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Abstract

A considerable portion of patients with colorectal cancer have a high risk of disease recurrence after surgery. These patients
can be identified by analyzing the expression profiles of signature genes in tumors. But there is no consensus on which
genes should be used and the performance of specific set of signature genes varies greatly with different datasets,
impeding their implementation in the routine clinical application. Instead of using individual genes, here we identified
functional multi-gene modules with significant expression changes between recurrent and recurrence-free tumors, used
them as the signatures for predicting colorectal cancer recurrence in multiple datasets that were collected independently
and profiled on different microarray platforms. The multi-gene modules we identified have a significant enrichment of
known genes and biological processes relevant to cancer development, including genes from the chemokine pathway.
Most strikingly, they recruited a significant enrichment of somatic mutations found in colorectal cancer. These results
confirmed the functional relevance of these modules for colorectal cancer development. Further, these functional modules
from different datasets overlapped significantly. Finally, we demonstrated that, leveraging above information of these
modules, our module based classifier avoided arbitrary fitting the classifier function and screening the signatures using the
training data, and achieved more consistency in prognosis prediction across three independent datasets, which holds even
using very small training sets of tumors.
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Introduction

Colorectal cancer is one leading cause of cancer mortality.

About 20–30% of patients at stage II and 50% of patients at stage

III experience disease recurrence after surgery [1]. Accuracy and

stability of the prognosis prediction are critical when determining

the appropriate therapy scheme regarding different recurrence

risk. The recent studies have suggested the expression profile of

multi-gene signatures as a better prognosis predictor for patients

with colorectal cancer than traditional methods using clinical or

pathological features, and some are entering the market [2–7].

These signature genes were typically identified from differentially

expressed genes between a training set of tumors from patients

with or without disease recurrence. Their expression data were

then used to train a statistical classifier that can best discriminate

the two groups of training tumors. In some cases, these steps, i.e.

the gene selection and classifier construction, are iterated to

optimize both choices.

One major problem with these multi-gene classifiers is that their

signature genes vary significantly for different cohorts of studies,

different populations of patients, and different microarray

platforms, presumably due to the low accordance between

microarray expression data [8]. To get a consensus list of signature

genes, it is estimated that thousands of tumor samples would be

needed for training such classifiers [9]. As a result, the several

reported sets of signature genes highly depended on the training

samples and had only overlap minimally [10]. Another concern is

that the choice of a statistical classifier is arbitrary and lacks

explicit biological basis, so that the classifier may be over-fitted by

the dataset from which it was invented. For example, in one recent

study, the multi-gene classifiers constructed from one dataset were

cross-validated in a different dataset to find that their prediction

accuracy was substantially reduced [3]. Such reduction was due to

some missing genes in the gene classifier relative to the best

classifier constructed from the cross-validation dataset. Therefore,

these factors have led to high variability in the predictive

performance of multi-gene classifiers and limited their generalized

usage in clinical practice.

Recently, higher accordance across different microarray dataset

has been reported in the expression patterns of multi-gene

modules, i.e. groups of functionally related genes [11–14].

Motivated by this finding, we aimed to identify such modules by

combining both gene expression and protein interaction data and

used the most differentially expressed modules to construct a novel
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classifier. Importantly, we verified that these modules are non-

randomly associated with colorectal cancer recurrence in different

datasets, and that the modules from different datasets overlap by

significantly more genes than random, indicating the overlapping

percentage of the top ranked modules possessed discriminative

power. In this way, we avoided the use of the low-accordance gene

signatures and an arbitrary statistical function to fit. We

demonstrated its application to three independent datasets of

colorectal cancer patients that profiled on different microarray

platform and obtained reproducible predictions with accuracies of

74%, 76% and 68%, and AUC (area under ROC) values of 79%,

79% and 72% by Leave-One-Out validation. Reasonable

accuracies are seen when decreasing the size of training sets (34,

10 or 18 tumors) and the variability across datasets remains low,

which is ,1/2 of existing multi-gene based classifiers.

