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Abstract

Motile eukaryotic cells migrate with directional persistence by alternating left and right turns, even in the absence of
external cues. For example, Dictyostelium discoideum cells crawl by extending distinct pseudopods in an alternating right-
left pattern. The mechanisms underlying this zig-zag behavior, however, remain unknown. Here we propose a new Excitable
Cortex and Memory (EC&M) model for understanding the alternating, zig-zag extension of pseudopods. Incorporating
elements of previous models, we consider the cell cortex as an excitable system and include global inhibition of new
pseudopods while a pseudopod is active. With the novel hypothesis that pseudopod activity makes the local cortex
temporarily more excitable – thus creating a memory of previous pseudopod locations – the model reproduces
experimentally observed zig-zag behavior. Furthermore, the EC&M model makes four new predictions concerning
pseudopod dynamics. To test these predictions we develop an algorithm that detects pseudopods via hierarchical
clustering of individual membrane extensions. Data from cell-tracking experiments agrees with all four predictions of the
model, revealing that pseudopod placement is a non-Markovian process affected by the dynamics of previous pseudopods.
The model is also compatible with known limits of chemotactic sensitivity. In addition to providing a predictive approach to
studying eukaryotic cell motion, the EC&M model provides a general framework for future models, and suggests directions
for new research regarding the molecular mechanisms underlying directional persistence.
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Introduction

Many eukaryotic cells move by crawling. Neutrophils migrate

through the body to respond to infections. Fibroblasts crawl into

and heal wounds. Metastasizing cancer cells migrate through

healthy tissue to establish new tumors. Dictyostelium discoideum

amoebae explore their environment in search of bacterial prey. At

first glance these crawling cells appear to migrate randomly in the

absence of external gradients, but closer inspection reveals that

their motion is not that simple. Over time scales of several minutes,

crawling cells maintain a relatively straight path, a phenomenon

known as persistence [1,2]. This directional persistence helps

foraging amoebas or metastasizing cancer cells disperse over a

larger area than they would by purely random motion; persistence

helps chemotactic cells navigate up shallow or noisy gradients [3];

and persistence can help aggregating Dictyostelium maintain their

direction in the waves of cAMP that propagate outward from

aggregation centers [4]. Understanding directional persistence

may reveal new targets for treating conditions that involve

persistent cellular motion, including inflammation and metastasis.

Recent work has revealed that directional persistence arises

from zig-zag motion – if a cell turns left, its next turn is more likely

to be back to the right, and vice versa [4]. This observation was

based on tracking the paths of cell centroids, and later analysis

extended the observation of an alternating zig-zag pattern to time

series of individual membrane extensions called pseudopods [5].

Individual pseudopods underlie the process by which many

crawling cells move, including Dictyostelium and neutrophils

(reviewed in [6–8]). Although individual pseudopods are less

obvious in some cell types such as fibroblasts, even the broad

leading edges of these cells are composed of discrete extension

events [9].

Since persistence and distinct extensions are common features

of crawling cell motility, a complete model of cellular motion and

chemotaxis requires understanding how cells position pseudopo-

dial extensions in a zig-zag pattern so as to maintain persistence.

Despite the key role pseudopod placement plays in determining

the direction of cellular motion, however, no comprehensive

framework exists for describing pseudopod zig-zagging [6–8]. This

paper presents such a framework – the excitable cortex and

memory (EC&M) model – which incorporates features that are

well-documented by the experimental literature to explain how

cells extend pseudopods in a zig-zag fashion.

Unlike directed bacterial motility, which can be described

accurately with molecular models [10,11], regulation of eukaryotic

motility is extremely complex and involves several overlapping

regulatory pathways, the details of which are still being discovered

[12]. Therefore, our model takes a broad top-down approach,

with the aim of elucidating the general principles common to any

more detailed model that shares our model’s basic motif. We

model pseudopods as excitable bursts from the cellular cortex, with

global inhibition of new bursts as long as a pseudopod is active.

PLoS ONE | www.plosone.org 1 March 2012 | Volume 7 | Issue 3 | e33528



When we include the key new feature of this model – a memory of

previous pseudopod activity which makes that patch of cortex

locally more excitable – the model reproduces the zig-zag behavior

of real amoebae. Interestingly, the model also explains a previously

observed increase in the likelihood of zig-zagging for pseudopods

that form farther from the parent pseudopod. Moreover, the

model makes four new quantitative predictions about pseudopod

positioning, and we use a new pseudopod detection algorithm to

test these predictions. Applying this algorithm to migrating

Dictyostelium cells, we obtain experimental data that support all of

our model’s hypotheses. In addition, when the model is modified

to include a gradient, simulated cells display a chemotactic

sensitivity similar to that reported for live Dictyostelium cells [13].

Contrary to previous assumptions [14], our results show that

pseudopod placement is not a Markov process depending only on

whether the previous pseudopod turned left or right. Rather, new

pseudopod production is a complex function of previous

pseudopod placement in space and time.

Results

Model
The simplified EC&M model has three main features. First,

pseudopods appear as bursts from an excitable cortex. Second,

active pseudopods globally inhibit new pseudopod formation.

Third, where a pseudopod is active it makes the cortex locally

more excitable. This third feature is the key insight that leads to

zig-zag behavior: previous pseudopods leave a trace of their

activity, which acts as a local memory and is the basis of

persistence.

The model represents the cell as a one-dimensional circle, and

on this circle pseudopods stochastically appear as excitable bursts.

