is possible to change the default values

for dimensions of the resulting window that represent boundaries

of the VTJ48 decision tree. Default values for maximal dimensions

of the decision tree are set to 12806800 pixels corresponding to

the Widescreen eXtended Graphics Array (WXGA) video

standard. The aspect ratio of this resolution is 16:10 (1.60) and

comes very close to aspect ratio of A4 paper dimensions (approx

1.41). The chosen dimensions can also be displayed on most

computer monitors in use today.

Although it would be possible to use the original Weka source

code to display decision trees, some adaptations to original

decision tree visualization methods had to be done to allow better

covering of space for nodes and leaves. In comparison to classical

Weka decision tree visualization, we changed the shape of internal

nodes to allow more space on both sides of nodes. Additionally, we

reduced the height of the trees with reduction of the vertical

distance between nodes by 50%.

Tuning of parameters in VTJ48 is done using adapted binary

search where confidence factor of pruning is optimized until

highest acceptable value of this parameter is found. Boundaries for

confidence factor optimization are set at 0 and 0.5 (starting value

in VTJ48 and the maximal allowed setting in J48). In cases where

initial confidence factor tuning cannot build an acceptable

decision tree, binary splits are turned on. This step usually

significantly reduces horizontal dimensions of the tuned decision

tree. Tuning of confidence factor is done once again. In rare cases,

where binary splits are not enough, VTJ48 tries to increase

minimal number of objects in leaves. This parameter (m) is

increased from 2 until m,n in steps of m2, where n is number of all

samples in the training set. More extensive search could have been

chosen, but in such case one should expect a significant increase in

the time complexity of the tuning process. The pseudocode in

Figure 1 describes the reduction of the tree size process as

implemented in VTJ48.

In rare cases the default settings of VTJ48 algorithm will

produce an extremely small tree consisting of just one or even

without splitting nodes. Therefore, in cases of decision trees with

only one or two leaves, an approach using unpruned decision tree

is used. With confidence factor set to 0.5 such tree will usually

grow over the predefined boundaries. This time a linear hill-

climbing approach is used to increase the minimal number of

objects in leaves, because there is no need to tune confidence

factor in an unpruned decision tree.

2.2 Experimental Settings
By reducing the size and complexity of decision trees to fit the

predefined screen resolution or paper size one is expecting

significantly lower classification accuracy, especially in initially

Table 4. Comparison of decision tree dimensions on the protein feature datasets including the number of leaves.

Leaves Width Height

J48 VTJ48 J48 VTJ48 J48 VTJ48

MonomersNatural 91.73 13.08 6965.05 4779.43 1296.91 1147.77

DimersNatural 54.05 12.93 3880.20 1807.83 1226.37 882.51

TrimersNatural 15.57 11.03 1403.25 1338.10 798.08 784.64

MonomersHydro 7.25 7.05 576.10 600.18 547.75 553.87

TrimersHydro 41.54 11.38 3035.91 1498.45 1068.53 816.91

MonomersConfSimi 16.55 11.91 1225.22 999.07 765.66 701.04

DimersConfSimi 85.58 13.02 6518.23 3880.32 1256.65 1045.51

TrimersConfSimi 37.49 11.02 2607.05 1251.43 1112.98 807.38

MonomersBlosum 29.72 13.61 2270.26 1399.86 909.40 781.34

DimersBlosum 94.21 13.27 7139.47 4640.00 1297.53 1129.44

MonomersClustEm14 68.44 13.46 5272.88 3006.28 1169.90 984.28

DimersClustEm14 51.66 11.20 4115.81 1974.13 1202.74 921.91

TrimersClustEm14 35.04 10.53 2808.01 1310.34 1245.19 845.54

MonomersClustEm17 84.87 12.90 6687.42 3637.08 1182.30 956.30

DimersClustEm17 117.36 10.26 7419.49 3430.75 1609.62 1158.41

TrimersClustEm17 88.52 10.06 6730.81 3020.26 1912.71 1221.96

MonomersPhysChem 32.92 13.67 2655.87 1674.10 919.93 831.75

DimersPhysChem 80.22 10.81 5927.14 2879.09 1356.17 1047.01

Computed 7.99 8.51 724.04 779.70 516.48 534.92

eSol 89.79 14.13 7611.00 4331.36 1124.45 976.64

All Features 111.09 13.14 6949.88 4988.28 1744.36 1448.88

doi:10.1371/journal.pone.0033812.t004
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very large decision trees. We used several different datasets to test