Materials and Methods

Data source
Tumor expression data and preprocessing. Three public

pre-processed microarray datasets of colorectal tumors as below

were used; note that the classification of the patients, recurrent or

non-recurrent, is referred to the actual status described in the

original papers or description files:

(1) German dataset [3]: It included 55 German patients with

primary colorectal cancer (stage I and II), where 29 patients

are disease recurrence free and their follow-up time at least

5.3 years after surgery. The expression of tumor samples was

profiled on the Affymetrix HG-U133A platform.

(2) Barrier dataset [5]: It included 50 patients with stage II

colorectal cancer. 25 of them are disease recurrence free and

their follow-up time at least 5 years after surgery. The

expression of tumor samples was profiled on the Affymetrix

HG-U133A platform.

(3) GSE5206 [15]: It included 100 patients with stage I–IV

colorectal cancer. 23 of them had disease recurrence after

surgery. There is no information about their follow up time.

Here we removed 37 samples with higher stage (III and IV)

from the recurrent-free sets and leaved 63 patients for

prediction validation. The expression of tumor samples was

profiled on the Affymetrix HG-U133_plus_2 platform.

For each probe with missing values, we applied R package

‘impute’ [16] to fill with the average of its k-nearest neighbors

Genes with multiple probes were processed by averaging their

expression level.

Gene ontology data. Gene ontology (GO) data from the

Molecular Signatures Database (MsigDB) v2.5 [17] were used,

which included 1454 GO sets and 8299 genes.

Protein interaction data. The protein interaction data were

downloaded from the HPRD database [18] (release 8) and

BioGRID the database [19], which included 6511 nodes and

29694 interactions.

Known genes related with colorectal cancer

recurrence. Colorectal cancer recurrence related genes were

collected based on their annotations from two sources,

respectively: OMIM database (www.ncbi.nlm.nih.gov/omim)

[20] and online literature mining using PubGene (http://www.

pubgene.org/) [21]. We obtained 41 related genes from OMIM

database. Using PubGene, we first searched for genes associated

with the term ‘colorectal cancer’ and ‘recurrence’ to obtain 2793

and 1609 genes, respectively, and then took the intersection of

these two gene lists as the final set of 1038 colorectal cancer

recurrence related genes.

Colorectal cancer somatic mutation data. The somatic

mutation data for colorectal cancer is downloaded from COSMIC

database [22] in the category of ‘the large intestine tissue’, not

including the sub-tissue, anus and appendix, with all two

histological terms: adenoma and carcinoma.

Constructing GO co-expression networks
We built networks for each GO gene set. This was for three

reasons: (1) it proved useful to incorporate prior information, e.g.

genes within the same pathways, to facilitate computational

methods in identification of functional modules [23–26]; (2) it

allows multi-functional genes to be present in more than one

functional modules; (3) many interaction data were obtained in-

vitro and may not exist in physiological situations and therefore,

limiting the interactions within a gene ontology may help reduce

such false positives. In details, for each GO gene set, genes not

present in the microarray dataset were removed. The remaining

genes in each GO set are used as vertices of the network and the

edges were drawn based on protein interaction data. Each vertex is

associated with an n-dimensional expression vector where n is the

total number of tumor samples in the dataset. The value at each

dimension is the expression level of this gene in the corresponding

tumor sample. The edge between any two vertices is weighted by

their co-expression level [27]. Here we chose the Pearson

correlation coefficient to measure the co-expression level. Note

that there are a few alternative metrics, e.g. Spearman correlation

and mutual information, and these metrics generally led to similar

results in network properties and module discovery [28].

Furthermore, Pearson correlation coefficient has been widely used

and suggested to be a good way to handle noises within the

microarray data [29,30], since it measures the collaborative degree

of two expression vectors but not the strength of them. Specifically,

the weight of an edge between two vertices i and j is defined as the

absolute value of person correlation coefficient between their

expression vectorsxi, xj :

Sij~ cor(Xi,Xj)
�� �� ð1Þ

Identifying functional modules
There are several methods to identify modular structures within

a network and the choice of method varies with several factors, e.g.

the network structures [31]. Considering the dense structure of

each GO network, we applied the weighted Girvan and Newman

(GN) algorithm [32] for module discovery. Compared to other

existing methods that start with seed nodes and explore the vicinity

for high scored modular structures [11,33–36], the GN algorithm

is edge-oriented and search for globally optimal modules. It is

based on shortest-path algorithm, calculates the betweenness of all

edges and repeated removes the edge with highest betweenness.