In order to keep the model as simple as possible, we do not

explicitly model excitability. Rather, we assume that excitable

bursts occur along the membrane as binary events, with a rate as

described below. This is a reasonable approximation given both

that the times over which a pseudopod begins and ends its growth

periods (each about 1 second) are much shorter on average than

its total growth time (about 10 seconds), and that a pseudopod’s

growth rate remains fairly constant while it is growing [5]. We

assume the bursting rate depends on three variables: a local

memory M, a local inhibitor L, and a global inhibitor G. The local

pseudopod production rate is given by:

C start~e:M3: 1

1zaL
: 1

1zbG
: ð1Þ

The parameters a and b control the inhibitory strength of L and G

respectively, and e sets the overall pseudopod production rate of

the system. We assume a cubic dependence of Cstart on M because

pseudopod activity involves much cooperative feedback [15]. The

choice of such a cubic dependence is common in models of

biological excitable systems, e.g. the FitzHugh-Nagumo model for

spiking neurons [16], and the exact form of this equation is not

critically important for model results.

Where a pseudopod is active we postulate that it creates a long-

lived memory M in the cellular cortex that temporarily makes that

area of the cortex more excitable:

LM

Lt
~k0zk1Ppseudopod xð Þ{ M

tM

zDM

L2M

Lx2
, ð2Þ

where x represents position along the circumference of the cell and

Ppseudopod xð Þ is a boxcar function that equals 1 where and when a

pseudopod is active and is 0 everywhere else. The parameter k1 is

the additional rate of memory production where a pseudopod is

active, and to make the cortex permissive for occasional

pseudopod formation everywhere, we assume that memory is

formed at all locations with a low basal rate k0. We also assume the

memory decays with a lifetime tM and diffuses with coefficient DM.

We chose a diffusion constant DM~0:14 mm2/s, consistent with

that measured for membrane-bound proteins [17].

Where a pseudopod is active it also produces a local inhibitor L

at rate kL. This local inhibitor also decays with lifetime tL,tM and

diffuses with diffusion constant DL:

LL

Lt
~kLPpseudopod xð Þ{ L

tL

zDL

L2L

Lx2
: ð3Þ

The local inhibitor serves both to create a refractory period after a

pseudopod stops, and to limit pseudopod lifetimes. An active

pseudopod has a stopping rate that depends on the value of L at its

center:

Cstop~mL3 ð4Þ

where m is a multiplicative coefficient. We chose a cubic

dependence of Cstop on L because this form yields a distribution

of pseudopod lifetimes approximating observed lifetime distribu-

tions.

Experimentally it is found that pseudopod growth suppresses

formation of new pseudopods [5], so the model further assumes

that when a pseudopod is active it creates a global inhibitor G that

diffuses instantly, taking the same value at all points along the

cortex. After the pseudopod stops we assume the global inhibitor

instantly decays. Although we use inhibitors in this model, we note

that substrate depletion could serve the same function as either the

local inhibitor to limit pseudopod lifetimes and create refractory

periods [18], or as the global inhibitor to suppress lateral

pseudopod activity [19]. We assume instantaneous diffusion of

cGMP for simplicity [20], and we note that with a diffusion

constant of 300 mm2/s, cGMP could diffuse the length of a cell

(,10 mm) in 0.17 seconds [13], which is far faster than the

pseudopod time scale.

Together, the memory, local inhibitor, and global inhibitor all

determine the rate of pseudopod formation at any point along the

cortex. Where the memory is high, pseudopods are more likely to

begin growing, while the local and global inhibitors both suppress

pseudopod formation. M, L, and G are dimensionless quantities

with arbitrary scale. Their effects on pseudopod dynamics are set

by the parameters m, e, a, and b in Equations 1 and 4. For further

details on implementation of the model in simulations see

Methods, and for parameters see Table 1.

In order to define a zig-zag, one must analyze a time series of at

least three successive pseudopods, which we refer to as the

grandparent, parent, and child, following Bosgraaf and van

Haastert [5]. In our terminology, the parent of a new pseudopod

is the most recently stopped pseudopod. If one or more pseudopod

is still active when a new pseudopod starts, that which started most

recently is the new pseudopod’s parent. In the event that the above

criteria do not define a single pseudopod, the parent is that which

is spatially closest to the new pseudopod. A pseudopod’s

grandparent is the parent of its parent. Bosgraaf and van Haastert

distinguished between ‘‘split’’ and ‘‘de novo’’ pseudopods based on

whether or not one pseudopod appeared to grow out of a previous

one, and de novo pseudopods were excluded from their analysis of

zig-zag bias. However, both types of pseudopods are indistin-

Excitable Cortex and Memory Model for Pseudopods
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guishable with respect to size and lifetime, so we include all

pseudopods for analysis to avoid making a priori assumptions about

pseudopod dynamics. In our model, pseudopods appear to split as

the result of a new pseudopod beginning very close to an existing

one.

We define a child pseudopod’s turning angle to be the angle

from the parent’s location to the child’s location, i.e.

Dh~hchild{hparent. Positive values of Dh define a left turn and

negative values of Dh define a right turn. We say a zig-zag has

occurred when a child turns in the opposite direction of its parent,

making the grandparent-parent-child series right-left or left-right.

A left-left or right-right sequence would be a non-zig-zag. The zig-

zag ratios reported are the number of pseudopods that are third in

a zig-zag sequence divided by the number that are third in a non-

zig-zag sequence.