this assumption.

2.2.1. UCI Datasets. Forty UCI repository [30] datasets

retrieved from the Weka website were used to evaluate the

classification performance of the VTDTs. Basic information

including the information on attributes that can influence the

size of a decision tree for all datasets is presented in Table 1.

2.2.2. Protein Solubility Datasets. In addition to the

datasets from the UCI repository, we tested our method on

datasets in the field of bioinformatics.

Table 5. Comparison of classification performance (20 runs of 10-fold cross-validation) on 40 UCI datasets.

Accuracy AUC D (J48 - VTJ48)

J48 VTJ48 J48 VTJ48 ACC AUC

Anneal 98.6460.2 98.9360.2 99.3660.3 98.8560.3 20.28 0.51

anneal.orig 92.3460.5 81.3461 97.4760.4 83.662.6 11.00 13.87

arrhythmia 65.8861.1 70.6361 73.5861.4 79.0161 24.75 25.43

audiology 77.361.4 66.3163.9 92.3160.6 91.7861 11.00 0.53

Autos 82.5962.6 64.0762.4 91.4561.1 82.4262.4 18.51 9.04

balance-scale 77.960.9 77.3560.7 82.3660.8 83.9361.1 0.55 21.57

breast-cancer 74.2560.8 74.4860.9 58.7661.8 59.6961.5 20.23 20.93

breast-w 94.6460.4 94.6960.4 95.2161 95.4460.6 20.06 20.23

Colic 85.1560.4 85.0360.7 80.7960.9 81.1261.2 0.12 20.33

colic.orig 66.360 65.3361.7 48.5560 70.3161.5 0.98 221.76

credit-a 85.8360.7 86.2460.7 88.4960.7 89.1860.8 20.41 20.70

credit-g 71.0360.8 71.8560.6 64.4661.2 70.9660.6 20.82 26.50

diabetes 74.2961.1 74.5261.1 75.3161.3 74.661.4 20.23 0.71

Ecoli 82.9661.2 82.6261.1 90.6360.8 91.0360.6 0.34 20.40

Glass 67.1762.5 67.7862.2 80.1362 80.9761.3 20.61 20.85

heart-c 76.8561.6 76.261.6 77.2462.4 77.7362 0.64 20.49

heart-h 78.3361.1 78.461.2 75.2261.5 77.5361.8 20.07 22.31

heart-statlog 77.8361.7 78.5662.1 77.4962.6 77.9162.2 20.72 20.42

hepatitis 79.7761.9 79.8461.7 67.5764.6 70.5464.7 20.06 22.97

hypothyroid 99.5360 99.5560 99.2760.2 99.2860.2 20.02 20.01

ionosphere 89.961.1 89.9361 88.9561.7 88.1161.4 20.03 0.83

Iris 94.760.9 94.760.9 95.7360.7 95.7660.8 0.00 20.03

kr-vs-kp 99.3960.1 97.3560.1 99.8160 99.4160.1 2.03 0.40

Labor 80.0963.1 82.2863.1 72.0564.7 75.8964.4 22.19 23.85

Letter 88.0260.2 29.4260.6 95.460.1 88.7760.2 58.60 6.63

Lymph 77.0361.5 76.4561.9 79.3961.9 78.7363 0.57 0.66

mushroom 10060 10060 10060 10060 0.00 0.00

optdigits 90.5160.2 73.9460.4 95.3960.1 93.6960.1 16.57 1.70

pendigits 96.5360.1 80.1360.6 98.4460.1 96.8960.1 16.40 1.56

primary-tumor 42.6861.5 41.8361 71.9560.8 71.5261.1 0.86 0.43

segment 96.9360.2 9260.3 98.6660.1 98.3460.1 4.92 0.32

Sick 98.7360.1 98.3860.1 95.5160.7 92.0561.1 0.35 3.46

Sonar 72.0763.1 72.2662.6 73.5863.3 73.1363.2 20.19 0.44

soybean 91.9660.8 61.4660.9 98.1160.3 94.8760.2 30.50 3.23

Splice 94.1360.2 94.4560.2 96.6760.1 97.9260.1 20.32 21.25

Vehicle 72.2161.2 71.6461 85.3860.7 89.3160.4 0.57 23.93

Vote 96.4160.4 96.3860.4 96.9760.4 97.0360.4 0.03 20.06

Vowel 80.1161.3 43.3961.1 92.3460.6 87.7860.5 36.72 4.56