Here, the betweenness score of an edge is defined by the sum of

the all shortest paths passing through it and divided by its weight of

corresponding edge. The original GN algorithm always cuts the

dendrogram at highest Q value, which results in a large variation

in the module size and sometimes huge modules with low

biological coherence [37]. To avoid this problem, we required

each module to contain no more than 20 genes. The detailed

procedures are as follows:

(1) Calculate betweenness scores of all edges in each GO

network.

Prognosis Prediction of Colorectal Cancer
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(2) Find edge with the highest score and remove it from the

graph.

(3) Repeat above steps until no isolated graphs contain over 20

genes.

(4) Singletons with only one gene were ignored.

Rank differentially expressed modules between tumors
with and without recurrence

The expression changes between tumors with and without

recurrence were evaluated by our P-SAGE algorithm [38]. For a

module s with a total of k genes, the score of differential

significance (SDS) is defined by:

SDS(s)~
Xk

i~1

Ti
2 ð2Þ

where Ti is the t score for i-th gene in the module s. Noticing that

the SDS scores correlates with the module size k, we obtained

their corresponding p-values from the chi square distribution

*x2(k), which are used to sort the identified functional modules

in ascending. Modules with higher rankings, i.e. the most

differentially expressed modules with smaller p-values, are used

for evaluation and prognosis prediction.

The prognosis prediction paradigm
The scheme of the prediction paradigm. Given a training

set of tumor samples, we split it into two halves, [R1] and [R2],

each with n non-recurrent and n-1 recurrent tumors. These two

halves are considered as two independent datasets. Then, we

assume the test tumor (i.e. unlabeled) X as recurrent and put it into

[R1] and [R2], i.e. [R1+X] and [R2+X]. We identified the top N

modules from [R1+X] and [R2+X], respectively, and if the test

tumor X is associated with high risk of recurrence, the two sets of

resultant modules should overlap substantially. We calculated the

overlapping percentage (OPN) which is calculated by the ratios of

their intersection and their union, after being normalized against

the overlapping percentage of corresponding modules identified

from [R1] and [R2]. To avoid potential bias with a specific split,

we repeated random split and above for 10 times to obtain an

average ,OPN.. Finally, we computed ,OPN. for different

N = 100, 200… 500 and use the average as the predictive score

,OP.. Higher ,OP. score indicates a higher risk of recurrence

associated with the test tumor X. In this way, we avoid the

common strategy of optimizing an arbitrary kernel function that

has no clear biological basis.

Evaluation and comparison. For each dataset, its tumor

samples were divided into a training set and a test set. We reported

the performance measure, accuracy and AUC, with R package,

ROCR. In leave one out validation, one tumor was randomly

chosen as the test set and the rest tumors are used as the training set.

In this way, the prediction was conducted for n times, where n is the

total number of tumors in the dataset. In validations with the

number of training samples being 34, 18 or 10, we conducted the

prediction for (n-34), (n-18) or (n-10) times. Then we randomly chose

the training set of tumors for 5 times and reported the average,

maximal and minimal performance. The performance was

compared with other methods using these three microarray datasets.

Results

We used two independent datasets of early colorectal cancer

patients to verify the two key hypotheses: (1) the most differentially

expressed modules are non-randomly associated with tumor

recurrence; (2) such modules identified from different datasets

will overlap significantly in more genes than random.