For an illustration of pseudopod dynamics in our model,

consider the sequence of three pseudopods shown schematically in

Figure 1A, with memory in blue and local inhibitor in red. In

panel (i) a growing pseudopod (the grandparent) produces both

cortical memory and local inhibitor. By panel (ii) the grandparent

has ceased growing and its immediate vicinity is refractory due to

local inhibition. A new pseudopod (the parent) begins growing to

the right, and continues to grow in panel (iii). By the time the local

inhibitor at the site of the grandparent has decayed, some memory

remains. This memory locally increases cortical excitability, so in

panel (iv), when the parent pseudopod stops growing and global

inhibition lifts, a third pseudopod (the child) is most likely to form

in the more excitable area left by the grandparent. This sequence

of three pseudopods constitutes a zig-zag since the child turns left

toward the previous location of the grandparent rather than

turning right as the parent did.

Figure 1B illustrates the evolution of simulated variables at the

center of a pseudopod. The rate of pseudopod formation is in units

of mm21 s21, and L and M are in units of kLtL and k0zk1ð ÞtM ,

respectively. The global inhibitor G takes values of 0 or 1. The

local inhibitor L rises rapidly, which increases the pseudopod’s

stopping rate (Eq. 4). Meanwhile the cortical memory M rises

more slowly. When the pseudopod stops after 7 seconds, G decays

instantly, and L and M decay according to their respective

lifetimes, with tL,tM. The local rate of new pseudopod formation

(Eq. 1) increases abruptly when G disappears, then the pseudopod

formation rate continues to rise more slowly as L decays over the

timescale tL. The pseudopod production rate reaches a local peak

and then declines toward its basal level as the long-lived memory

M decays on the longer timescale tM.

Summary of model results and predictions
The EC&M model produces persistent random walks similar to

those observed for actual cells. The model also explains the

increase in likelihood of zig-zagging for pseudopods that emerge

farther from their parents, a feature that was previously observed

but not understood, and the model makes additional novel

predictions. To test these predictions, we develop a new tracking

algorithm that detects pseudopods of freely migrating Dictyostelium

cells. Data obtained using this tracking algorithm reproduce

previous observations and agrees with all four model predictions.

Specifically, we find that: 1) Pseudopods are more likely to zig-zag

if their parents had large turning angles. 2) Pseudopods are more

likely to zig-zag if their parents did not zig-zag. 3) Pseudopods are

more likely to zig-zag if their grandparents were large. 4)

Pseudopods are more likely to zig-zag if they begin after a short

Table 1. Parameters used for simulations of the EC&M model.

Parameter Value

k0 0.1 s21

k1 1.4 s21

tM 30 s

DM 0.14 mm2/s

kL 0.3 s21

tL 2.33 s

DL 0.1 mm2/s

e 2.561025 s21 mm21

a 34

b 11

m 1 s21

k0, k1, and kL are the production rates of memory M everywhere, the additional
production rate of M at pseudopods, and the production rate of local inhibitor L
at pseudopods, respectively. tM and tL are the lifetimes of M and L, and DM and
DL are the diffusion constants of M and L. a and b set the strength of
pseudopod inhibition by L and the global inhibitor G, respectively. e sets the
total pseudopod production rate and m sets the lifetime of pseudopods.
doi:10.1371/journal.pone.0033528.t001

Figure 1. The excitable cortex and memory model. A) A
sequence of three pseudopods. (i) As the first pseudopod (the
grandparent) grows it generates memory (blue) and a local inhibitor
(red). (ii) After some time the pseudopod stops growing and another
(the parent) starts elsewhere. (iii) When the second pseudopod stops,
the local inhibition at the site of the first has decayed but some memory
remains. (iv) Therefore, the third pseudopod (the child) is more likely to
form in the vicinity of the first, thus completing a zig-zag sequence. B)
Time course of local membrane variables at the center of a simulated
pseudopod. The variables shown are cortical memory M (dashed blue),
local inhibitor L (dash-dotted red), global inhibitor G (dotted black), and
pseudopod production rate Cstart (solid green). The rate of pseudopod
formation is in mm21 s21, while M and L are shown in units of units of
k0zk1ð ÞtM and kLtL, respectively.

doi:10.1371/journal.pone.0033528.g001

Excitable Cortex and Memory Model for Pseudopods
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delay from their grandparents. These results are statistically

significant as tested by logistic regression, and they are described in

detail below.

The model produces a zig-zagging persistent random
walk

Figures 2A,B show sample model cell trajectories, which exhibit

the same qualitative features as real cell paths. The 10 minute

paths in Figure 2A show small scale zig-zag behavior and

persistence, which transitions to diffusive motion over longer

times as seen in the 200-hour path in Figure 2B. To quantify this

crossover we plot the mean squared displacement Sr2T versus time

lag t in Figure 2C. When we fit this to the equation for a persistent

random walk with constant speed v and persistence time tp,

Sr tð Þ2T~2tpv2 t{tp 1{e{t=tp

� �� �
[4], the simulated trajectories

exhibit a persistence time of 4.0 minutes, which is within the range

of 3.4 minutes [4] and 8.8 minutes [5] reported in the literature.

Figure 2D shows the mean squared displacement divided by the

time lag, a quantity which is linear with positive slope for directed

motion (for which Sr tð ÞT~vt), and which is constant for diffusive

motion (for which Sr tð Þ2T~4Dt). In Figure 2D one can see

clearly the transition from persistent motion on short timescales to

a random walk over longer timescales as Sr tð Þ2T
.

t approaches a

constant. As in live cells, pseudopods simulated by our model

preferentially zig-zag, with a zig-zag ratio of 2.0 (i.e. the number of

zig-zags divided by the number of non-zig-zags) for the parameters

used here. Since not all pseudopods zig-zag and pseudopod angles

are stochastic, over longer times, path persistence is lost.