waveform-5000 75.3660.6 74.1160.4 82.8260.5 88.7260.2 1.25 25.90

Zoo 92.2360.4 92.2360.4 97.6760.1 97.6760.1 0.00 0.00

J48/tie/VTJ48 (21/3/16) (17/2/21)

doi:10.1371/journal.pone.0033812.t005
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Protein solubility is an important protein property since low

protein solubility can lead to several diseases [31] or affect isolation

of proteins from complex mixtures [32]. Several attempts to

classify and predict protein solubility have been made [33–36]. To

assess our method, we used the eSol database (available at http://

tp-esol.genes.nig.ac.jp/) which includes information about protein

solubility of the entire ensemble of E.coli proteins. The database

contains 1,625 proteins, out of which 782 are insoluble and 843

are soluble proteins. We calculated 21 feature datasets for each of

these proteins as shown in Table 2. These numeric features have

shown to be influential in protein solubility prediction in previous

works, where:

– the feature datasets 1–18 contain mono-, di- and tri-mers using

7 different alphabets,

– the feature dataset 19 contains 4 sequence-computed features,

i.e., molecular weight, sequence length, isolectric point and

GRAVY index,

– the feature dataset 20 contains features used in [33], and

– the feature dataset 21 combines all features from the previous

datasets.

2.2.3. Gene Expression Datasets. Comprehensible

classifiers can provide an important insight in gene expression

analysis studies. In this study we used 9 Gene Expression Machine

Learning Repository (GEMLeR) datasets [37]. Altogether 1545

samples are divided in the following groups by tumor type: breast

(344 samples), colon (286), kidney (260), ovary (198), lung (126),

uterus (124), omentum (77), prostate (69) and endometrium (61).

GEMLeR datasets used in this study were created by selecting one

out of 9 groups of samples in so called one-versus-all binary

classification setting. Unsupervised highest variance filter was

chosen to avoid the so called ‘‘selection bias’’ when reducing the

number of attributes by eliminating the measurements with

extremely low variance. Samples consisting of original 54,681

expression measurements from Human Genome U133 Plus 2.0

Array GeneChip were reduced to 10,935 (20%) gene expression

measurements that represent attributes of 9 datasets.

2.2.4. Performance Evaluation. Different measures were

observed for J48 decision tree using default settings and VTJ48

decision tree on all datasets. Basic size related measures like width

and height of decision tree in pixels, number of leaves and number of

nodes were calculated for each decision tree on each dataset.

Additionally, Classification accuracy (ACC) and area under ROC

curve (AUC) were calculated using 20 runs of 10-fold cross-validation

on all datasets to observe differences in classification performance.