Overview of most differentially expressed modules
identification

The identification of most differentially expressed modules

included three key steps: network construction, topological module

discovery, evaluation of differential expression at module level

(Figure 1, more detailed description in METHOD AND

MATRIERAL section). Briefly, we firstly clustered genes into

large groups based on their GO annotation. As a gene may have

more than one functional role, these GO groups may overlap in

certain genes. Instead of constructing a single giant network, we

used protein interaction data to build networks for each of these

GO set of genes and identified multi-genes modules, i.e. groups of

genes that are densely connected in network topology and

relatively separate from the rest network. Lastly, the differential

expression of each module between tumors with and without

disease recurrence was ranked to obtain the top N modules for

subsequent analysis.

The constructed GO networks contain 4428 genes in total for

both Barrier and German datasets as they used the same

microarray platform. We took the top 100, 200, …, 500 modules

for subsequent analysis (Table S1). These modules have a

differentially expressed p-value no greater than 0.005 in both

German dataset and Barrier dataset.

The most differentially expressed modules are non-
randomly associated with tumor recurrence

As can be seen in Figure 2, we found a significant enrichment of

genes related with colorectal cancer recurrence in these modules

identified from German dataset according to both OMIM and

PubGene annotations (see Methods). For control purposes, we

generated sets of a same amount of genes that are identified as the

most differentially expressed using the individual gene based t-test

(‘‘t-test genes’’), or the most differentially expressed GO gene sets

ranked by P-SAGE. Compared to these two controls, we found the

higher proportions of colorectal cancer recurrence related genes

were in the top 50–500 modules. They are about 1.9,3.5 times

(OMIM) and 2,2.7 times (PubGene) higher versus top ranked

individual genes, 2.6,4.7 times (OMIM) and 1.7,2.1(PubGene)

times higher versus top ranked GO gene sets (Figure 2). Similar

results were also seen for Barrier dataset (Figure S1).

Specifically, in analyzing the German dataset, we found three

chemokines (CXCL9, CXCL10 and CXCL11) and their shared

receptor CXCR3 in the top 10 modules. This is consistent with the

recent finding that CXCR3 and another ligand CXCL10 promote

invasion-related properties in colorectal cancer [39,40]. To see if

these results were reproducible, we randomly split German dataset

into two halves, each being a smaller dataset with 14 or 15 non-

recurrent tumors and 13 recurrent tumors, identified the top 100

modules and check if these chemokine related genes would show

up. We performed such random splits for 1000 times and counted

the frequencies of genes that appear at least once in both halves for

top 100 modules. Also, considering hub genes that have more

interacting partners would have a higher chance to show up in

more modules, we normalized the frequency of each gene against

its connectivity. We found the three chemokines: CXCL10,

CXCL9 and CXCL11, yet not their receptor CXCR3, appear the

most frequent (30.5%–44.1%) in all 1,000 splits. However, we

performed the same analysis on Barrier dataset and did not found

any of the three chemokines to show up in the top 100 modules in

Prognosis Prediction of Colorectal Cancer
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any random split. However, we found 19 and 18 of the member

genes in the chemokine signaling pathway (190 genes in total) as

curated at KEGG database showed up at least once in top 100

modules in German dataset and Barrier dataset, respectively

(Table S2). They overlapped by 9 genes (STAT2, STAT3, LYN,

MAPK1, FOXO3, NFKB1, GSK3B, PAK1 and PTK2B). These

results indicate a possibility that the top modules were able to

capture substantial changes (10%) in the chemokine signaling

Figure 1. Schematic overview of most differentially expressed modules identification. Identifying the most differentially expressed
modules include three key steps. First, the GO co-expressed network is constructed by combined the protein-protein interaction network, which was
from the HPRD and BioGRID database, and GO gene sets together. The edges of network were weighed by co-expression level between their
corresponding linked nodes. Second, functional modules were identified by the weighted Girvan-Newman algorithm [32]. Finally, functional modules
were ranked on their differential levels between recurrent and non-recurrent tumors which were evaluated by the p-SAGE algorithm [38].
doi:10.1371/journal.pone.0033653.g001
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Figure 2. The percentage of known colorectal cancer (CRC) genes in top 50–500 MDMs inferred from German dataset. Known CRC
genes were collected from the PubGene (A) or OMIM (B). The percentages were compared with those in top differentially expressed genes (t-test
genes) with the same number of genes in top ranked N modules, or GO gene sets with the same amount of top ranked N modules.
doi:10.1371/journal.pone.0033653.g002
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pathway associated with tumor recurrence, and are reproducible

across different datasets. But it may be hard to further get down to

specific genes in these modules to use as robust markers.