A new hierarchical clustering algorithm to detect
pseudopods

To test model results and predictions, we developed a new

algorithm to track pseudopods in freely crawling cells. Dictyostelium

cells were tagged with mRFP-LimE and GFP-Myosin to aid cell

outline detection and to ensure that we reliably detected both the

front and the rear of each cell (see Methods). Vegetative cells were

allowed to migrate on glass coverslips under buffer with no external

chemoattractant gradient, and images were captured every 2 sec-

onds. Figure 3A shows successive cell outlines overlaid from one track

(see also Movie S1). The cell was moving from top to bottom and the

time goes from green to red. The inset displays the fluorescent image

from this sequence at 120 seconds, and the corresponding cell outline

is in bold. Cell outlines were detected using an active contour method

[21,22], and membrane extensions were found by comparing cell

outlines from each time step to outlines from the previous time step

(for further details, see Methods).

Pseudopods detected from these extensions are shown in

Figure 3B, which has the same scale as Figure 3A. The numbers

shown are the pseudopod starting and stopping times, the small

hash lines indicate the angle of each individual extension, and the

larger arrows show the mean extension angle of each pseudopod.

To define pseudopods from individual extensions we used

hierarchical clustering to group the extensions based on adjacency

in time, extension angles, spatial distance, and the percentage of

the newer extension which grew out of the older extension (see

Methods). Consistent with the model definition, parent pseudo-

pods were defined to be the most recently active extending

pseudopod, or the most recently started if more than one

pseudopod was still active, or the closest pseudopod in space if

more than one was equally recent. In total we tracked 57 cells and

1764 pseudopods.

In agreement with previous results, our algorithm finds that cells

extend pseudopods with a zig-zag ratio of 1.8, which is consistent

with the pseudopod zig-zag ratio of 2.0 obtained from our model,

and the zig-zag turning ratio of 2.1 reported by Li et al. [4].

Although Bosgraaf and van Haastert [5] found a higher

pseudopod zig-zag ratio, near 3, our results are not directly

comparable because we include all pseudopods whereas they

included only pseudopod series judged to be splitting, excluding

pseudopods judged to be de novo.

Model predicts observed dependence of zig-zag ratio on
distance from parent

The first paper to analyze pseudopod zig-zagging found that a

pseudopod forming very close to its parent was less likely to zig-zag

than a pseudopod forming farther from its parent [5], although

this behavior was not explained. Interestingly, simulations from

our model reproduce this behavior as shown in Figure 4A, where

we plot the pseudopod zig-zag ratio for pseudopods emerging at

different angles from their parent. New experimental data from

our pseudopod tracking algorithm (Fig. 4B) agree with both the

previous observations and our model results. The zig-zag ratio in

Figures 4A,B declines at 180u from the parent because of circular

symmetry. Note that angular difference is directly proportional to

arc-length distance for model cells, which always remain circular.

Although real cells change shape as they move, their shapes

remain relatively smooth and their pseudopods extend perpendic-

ularly from the membrane [5]. Therefore a larger angular

difference still generally implies a larger spatial distance along

the membrane.

Figure 4C illustrates the origins of distance dependence using a

constructed series of two pseudopods. The first pseudopod (i)

Figure 2. Simulated trajectories from the excitable cortex and
memory (EC&M) model. A) An overlay of ten 10 minute segments of
simulated paths, starting at the X in the center. The paths show
persistence. The spatial scale is arbitrary and is set by the speed
assigned to cells. B) A 200 hour-long simulated path. Over this much
longer timescale the trajectory becomes diffusive. C) The mean squared
displacement of the 200 hour path (blue), with a fit (dashed red) to the
persistent random walk equation (see Methods). The persistence time
from the fit is 4.0 minutes. D) The same mean squared displacement
and fit plotted as Sr2T

�
t to highlight the crossover from ballistic to

diffusive motion.
doi:10.1371/journal.pone.0033528.g002

Excitable Cortex and Memory Model for Pseudopods
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formed at h= 30u at time zero and lasted for 7 seconds. After an interval

of 4 seconds, the second pseudopod (ii) formed at h= 0u and lasted

7 seconds. The cortical variables are shown 0.5 seconds after the second

pseudopod stopped. When the next pseudopod forms, pseudopod (i) will

be its grandparent and pseudopod (ii) will be its parent.

Close to the parent (ii), the amount of local memory is high

(dash-dotted blue). The memory that was generated by the

grandparent (i) is lower because memory decays and diffuses over

time (dashed blue). Therefore, in the area near the parent, the

smaller amount of additional memory from the grandparent will

make a smaller relative contribution to the total local memory

(solid blue). This means that very near a parental pseudopod such

as (ii) in Figure 4C, there will not be a large relative difference

between the amount of memory on one side of the parent and the

other, and there will not be a large inclination for a child

pseudopod to zig-zag. Farther away from the parent, however,

there is less total memory in the cortex. Additional memory from

the grandparent would here make a larger relative contribution,

increasing the probability that a child pseudopod would zig-zag. In

addition, farther from the parent there is a larger spatial distance

between a point on one side of the parent and a point at the same

distance from the parent on the other side. If cortical excitability is

a gradually varying function of distance as our model suggests,

points that are farther from each other would be expected to have

larger differences in excitability.