Results

To evaluate the proposed method we compared the classifica-

tion performance and size of the classical C4.5 trees (J48) with the

visually tuned C4.5 trees (VTJ48). Initially, the tests were

performed on 40 datasets from the well-known machine learning

repository. In addition, the tests were done on two types of datasets

where decision trees can be applied in the field of bioinformatics -

i.e., 21 protein solubility datasets and 9 gene expression analysis

datasets.

Table 6. Comparison of classification performance (20 runs of 10-fold cross-validation) on the protein datasets.

Accuracy AUC D (J48 - VTJ48)

J48 VTJ48 J48 VTJ48 ACC AUC

MonomersNatural 70.7660.9 72.4160.7 70.5861.3 76.4160.6 21.66 25.83

DimersNatural 62.5861 61.9460.9 64.6561 64.4561 0.64 0.20

TrimersNatural 55.4460.3 55.3360.4 53.9160.6 53.9760.7 0.10 20.06

MonomersHydro 64.6460.9 64.5860.9 68.160.8 68.0860.8 0.06 0.02

TrimersHydro 62.7960.8 63.2560.6 64.4361 64.6860.7 20.46 20.25

MonomersConfSimi 66.7560.9 66.7960.9 71.9760.9 71.9660.8 20.03 0.01

DimersConfSimi 64.6861 66.5160.6 63.3561.1 68.8260.9 21.83 25.48

TrimersConfSimi 63.2560.8 63.6960.7 65.7761.1 66.2860.8 20.44 20.51

MonomersBlosum 66.4660.7 66.6260.7 69.3360.8 69.7960.7 20.16 20.46

DimersBlosum 66.3261 69.2760.8 65.6561.2 73.360.8 22.95 27.66

MonomersClustEm14 70.0761 71.1360.8 70.7361 74.1960.6 21.06 23.45

DimersClustEm14 66.8760.8 67.5261 69.3361 71.2360.9 20.64 21.90

TrimersClustEm14 73.7460.7 76.3160.7 73.6261 80.4360.8 22.57 26.81

MonomersClustEm17 72.6960.8 74.2260.5 72.4461.2 77.1260.6 21.53 24.68

DimersClustEm17 63.8861 65.0660.9 63.6861 67.5160.9 21.18 23.83

TrimersClustEm17 62.3561 61.3761.2 62.9261.2 62.5761.3 0.98 0.35

MonomersPhysChem 71.6460.9 71.6460.6 75.0760.8 75.1960.7 0.00 20.12

DimersPhysChem 68.9360.8 71.2960.8 68.7861.3 73.4460.9 22.36 24.66

Computed 74.9260.5 74.7560.6 79.260.6 79.4160.6 0.17 20.21

eSol 61.1660.8 61.4760.8 63.6760.9 63.660.9 20.31 0.07

All Features 72.1961 75.8760.8 71.6361.4 81.2160.6 23.68 29.57

J48/tie/VTJ48 (5/1/15) (5/0/16)

doi:10.1371/journal.pone.0033812.t006
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As expected, in most cases, the original J48 decision tree vastly

exceeded the predefined display resolution of 12806800 pixels

(Table 3 and Table 4). In some extreme cases the width of the

decision tree exceeded the predefined dimension by more than 10-

fold (letter, audiology, soybean). However, decision trees of this

size and high number of classes are inappropriate for extraction of

rules and presentation to end-user. Altogether, in the UCI datasets

evaluation, there are 30 datasets where VTJ48 optimized a

decision tree by reducing the number of leaves to fit into

predefined dimensions. In 8 cases VTJ48 produced decision trees

with more leaves than the original J48 method. Increase of the tree

size occurred in cases when there were only one or two leaves

produced using default settings of J48, pruning was automatically

turned off in VTJ48 resulting in more complex decision trees. In

case of protein solubility datasets, there were 20 datasets where the

complexity of the tree was reduced and only one case where it

increased. Similar changes in tree complexity were observed in

gene expression problems, where complexity increased only in 2

out of 10 datasets. Observing the complexity of built decision trees

one should also note that VTJ48 starts the tuning process of

confidence factor at 0.5, whereas J48 starts at 0.25 resulting in

more complex VTJ48 decision trees that still fit into predefined

visual boundaries.