As tumor develops with the accumulation of somatic mutations,

we also assessed if there is a significant correlation between the top

modules and the somatic mutations identified in colorectal cancer

from COSMIC database. We first identified the modules that

contain significant amount of mutations by Fisher exact test (p

cutoff: 0.05). These modules were named as Mutated Modules

(MMs). We then calculated percentages of MMs in top N modules

and the rest modules to obtain an enrichment ratio. A higher ratio

indicates a higher enrichment of mutations in the top N modules.

For German dataset, we found its top 50–500 modules overlap

significantly with MMs (Fisher exact test, p,0.002), with the

enrichment scores around 3–4 (Figure 3). In contrast, we

conducted a similar analysis on top genes of similar numbers

identified by the conventional t-test (‘‘t-test genes’’) but found no

significant overlap with genes in MMs (Fisher exact test, p-

values.0.25). The percentages of mutated genes in top t-test genes

vs. the rest genes are similar. To assess if the enrichment of

mutations in top modules are associated with tumor recurrence,

we permuted the labels of ‘‘recurrence’’ and ‘‘non-recurrence’’ to

identify the top modules and found their enrichment ratios are

about 1.3, which is comparable to those of the t-test genes. The

similar results were also found in Barrier dataset (FigureS2).

To this end, we confirmed our first assumption that the

identified top modules are non-randomly associated with tumor

recurrence in two different independent datasets. Therefore, these

modules may be used as more robust predictors than specific genes

for prognosis prediction.

The most differentially expressed modules had higher
reproducibility

Next, we examined if the overlapping percentages of top

modules are significantly higher than controls to be used as a

discriminative metric. We identified top 100–1000 modules from

Barrier and German datasets, respectively, and found these

modules from the two different datasets overlapped significantly

(p,1.75E-74). Their overlapping percentages (25.3%–54.9%) are

over 7 times higher than the overlapping percentages of top t-test

genes (3.3%–6.6%) and are also about 2 times of the mean

overlapping percentages for top modules identified after permut-

ing labels (Figure 4). Remarkably, these overlapping percentages

are also higher than the extreme values obtained in the

permutation cases, as outliers (Grubbs outlier test, p-val-

ues,0.006). Taken together, these results supported our second

assumption and suggested the overlapping percentages of top

modules are informative to predict tumor recurrence.

A novel classifier based on the most differentially
expressed modules can yield more robust prognosis
predictions

Given above validations of our two key assumptions, we

designed the prognosis prediction paradigm as follows. Briefly, we

split the training set of tumors into two different sets. Each set

contains both recurrent and non-recurrent tumors, so that the

corresponding top modules can be inferred. An overlapping

percentage (OP_old) of these modules from both sets was

computed. Given a test tumor, we assumed it is ‘‘recurrent’’ and

put it into each set to identify the new top modules and calculated

the new overlapping percentage (OP_new). If the test tumor is

‘‘recurrent’’ as expected, the old and new overlapping percentages

should be comparable; otherwise, the new overlapping percent-

ages would be lower. In this way, we avoided using the specific

genes but used the entire information of the top modules, since as

shown above, only the latter is non-randomly associated with

tumor recurrence. We also avoided the problematic step of fitting

training tumor data to an arbitrary statistical function. Instead, the

overlapping percentages of top modules were used which we

showed should be of sufficient discriminative power. More details

can be found in METHODS AND MATERIALS section and

Figure 5. In the following, we demonstrated the evaluation of this

method in three independent datasets and compared its

performance with that of previous methods using the same

datasets.