Zig-zag ratios depend on the previous pseudopod’s turn
angle

Similar logic predicts that a pseudopod should be more likely to

zig-zag when the parent and grandparent are farther apart (with

the zig-zag ratio declining to 1 at 180u due to symmetry, as above).

In the example from Figure 4C, suppose that the grandparent

were very close to the parent. Then the memory and pseudopod

formation rates would be nearly identical on either side of the

parent, so the child would have little preference for the zig-zag

side. On the other hand, consider moving the grandparent nearly

opposite the parent. Then circular symmetry would make the

memory similar on the parent’s left and right, so the child would

again have little preference to zig-zag. The zig-zag ratio of the

child should reach a peak when the grandparent-parent separation

is between these two extremes.

Figure 5A shows that the simulated zig-zag ratios of child

pseudopods peak when parents are approximately 90u from

grandparents, as predicted by the argument above. In agreement

with simulations, the experimental results with live cells show that

zig-zag ratios increase as the angle from grandparent to parent

increases to approximately 90u (Fig. 5B). The zig-zag ratio peaks at

a larger angle in the experiments compared to the simulations, but

this is likely because our simulations neglect changes in cell

geometry. Cells elongate in their direction of motion, so their

membrane generally has higher curvature at the leading edge.

Since pseudopods extend perpendicularly to the membrane [5],

pseudopods separated by a given arc length along a higher-

curvature membrane region (the leading edge of a real cell) will

have a larger angular difference than pseudopods separated by the

same arc length along a circle with an equivalent perimeter (model

cells in our simulations).

Zig-zag ratios increase following a non-zig-zag
A simple model of pseudopod zig-zagging would suppose the

choice of a left or right turn to be a Markov process, depending

Figure 3. Cell tracks and pseudopods as detected by our algorithm. A) An overlay of cell contours detected in each timestep for a track
covering 220 seconds. Images were captured every 2 seconds. The inset displays a fluorescent image of the cell at 120 seconds. Green is GFP-myosin,
which localizes to the rear of the cell, red is RFP-LimE, which labels polymerizing actin at pseudopods, and the intensity of each channel was scaled to
aid visualization. The outline in (A) corresponding to the inset image is black and in bold. B) Detected pseudopods and their component membrane
extensions. Labels indicate pseudopod beginning and ending times in seconds, small hash lines show the direction of each individual extension, and
arrows show the entire pseudopod’s mean extension direction. See also Movie S1.
doi:10.1371/journal.pone.0033528.g003

Excitable Cortex and Memory Model for Pseudopods
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only on whether the previous pseudopod had turned left or right.

Indeed, a previous model makes just such an assumption: every

pseudopod was assigned the same probability of zig-zagging [14]. In

contrast, the EC&M model predicts that zig-zagging depends on

whether or not the previous pseudopod zig-zagged. Consider a non

zig-zag sequence of three pseudopods, containing two consecutive

turns in the same direction. On one side of the child will be two

generations of memory, from both its parent and its grandparent.

Any memory on the opposite side must be at least three generations

old, so it will likely be close to the baseline level. Consequently, the

rate of pseudopod formation will be even more biased toward the

zig-zag side, i.e. back toward the parent and grandparent. Consistent

with this logic, Figure 5C shows that model pseudopods whose

parents did not zig-zag are more likely to zig-zag themselves. The

experimental data in Figure 5D agree with this prediction: children

of non-zig-zagging parents have a 26% higher zig-zag ratio than

children of zig-zagging parents. The experimental difference

between the two was significant at P,0.05 using a x2 test.

Zig-zag ratios increase following pseudopods with
higher activity

In our model, cortical memory builds up as a result of

pseudopod activity, so more active pseudopods should generate

more memory, thereby making their grandchildren even more

likely to zig-zag. Simulation results in Figure 5E illustrate this

prediction, with zig-zag ratios increasing for pseudopods whose

grandparents lived longer. Pseudopod lifetime is used as a proxy

for pseudopod activity in the model, since all pseudopods were

assumed to have the same width and activity level. With real cells,

however, one can measure the size of a pseudopod to determine its

total activity. The experimental results in Figure 5F reveal that

grandchildren of larger pseudopods are more likely to zig-zag. The

difference in zig-zag ratios between the first two bins in Figure 5F

(pseudopods whose grandparents were 0–20 mm2) and the last two

bins (pseudopods whose grandparents were 35–90 mm2) is

significant at P,0.05 using a x2 test. Figure 5F uses bins with

larger ranges for larger pseudopods to reduce sampling noise, since

most detected pseudopods were smaller than 20 mm2.

Zig-zag ratios decrease following longer grandparent-
child intervals

Not only does cortical memory build up over time in our model, but

this memory also decays and diffuses with time. Thus if a child

pseudopod begins growing with a long delay from the time when its

grandparent ceased growing, the grandparent’s memory should have

dissipated and the child should be less likely to zig-zag. Figures 5G and

5H show zig-zagging dependence on time delay from the stop of a

grandparent for model and real cells, respectively. In both cases,

pseudopods are less likely to zig-zag with longer delays after their

grandparents stopped growing. The experimental results indicate that

cells lose their zig-zag bias after about 30–40 seconds, which suggests

that memory diffuses and decays on a timescale of around half a minute

in motile Dictyostelium.