3.1 Classification Performance on UCI Data
Accuracy and AUC (Table 5) were used for evaluation of

classification performance, although due to the high number of

multiclass datasets, it is debatable whether accuracy is the right

measure for classification performance. As suggested in [38], the

Wilcoxon signed ranks test was used to assess statistical significance

of difference in performance and complexity of the decision tree.

Comparing accuracy using win/draw/lose record one can observe

J48 wins on 21 datasets, while VTJ48 managed to outperform J48

on 16 datasets. Statistical significance testing shows that J48

significantly outperforms VTJ48 in accuracy (p = 0.022), while

there is no significant difference in results of AUC (p = 0.766). As

already mentioned, one should be cautious when interpreting the

results above, since accuracy is not a well suited performance

measure in cases of unbalanced multi-class datasets. Therefore we

did another test where only 16 binary class datasets were used and

found out that there are no statistically significant differences

present (p = 0.320). Table 3 demonstrates a big difference in

decision tree size (number of leaves) comparing J48 to VTJ48

decision trees.

3.2 Classification Performance on Bioinformatics Data
Table 4 shows the average decision tree dimensions for the

protein datasets including the average number of leaves. It can be

noticed that the size was reduced on the majority of the feature

datasets. The only exceptions are the DimersClustEm14 and

TrimersHydro datasets, on which the tree size increased.

Table 6 shows accuracy and AUC for the evaluation of

classification performance on protein datasets. Since all these

datasets present a binary classification problem, accuracy and

ACC are more appropriate measurements when compared to the

UCI datasets. Again, the Wilcoxon signed ranks test was used to

assess statistical significance of difference in performance and

complexity of the decision tree. When observing the accuracy

win/draw/lose record, one can notice that J48 wins on 5 datasets,

while VTJ48 managed to outperform J48 on 15 datasets. The

results are similar for AUC where J48 wins on 5 datasets, while

VTJ48 wins on 16 datasets.

Table 7 shows the average decision tree dimensions for the 9

GEMLeR datasets including the average number of leaves. In

Table 7. Comparison of decision tree dimensions on the
GEMLeR datasets including the number of leaves.

Leaves Width Height

J48 VTJ48 J48 VTJ48 J48 VTJ48

OVA_Breast 21.60 13.50 1673.00 1199.40 728.80 609.00

OVA_Colon 16.70 12.30 1608.30 1430.00 609.30 571.90

OVA_Endometrium 13.20 13.00 1129.50 1151.40 616.80 616.80

OVA_Kidney 11.50 11.10 1169.50 1117.90 542.00 549.50

OVA_Lung 12.00 13.20 1053.40 1069.70 616.60 661.20

OVA_Omentum 17.70 12.70 1291.30 1326.10 802.80 802.80

OVA_Ovary 25.50 13.90 2148.40 1842.00 773.20 743.40

OVA_Prostate 2.00 3.60 191.00 249.40 224.00 345.60

OVA_Uterus 23.60 15.30 1883.20 1563.80 758.50 721.50

OVA_Uterus 21.60 13.50 1673.00 1199.40 728.80 609.00

doi:10.1371/journal.pone.0033812.t007

Table 8. Comparison of classification performance (20 runs of 10-fold cross-validation) on the GEMLeR datasets.