Leave one out validation. We first evaluated the

performance of our prediction method by Leave-One-Out

validation, which is a popular choice used in previous studies.

We reported the results of accuracy (the true positive rate at the

point nearest to point (0,1) of the ROC), sensitivity, specificity and

AUC to compare with existing multi-gene classifiers (Figure 6, the

detailed information in Table S3). For German dataset, our

method achieved higher performance than the recent two

methods, an accuracy of 76%, about 5–7% higher (Lin07: 71%;

Garman08: 69%), a sensitivity of 65%, about 3–24% higher

(Lin07: 62%; Garman08: 41%), and a specificity of 93%, about

Figure 3. The enrichment levels of somatic mutations in top
50–500 modules inferred from the German datasets. By contrast,
the controls are from the t-test gene and permutation test. T-test gene
analysis was performed by using the same number of top differentially
expressed genes as the number of genes covered by the corresponding
top N modules.
doi:10.1371/journal.pone.0033653.g003
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5–14% higher (Lin07: 79%; Garman08: 88%). For Barrier

dataset, our method achieved an accuracy of 74%, a sensitivity

of 72%, a specificity of 84%, which is slightly less than the

Barrier06 results (accuracy: 80%; sensitivity: 75%; specificity:

85%) using this dataset and the resulting Barrier06 signatures. But

it is much higher than another result using the same dataset and

another Wang04 signature (accuracy: 67%). For GSE5206 dataset

that has no specific follow up time, our method achieved the lowest

but still reasonable accuracy (68%). It is also much lower than the

accuracies achieved by the original methods invented using this

dataset (90%; Garman08 method). However, we noted that this

Garman08 method, when applied to a different dataset (German

dataset), only achieved 69% accuracy. The about 21% difference

of Garman08 method in different datasets may suggest a potential

over-fitting problem of its classifier or an undesirably high

variability in its performance. In contrast, our methods had

much smaller variability (8% difference), with 74–76% accuracy

for early stage (I or II) tumors in Barrier and German datasets, and

68% accuracy for stage I–IV tumors in GSE5206 dataset. The

corresponding AUC values of our method were also similar across

all three datasets: German - 79%, Barrier - 79% and GSE5206 -

70%.

To verify the samples size’s impact on the prediction methods,

smaller samples size at 34, 18, 10 have been carried out. The

average value and the range (the minimum and maximum value)

of accuracy, sensitivity, specificity and AUC are reported in each

case (Figure 6, the detailed information in Table S3, and ROC

curve in Figure S3).

Validation with 34 training samples. We randomly picked

up n samples from each dataset, where n = 34, as training set to

predict the recurrence risk for the rest tumors. For the German

and Barrier datasets, the performances are much higher than the

results in LOO validation. In detail, for German dataset, our

method achieved an accuracy of 78%, AUC of 80%, a sensitivity

of 80%, and a specificity of 76%. For Barrier datasets, it achieved

higher accuracy of 81% and specificity of 86%, and less sensitivity

of 78% than other methods (using Barrier signature: accuracy:

80%; sensitivity: 91%; specificity: 72%; using Wang04 signature:

accuracy: 70%). In addition, our method only had much less

variability (13% for Barrier dataset) than that of Barrier06 method

(31%). For GSE5206 datasets, the performance is similar with the

LOO validation, an accuracy of 70%, AUC of 66%, a sensitivity

of 74% and a specificity of 68%.

Validation with 18 or 10 training samples. Next, we

continued to decreased the size of the training set, n = 18 or 10, to

validate the predict performance on the recurrence risk for the rest

tumors.. In the case of n = 18, for German dataset, our method

achieved an average accuracy of 72% for German dataset, better

than all previous methods. For Barrier dataset, our method

Figure 4. The percentage of overlapping genes in top 100–1000 modules identified from two independent datasets, German and
Barrier. The overlapping percentage is calculated as the ratio for the number of intersection and union of the genes. We compared the percentage
of overlapping genes on top ranked N modules, top t test genes with the same number of genes in top N modules, and their corresponding
permutation test controls.
doi:10.1371/journal.pone.0033653.g004