Figure 4. The zig-zag ratio increases with distance from the
parent pseudopod. A) Simulated pseudopods are most likely to zig-
zag when they extend at approximately a 90u angle from their parent.
The zig-zag ratio shown is the number of left-right or right-left
sequences divided by the number of left-left or right-right sequences,
and error bars indicate one standard error (see Methods). B) The zig-zag
ratio for pseudopods detected in tracked cells is also largest when
pseudopods form nearly perpendicularly from their parent. C)
Simulated membrane variables after a constructed sequence of two
pseudopods (inset). The first (i) formed at 30u from 0–7 seconds, the
second (ii) formed at 0u from 11–18 seconds, and the variables are
shown at 18.5 seconds. Units are as in Figure 1B. The different
contributions to the total cortical memory (solid blue) are shown,
including baseline memory (dotted), memory from the first pseudopod
(dashed), and memory from the second pseudopod (dash-dotted).
doi:10.1371/journal.pone.0033528.g004

Figure 5. Model predictions for pseudopod zig-zag ratios
(A,C,E,G) compared with experimental data (B, D, F, H). A,B)
Pseudopod zig-zag ratios versus the angle from grandparent to parent.
C,D) Dependence of pseudopod zig-zag ratio on whether or not the
pseudopod’s parent zig-zagged. E,F) Pseudopod zig-zag ratio versus the
size of the grandparent pseudopod. For simulated data (E) lifetime is
used as a proxy for size. G,H) Pseudopod zig-zag ratio versus the time
interval from the stop of the grandparent to the start of the child.
doi:10.1371/journal.pone.0033528.g005
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Predicted pseudopod dynamics are statistically
significant in the experimental data

In agreement with model predictions, all five variables discussed

above appear correlated with the probability that a pseudopod will

zig-zag, including the angle of a pseudopod from its parent, the

angle of the parent from the grandparent, whether or not the

parent zig-zagged, the size of the grandparent, and delay time

since the grandparent ceased growing (Fig. 5). To test whether the

observed trends are statistically significant, we performed multiple

logistic regression. The particular equation we fit was:

p~1= 1z expð{b0{bDh Dhj j{90j j{bDhparent
Dhparent

�� ��{90
�� ��{

�

bZparent
Zparent{bAgp

Agp{bDtDt
�� ð5Þ

where p is the probability of zig-zagging (note that p= 1{pð Þ is the zig-

zag ratio), Dh is the angle of a pseudopod from its parent,Dhparent is the

angle of the parent from the grandparent, Zparent takes the value 1 if the

parent zig-zagged and 0 otherwise, Agp is the area of the grandparent,

Dt is the delay time since the grandparent stopped growing, and the

corresponding b’s are the fit coefficients. We used the deviation of

pseudopod angles from 90u because zig-zag ratios are highest at

approximately 90u for both Dh (Fig. 4B) and Dhparent (Fig. 5B).

The resulting best fit to experimental data shows that four of the

five variables are significantly correlated with the probability of

zig-zagging (Table 2). Pseudopods are less likely to zig-zag as Dh or

Dhparent deviates from 90u (P,1026 and P,10210 respectively),

pseudopods are less likely to zig-zag if the parent had zig-zagged

(P,0.005), and pseudopods are less likely to zig-zag as the delay

time since the grandparent increases (P,0.01). Pseudopods are

more likely to zig-zag as the area of their grandparent increases,

but this is not a significant trend in the multiple regression analysis

(P,0.14). However, when the grandparental area is used as the

sole predictor in a separate logistic regression, the grandparental

area does significantly predict zig-zagging (P,0.05).

The fact that grandparental area significantly predicts zig-zagging

when used as the sole predictor, but not when used in combination

with the other variables in Eq. 5, suggests that the grandparental area

may be correlated with some of these other variables. Indeed, the

grandparental area is negatively correlated both with Zparent

(P,561024 using a single logistic regression), and with Dt (P,1027

using either Kendall’s or Spearman’s rank correlation). When Zparent

and Dt are excluded from Eq. 5, the area of the grandparental

pseudopod is significant as a predictor of zig-zagging (P,0.05).

The EC&M model is consistent with these observed negative

correlations between Agp and both Zparent and Dt. The first correlation

is equivalent to saying that a larger parent makes the child less likely

to zig-zag. Larger parents are generally longer-lived, and longer-lived

parents generally increase the time interval between grandparent and

child. Since such a longer grandparent-child interval decreases the

likelihood that the child will zig-zag, it follows that larger parents

should have children that are less likely to zig-zag.

The second correlation – that there is a smaller grandparent-

child interval when the grandparent is larger after – supports our

hypothesis that pseudopod activity increases the excitability of the

cellular cortex. In the framework of the EC&M model, larger

grandparents create more cortical memory, which makes the

cortex more excitable. This more excitable cortex then leads to

shorter intervals between pseudopod bursting events. Simulation

results recapitulate this finding: longer-lived grandparents are

followed by children after shorter intervals.

A potential concern is that the observed trends may be

influenced by difficulty in determining small turning angles. To

confirm that our conclusions were not influenced by noise in

extracting pseudopods with small turning angles, we excluded

from analysis any pseudopods for which Dh or Dhparent was less

than 30u. When we performed logistic regression on this smaller

dataset, we still found all variables to be significant predictors of

zig-zagging (Fig. S2, again separating the grandparental area

because of its correlations with the other variables).

Thus all five trends predicted by the EC&M model are

statistically significant in experimental data after accounting for

correlations between the trends. In addition, the observation that

larger pseudopods are followed by their children and grandchil-

dren with shorter delay times supports our hypothesis that higher

pseudopod activity increases cortical excitability.