Accuracy AUC D (J48 - VTJ48)

J48 VTJ48 J48 VTJ48 ACC AUC

OVA_Breast 93.5360.4 94.6360.4 89.9460.8 90.0261 21.10 20.07

OVA_Colon 96.3160.4 96.760.3 92.3961.2 91.7661.3 20.39 0.62

OVA_Endometrium 95.1560.4 95.0860.5 63.5766.5 64.1165.4 0.06 20.53

OVA_Kidney 96.3860.3 96.3160.3 93.0360.8 93.2560.7 0.06 20.22

OVA_Lung 97.3560.2 97.2860.3 90.1261.7 89.8761.4 0.06 0.25

OVA_Omentum 93.9860.5 94.4360.4 54.8265.9 67.9967.9 20.45 213.16

OVA_Ovary 92.2360.6 92.6260.6 79.2162.2 81.8462.2 20.39 22.63

OVA_Prostate 99.6860.1 99.6160.1 97.0261 98.6960.8 0.06 21.67

OVA_Uterus 92.1760.4 92.4360.3 73.1663.5 70.2263.2 20.26 2.93

J48/tie/VTJ48 (4/0/5) (3/0/6)

doi:10.1371/journal.pone.0033812.t008

Comprehensive Decision Tree Models

PLoS ONE | www.plosone.org 8 March 2012 | Volume 7 | Issue 3 | e33812



comparison to protein and UCI datasets it is evident that gene

expression problems do not create very large tree, therefore the

reduction in size, when VTJ48 is used is not that big.

Table 8 shows accuracy and AUC for the evaluation of

classification performance for the GEMLeR datasets and also

demonstrates that the performance actually increases if we use

simpler (i.e., smaller) decision tree models.

Statistical significance testing was done on all 20 cross-validation

run results for 30 bioinformatics datasets together using Wilcoxon

signed-rank test. In case of accuracy (p = 0.002) and AUC

(p = 0.001) the VTJ48 trees significantly outperformed J48 trees.

Although we did not expect such significant differences between

results in favor of VTJ48, it is obvious that VTJ48 is well suited for

datasets with binary class attributes and a high number of possibly

redundant attributes.

3.3 Examples of Large Decision Trees
In this section we demonstrate two examples, each of them with

two decision trees built on a single dataset. The first tree in each

example is the result of J48 using default settings, and the second

tree is the result of VTJ48.The dataset in the first example is the

letter dataset from the UCI repository. This dataset contains 26

class values which represent 26 capital letters in the English

alphabet. The character images were based on 20 different fonts

and each letter within these 20 fonts was randomly distorted to

produce 20.000 instances with 16 attributes. Fig. 2 shows the

original tree and the visually tuned tree. One can notice the

extremely complex original decision tree, which is the result of the

high number of classes. Since the visually tuned tree does not cover

all the possible classes, it cannot achieve competitive classification

accuracy.

The second example presents two decision trees built on the

protein solubility dataset with all features (Figure 3). In this case

the accuracy and AUC were both improved significantly, when

the size of the decision tree model was reduced. This is possible

due to binary class attribute that still allows effective trees that are

much smaller than the original pruned J48 trees.

In addition, to demonstrate the most significant rules from both

decision trees in Figure 3, we extracted top 5 rules according to

their support in training set (Table 9). The numbers at the end of

mono-, di- and tri-mer attribute names (e.g. the number 34 in

MonomersClustEm17_34) distinguish attributes inside different

alphabets. It can be observed that J48 produces more complex

rules with a higher number of conditions which use attributes from

more different alphabets. On the other hand, top 5 rules from

VTJ48 tree cover much more samples (70.6%) than top 5 rules

Figure 2. Comparison of original J48 decision tree and visually tuned version from VTJ48 on All Features dataset.
doi:10.1371/journal.pone.0033812.g002
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derived from J48 (36.6%). It is evident that low error rates on the

training set do not guarantee good classification performance on

the test set. We can once again conclude that in most cases, at least

in protein solubility domain, more complex trees result in

overfitting to training samples.