Figure 5. Schematic overview of classification and evaluation.
The training tumor sets are first sampled randomly from the whole
tumor datasets and then split randomly into two equal parts, each part
including the non-recurrent and recurrent sets. Their corresponding top
modules were inferred by the approach mentioned above and the
overlapping percentage (OP_old) was calculated. For each test tumor X,
we put it into the recurrent sets for both parts to constitute the new
expression matrixes. The most differentially expressed modules for two
new expression matrixes are inferred respectively. The overlapping
percentage (OP_new) of these two sets of top modules is calculated
and normalized by the OP_old. Considering the bias from the splitting
at the step 2, the random splits were repeated for 10 times. The average
of normalized OP is assigned to test tumor X.
doi:10.1371/journal.pone.0033653.g005
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achieved an average accuracy of 66% and sensitivity of 63%,

which are lower than the original Barrier06 signatures (74%), but

similar as the Wang04 signatures (65%) and a higher specificity of

71% (Barrier06: 67%). We noted that, by sampling different sets of

training tumors, our method had about half variability (13% for

Barrier dataset) than that of Barrier06 method (26%). Lastly, our

method had an average accuracy of 66% for the GSE5206 dataset,

comparable to that of Barrier (72%) and German datasets (66%).

The AUC quantities, sensitivity and specificity for all three

datasets are consistent, too: accuracy: German - 73%, Barrier -

67% and GSE5206 - 75%; sensitivity: German – 71%, Barrier –

62%, and GSE5206 – 63%; specificity: German – 73%, Barrier –

71%, and GSE5206 – 67%.

In the case of n = 10, our method achieved an average accuracy

of 69%, 71% and 74%, sensitivity of 67%, 73%, and 66%,

specificity of 71%, 67%, 69% and the AUC of 68%, 68% and

63% for German, Barrier and GSE5206 datasets, respectively.

Furthermore for Barrier datasets, our methods has a higher

accuracy of 71% (using Barrier06 signatures: 66%, Wang04

signatures: 63%), and higher specificity of 67% (Barrier06:

57%).These results suggest our prediction can achieve highly

reproducible and reasonable performance across different datasets,

even with as few as 10 training tumors.

Discussion

Tumor recurrence is associated with changes in different

pathways. Such changes may be manifested in different genes

for different patients. The existing signature genes were identified

based on expression changes at individual gene levels, and thus

may not necessarily capture such pathway level changes. Here we

tackled this issue by constructing a classifier based on most

differentially expressed multi-gene modules.

Many reported classifier with higher accuracy dependent

tremendously on the training samples, indicated these classifier best

fit the existing sample instead of the whole population of the

interested phenotype. In this study we verified not only non-random

biological qualitative association between top ranked modules with

colorectal cancer recurrence in different datasets, but also higher

quantitative overlapping measure of the modules from different

datasets than random. Thus the overlapping percentage of the

modules is used to be prognosis function to avoid arbitrary fitting by

training data and potential over-fitting problem.

There are two things must be noted here. First, multi-gene

modules or sets can be identified in a number of alternative ways,

but they may not be informative enough to construct such a

classifier. In one earlier study, modules associated with tumor

metastasis of breast cancer were identified, but failed to find a

significant enrichment of somatic mutations [11]. In some another

studies, co-expressed gene set were found correlated with the

tumor development but their size is too large [41]. Considering the

definition of modules is still very liberal, we suggest that rigorous

test on their biological relevance must be done before using them

for constructing a classifier. Secondly, as shown in the case of

chemokine pathway, it may be hard to further find robust

signature genes to represent these signature modules. With only

the expression data, the information of the modules needs to be

exploited as much as possible. As a result, this leads to another

critical feature of our classifier, using the overlapping percentages

of modules as classifier function.