Model accounts for chemotactic behavior
For many crawling cells external chemical gradients can

modulate motility to produce a directed path. A chemotactic

gradient creates a gradient of bound cell-surface receptors, which in

turn stimulates a gradient of downstream signalling activity, which

feeds into the basal motility circuit [6–8]. We can extend our model

to include chemotaxis along external gradients by spatially varying

k0, the basal production rate of M. Figure 6 displays typical paths

and chemotactic indices from simulations in which k0 is varied,

resulting in chemotactic behavior (see Methods). We find

statistically significant chemotaxis in response to variation of k0 by

as little as 3% across the model cell, with the chemotactic index

increasing as the total variation of k0 (the ‘‘gradient’’) becomes

larger. Experimentally, the threshold for significant chemotaxis in

Dictyostelium cells occurs at a receptor occupancy difference of 1% to

16% across the cell, depending on conditions [13]. Our model is

consistent with this range of thresholds, even without assuming

internal sharpening of gradients downstream of receptors. Impor-

tantly, model cells are still able to perform chemotaxis even when

the assumed gradient in k0 is much smaller than the order of

magnitude difference between k0 and k1 (see Table 1).

Discussion

Despite recent progress, there is still no predictive framework for

understanding the mechanism by which excitable membrane

extension events are positioned in alternating directions to create a

persistent path. Meinhardt [20] presented a polarization model

Table 2. Multiple logistic regression results evaluating the
effects of observed trends on pseudopod zig-zag
probabilities.

Parameter Value P-value

b0 1.96 P,10231

bDh 20.0108 P,1026

bDh parent 20.0146 P,10210

bZ parent 20.3093 P,0.005

bA gp 0.0003 P,0.14

bDt 20.0113 P,0.01

b0 is a constant offset, and the other b’s are fit coefficients for Dh, which is the
angle of a pseudopod from its parent, Dhparent, which is the angle of the parent
from the grandparent, Zparent, which takes the value 1 if the parent zig-zagged
and 0 otherwise, Agp, which is the area of the grandparent, and Dt, which is the
delay time since the grandparent stopped growing. As noted in the text, Agp is
correlated with the other variables, and when it is tested in a single logistic
regression, it is significant at P,0.05.
doi:10.1371/journal.pone.0033528.t002
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that is conceptually similar to ours in having rapid local positive

feedback coupled to both a slower local feedback and a weaker

global feedback. However, this analysis did not include a

directional memory and did not simulate cellular motion. Li

et al. [4] and van Haastert [14] have presented statistical models

that reproduce zig-zag behavior, but these models are not based

on dynamical mechanisms, and they do not attempt to address the

excitable characteristics of pseudopods. Xiong et al. [23] proposed

a model for chemotaxis that incorporates pseudopod excitability,

but this model does not address the zig-zag behavior or persistence

of cells in the absence of a gradient. Otsuji et al. [24] presented a

dynamical model that was able to produce zig-zag behavior, but

which requires a potentially problematic assumption: their model

includes an autocatalytic activator A that localizes to the front of

the cell, an autocatalytic inhibitor B localizing to the rear, and

assumes that A represses B while B activates A. We note that

known biological correlates of B that localize to the rear of the cell

(e.g. PTEN and myosin) repress pseudopod activity rather than

recruiting activators [25–27]. Another model by Neilson et al. [28]

couples a model of pseudopod dynamics to a method for evolving

the cell surface to describe shape changes during cell migration.

However, this model only produces pseudopods that are

continuous and split symmetrically as soon as they emerge, and

model cells never pause with no activity. In contrast, and

consistent with previous observations [5], we observe here that

real pseudopods often form away from the center of existing

pseudopods, cells often follow a single pseudopod with no splitting,

and cells occasionally pause with no active pseudopods (see e.g.

Figure 3B). We draw upon ideas such as those discussed above and

experimental evidence in the literature to propose an excitable

cortex and memory (EC&M) model for understanding the

excitable pseudopod dynamics that lead to persistence.

The EC&M model aims at a qualitative, high-level description

to provide an intuitive framework for understanding the general

principles common to the entire class of more detailed models

sharing our proposed motif. For this reason, we reduce the model

to three essential components: local excitable dynamics that create

pseudopods, global inhibition that reduces excitability elsewhere

while a pseudopod is active, and cortical memory that increases

excitability at the locations of previous pseudopods. Using only

these elements, the model simulates paths with persistence times

within the range of those previously reported, and generates

pseudopod zig-zag ratios nearly identical to those found in our

tracking experiments. The model also explains the previously

observed increase in zig-zag ratio for pseudopods that are farther

from their parents. Furthermore, the model predicts four new

features: a peak in the zig-zag ratio for a pseudopod whose parent

was approximately 90u from its grandparent, a larger zig-zag ratio

for children of pseudopods that did not themselves zig-zag, an

increase in zig-zag ratio for pseudopods with longer-lived

grandparents, and a decrease in zig-zag ratio for pseudopods that

follow their grandparents after longer delays.

We test these model predictions with a new cell-tracking

algorithm that detects pseudopods via hierarchical clustering of

membrane extensions detected at each time step. This approach

has the advantage of making very few assumptions about

pseudopod dynamics, such as, for example, membrane convexity.

Data from these tracking experiments agree with all of the above

model predictions, and logistic regression analysis demonstrates

that all observed trends are statistically significant.

The EC&M model does not attempt to describe the molecular

machinery underlying pseudopod production. However, each

component of the model is based on current knowledge about

eukaryotic cell motility. Previous literature supports our assump-

tions and suggests plausible candidate molecules and mechanisms

as discussed below.