3.4 User Study

To test the effectiveness of the VTJ48 method in terms of

usability, a Weka package was developed implementing the visually

constrained tree building algorithm. An experiment to compare the

duration of building decision trees using the J48 and VTJ48 Weka

packages in Weka Explorer was set up. Three different datasets

from the UCI repository (balance-scale, credit-g, and splice) were

chosen based on their complexity where the need for tuning the tree

models is more likely to be necessary. Fourteen master students, all

enrolled in a Bioinformatics program, were recruited to take part in

the experiment. After a brief introduction to the VTJ48 Weka

package, the participants were given the datasets and were asked to

build a comprehensible decision tree from each dataset using both,

J48 and VTJ48 methods. Additionally, the participants were

instructed to optimize each decision tree to fit to a single computer

screen to allow optimal comprehensibility. In the case of J48

classifiers, this meant tuning the binary splits, minimal number of

objects, and pruning parameters. In the case of VTJ48, this simply

meant setting the desired resolution parameters. The duration from

the start of the tree building process to the point when the decision

tree was displayed on a single screen, was stored for further analysis.

Figure 4 clearly shows that tree building times were shorter for

VTJ48 method on all datasets.

In order to test the statistical significance of the obtained results,

the Wilcoxon signed-rank test was chosen to compare the

distributions of tree building times and accuracies for different

tree building methods. Each of the tests was assessed at a

significance level of 95%. The medians of tree building times for

the J48 and VTJ48 methods were significantly different for two

datasets (balance-scale: p = 0.002, credit-g: p = 0.020). Tree

building times were not significantly different for the splice dataset

(p = 0.396), however, the mean tree building time was still

33.14 seconds shorter for the VTJ48 method.

Discussion

This study focused on evaluation of decision tree performance

when useful and comprehensible decision trees are needed. The

Figure 3. Comparison of durations for different datasets.
doi:10.1371/journal.pone.0033812.g003
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Table 9. Top 5 rules with the highest support in All Features extracted from J48 and VTJ48 decision trees.

Rule Conditions Support Error

J48

IF Length, = 233 AND MonomersClustEm17_34.0.136 AND TrimersConfSimi_40, = 0.002 AND
TrimersClustEm17_98, = 0.005 AND DimersConfSimi_19, = 0.069 THEN Soluble

5 228 1.32

IF Length.233 AND DimersClustEm17_102, = 0.069 AND MonomersNatural_0.0.047 AND Ip .5.181 AND
TrimersClustEm17_96, = 0.002 AND Length .251 AND MonomersBlosum_14.0.074 AND TrimersNatural_19
, = 0 AND MonomersNatural_1.0.039 THEN Insoluble

9 218 0.92

IF Length.233 AND DimersClustEm17_102, = 0.069 AND MonomersNatural_0, = 0.047 AND
DimersClustEm14_70, = 0.002 AND TrimersClustEm17_90, = 0 AND DimersBlosum_40, = 0.015 AND
MonomersClustEm14_20.0.132 AND TrimersClustEm17_85, = 0.003 THEN Soluble

8 53 5.66

IF Length.233 AND DimersClustEm17_102.0.069 AND DimersClustEm17_95, = 0.0121 AND
DimersClustEm14_62.0.004 AND MonomersConfSimi_8.0.076 AND MonomersBlosum_14.0.076 AND
DimersClustEm14_65, = 0.001 AND DimersClustEm14_100, = 0.002 AND TrimersNatural_6, = 0 AND
TrimersClustEm14_46, = 0.003 AND DimersNatural_5, = 0.009 AND DimersClustEm14_71, = 0.004 THEN Soluble

11 49 2.04

IF Length, = 233 AND MonomersClustEm17_34, = 0.136 AND MonomersBlosum_16, = 0.173 AND
DimersConfSimi_14.0.020 AND DimersClustEm14_59, = 0.040 AND MonomersClustEm17_34, = 0.113 AND
TrimersNatural_0, = 0.002 AND MonomersNatural_2.0.066 AND TrimersClustEm17_80, = 0.002 AND
DimersBlosum_58, = 0.009 AND DimersBlosum_38, = 0.032 AND MonomersClustEm14_22.0.022 AND
DimersPhysChem_118.0.002 AND TrimersClustEm14_65, = 0.005 THEN Insoluble