In conclusion we developed this novel module-based prognosis

classifier to predict the outcome of patients with the colorectal cancer

after surgery and have demonstrated that it yielded reasonable and

reproducible performance across datasets with low variability. And it

can also yield the satisfactory and commendable performance even

at the case of fewer samples indicating it is cost-effective way which

required only fewer amounts of tumor materials. The performance

on the GSE5206 is relatively lower than other two datasets. No

specific follow up time which may cause wrong classified label for the

non-recurrent patients may be one of the reasons.

Furthermore compared with current prediction based on patho-

logical staging, this prognosis classifier can help more to identify

patients with higher recurrent risk and suggest better decisions of

personalized treatment therapy. In future clinical application, the

methods need to set several reference samples as the benchmark. For

each test patient, we compared its gene expression profile with

benchmark sets, and get the score based on our algorithm. The

patients with higher overlapping score are the higher risk ones and

should be received more intensive follow-up adjuvant therapy,

whereas the patients with lower overlapping score are the lower risk

ones and might be exonerated from the injury caused by more

aggressive treatment. The module-based prognosis strategy also brings

about a wider application in the other cancer types or other aspects,

such as evaluating responsiveness of new drug or therapeutics.

For most existing methods, it requires huge number of samples to

establish the diagnostic setting, which is usually costly and time

consuming. However, with our method, only few samples are needed.

Furthermore in our study, a wide range of the samples size (10, 18,

34, and n-1 (n: all samples), German: 55, Barrier: 50, GSE5206: 63)

has been validated on our method, and yielded robust results to the

sample size change, that is, our method’s result will not be strongly

affected by the sample size, thus gaining a unique advantage when

applied to new region, new population and especially used in some

new discover/rare cancers. Additional information, e.g. gene copy

number variations, epigenetic data, may be helpful to further reduce

the dimension of this classifier to the gene level. In future, alternative

designs may be exploited to represent the module information and do

not rely on reference set of tumors.

Supporting Information

Figure S1 The percentage of known colorectal cancer
(CRC) genes in top 50–500 MDMs inferred from Barrier
dataset. Known CRC genes were collected from the PubGene

(A) or OMIM (B). The percentages were compared with those in

top differentially expressed genes (t-test genes) with the same

number of genes in top ranked N modules, or GO gene sets with

the same amount of top ranked N modules.

(TIF)

Figure S2 The enrichment levels of somatic mutations
in top 50–500 most differentially expressed modules(top

Figure 6. The prognosis prediction performance. The comparison of AUC (A) and accuracy (B) for three datasets: Different coloring schemes
and shape indicate three independent datasets (orange circle: German dataset; blue diamond: Barrier dataset; green square: GSE5206 dataset). TX_Y
methods (X: top 500 or 1000 MDMs; Y: 10 or 18 reference tumors or Leave-One-Out method (LOO)). The filled symbols denote the mean of AUCs; The
comparison of accuracies(C), sensitivities (D) and specificities (E) for prognosis prediction between our method and present methods with same
datasets, including the LOO results from Lin07 (L) [3], Garman08 (G) [42], Barrier06 (B) [5], and also the Barrier06’s results obtained using 34 tumors
(TS34), 18 tumors (TS18) or 10 tumors(TS 10) as the training set. The filled symbols are mean value. *The points in the dotted circle are the outcomes
from the methods which were validated using makers discovered by the one and the same dataset.
doi:10.1371/journal.pone.0033653.g006
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modules) (orange and dark orange) or most differen-
tially expressed genes by t-test (top t-test genes) (light
blue and dark blue) without and with permutated
‘recurrent’ and ‘non-recurrent’ labels, respectively,
identified from Barrier dataset.
(TIF)

Figure S3 ROC curve of three independent datasets
using 34(A: Top500, B: Top1000), 18 (C: Top500; D:
Top1000), or 10 (E: Top500; F: Top1000) training
samples (orange: German dataset; blue: Barrier data-
set; black: GSE5206 dataset).
(TIF)

Table S1 The number of genes and maximum p value in
Top N modules.
(DOC)

Table S2 Member genes of chemokine signaling path-
way present in top 100 modules.

(DOC)

Table S3 The comparison of classification performance
between our module-based method and other recent
methods.

(DOC)
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