14 47 2.13

VTJ48

IF Length.233 AND DimersClustEm17_102, = 0.069 AND MonomersNatural_0.0.047 THEN Insoluble 3 593 17.54

IF Length, = 233 AND MonomersClustEm17_34.0.136 THEN Soluble 2 287 5.23

IF Length, = 233 AND MonomersClustEm17_34, = 0.136 AND MonomersBlosum_16, = 0.173 AND
DimersClustEm14_59, = 0.040 AND MonomersBlosum_14.0.086 AND MonomersHydro_0.0.324 THEN
Insoluble

6 100 30.00

IF Length, = 233 AND MonomersClustEm17_34, = 0.136 AND MonomersBlosum_16, = 0.173 AND
DimersClustEm14_59, = 0.040 AND MonomersBlosum_14, = 0.086 THEN Soluble

5 99 21.21

IF Length, = 233 AND MonomersClustEm17_34, = 0.136 AND MonomersBlosum_16, = 0.173 AND
DimersClustEm14_59, = 0.040 AND MonomersBlosum_14.0.086 AND MonomersHydro_0, = 0.324 AND
MonomersClustEm17_34.0.110 THEN Soluble

7 68 20.59

doi:10.1371/journal.pone.0033812.t009

Figure 4. Pseudocode of decision tree reduction in Visually Tuned J48.
doi:10.1371/journal.pone.0033812.g004
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evaluation was done on 30 datasets from the following two areas in

bioinformatics: protein solubility classification and gene expression

analysis.

More precisely, strict boundaries for width and height of built

decision trees were set to produce more comprehensible trees. It is

important to note that VTDT approach only helps the end-user in

tuning the decision tree building parameters and does not propose

a novel decision tree building algorithm. Although this paper

presents the automated visual tuning on C4.5 decision trees, it

would be possible to adapt the VTDT principles to any other

decision tree building algorithm that requires tuning of parameters

to achieve optimal results. By tuning the parameters, without

interfering with the internal decision tree building process and

constraining the tuning only by the dimensions of the decision tree,

the bias of influencing the classification performance is avoided.

The results of our study confirmed there is no statistically

significant difference in predictive performance between the

decision trees built using default values and the ones that were

built using the proposed process of visual tuning. Moreover, when

AUC is observed, visually tuned models, that are usually also

much simpler than large default models, performed better on

majority of datasets. This is especially true for most of the protein

and gene expression datasets, where the performance improve-

ments were significant. However, it has to be noted that a larger

sample of datasets would be needed to draw more reliable

conclusions. Based on these results, one could conclude that

simpler models usually produce at least comparable results if not

better. This has also been shown in many other studies related to

the Occam’s razor theory [39,40]. However, there are also studies

that demonstrate the contrary - i.e., growing the trees will improve

the classification performance [41]. To sum it up, it all depends on

how a simple model is defined. In the case of VTDTs, we should

probably state that if the model is simple enough (i.e., fits into our

predefined visual boundaries), it will produce good or even better

results than most of the more complex models. Unfortunately, the

proposed decision tree tuning suffers from the high time

complexity in comparison to classical decision tree that is built

only once. However, as shown by the the user study, it still saves a

lot of time in comparison to manual tuning and fitting of the

decision tree to desired dimensions.

In this paper we evaluated the visual tuning strategy only on C4.5

decision trees. From the research and also from the practical usability

point of view, it would be important to extend this study and

consequently develop a Weka package that would allow simultaneous

tuning of different decision tree models (e.g. CART [4]). Some of the

areas where visual tuning could also be applied are comprehensible

ensembles of classifiers or variations of decision tree models (e.g,

Alternating decision trees [42]). These models combine boosted

decision stumps in a structure where visual constraints could be

beneficial for the end-user in different areas of bioinformatics.
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