Pseudopods emerge from an excitable medium
Pseudopods and patches of pseudopod-associated proteins

behave as self-organized bursts of an excitable system [23,29,30].

Pseudopod activity exhibits the characteristics one would expect of

excitable bursts [31], including a resting state with little activity,

high activity bursts with peaked lifetime distributions, a refractory

period, and occasional traveling waves of pseudopod-associated

proteins.

One key component of an excitable system is rapid positive

feedback that creates bursts of activity. A positive feedback loop

that generates pseudopods has been documented [32,33], and this

positive feedback includes many well-characterized proteins (for

reviews see [6–8]). In addition to rapid positive feedback, an

excitable system must also include slower local inhibition that both

limits burst lifetimes and creates a refractory period after a burst.

Consistent with such local inhibition, Dictyostelium pseudopods have

a peaked distribution of lifetimes [5], and experimental results

provide evidence of refractory periods associated with pseudopod

signaling activity. For example, when latrunculin-paralyzed cells

are kept in a constant chemoattractant gradient, quickly washed,

and then uniformly stimulated with cAMP, the cells’ previously

up-gradient side is less excitable [34]. Additionally, when freely

moving cells in buffer are uniformly stimulated with low levels of

Figure 6. Chemotaxis simulations. A) 5 hour paths of model cells
with the indicated gradient of k0. All paths are shown at the same scale,
and the cells’ starting point is marked with an X. B) Chemotactic index
as a function of gradient, as defined in Methods. Error bars indicate the
standard error of the mean over 16 simulated cells.
doi:10.1371/journal.pone.0033528.g006
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attractant, new signaling patches appear in younger – but not

older – pseudopods, suggesting that the older pseudopods have

already stopped growing and become refractory [30].

Further support for modeling pseudopods as excitable bursts

comes from the observation that actin and its associated proteins

travel in waves along the membrane of Dictyostelium cells [35–40], a

well-known property of excitable systems with spatial diffusion.

Also, when two traveling actin waves collide they mutually

annihilate [35], implying that these waves leave behind a

refractory zone as one would expect for waves in an excitable

medium.

While pseudopod-generated local inhibition has substantial

support in the literature, the underlying mechanisms are not yet

clear. Several possibilities for local inhibition include recruitment

of proteins inhibitory to actin polymerization such as coronin

[39,41], accumulation of inhibitory membrane lipids, substrate

depletion [42], and/or physical membrane tension [43,44].

Global Inhibition
New pseudopods are much less likely to form while previous

pseudopods are still active [5]. One key player in global inhibition

appears to be cGMP [45]. cGMP is primarily produced by the

sGC protein which localizes at growing pseudopods, but as a small

molecule cGMP can rapidly diffuse throughout the cell, thus

spreading the message that a pseudopod is active and suppressing

new pseudopods elsewhere. cGMP works by promoting contractile

myosin, a cortical organization incompatible with protruding actin

filaments. Cells that cannot make cGMP fail to repress new

pseudopods while another pseudopod is active, just as one would

expect for cells lacking a global inhibitory molecule.

Another potential contributor to global inhibition is substrate

depletion [19]. For example, one or several of the proteins or lipids

involved in the pseudopod positive feedback loop may be available

in limited quantities within the cell. As long as those pseudopod-

associated proteins are sequestered in an actively growing

pseudopod, there would be fewer proteins available elsewhere in

the cell so the rest of the cortex would be less excitable.

A third mechanism of global inhibition is the increased cortical

tension generated by protrusive activity, which was recently found

to contribute to long-range pseudopod inhibition in neutrophils

[46]. This mechanism allows for very rapid inhibition of new

pseudopods without any delay caused by diffusive mechanisms,

and it further supports our assumption of instantaneous global

inhibition.

Memory
The idea that pseudopod activity increases excitability is

supported by our observation that larger pseudopods are followed

by their children and grandchildren after shorter delays, and there

is additional support for membrane-associated memory in the

literature. For example, cells treated with latrunculin (which

depolymerizes F-actin) round up and cannot move, but when these

cells are exposed to chemoattractant they can still form signaling

patches of pseudopod-related proteins along the membrane [30].

When these cells are exposed to a gradient of chemoattractant, the

patches localize on average to the up-gradient side of the cells, but

the patch formed by any individual cell is repeatably biased away

from the applied gradient [47]. This directional bias has a random

direction and is of variable degree in a population of cells, but for a

single cell the bias is consistent over the course of ten discrete

pulses, even when the direction of the gradient is changed. Such

anisotropic excitability shows that cells can and do maintain a

directional memory even when not moving in the direction of that

bias, consistent with our hypothesis of pseudopod-generated

memory.

The directional bias in latrunculin-treated cells persists for

several minutes [47], but we find that zig-zag ratios in motile cells

decay after approximately 30 seconds (Figure 5H). This difference

in timescales suggests that an active actin cytoskeleton speeds the

dynamics of cortical memory. The persistent bias of latrunculin-

treated cells also suggests that when cells lack an active actin

cytoskeleton, their directional memory is associated with large-

scale structures that are long-lived and diffuse very slowly.

In addition to the latrunculin experiments that reveal

directional memory, experiments with actively moving cells

support our hypothesis that this memory is created by pseudopod

activity. Uniform cAMP stimulation induces excitable patches of

signaling proteins along Dictyostelium membranes, and new

pseudopods soon grow from these patches [30,48]. Importantly,

patches are most likely to form on convex regions of the

membrane. Extending pseudopods create such convex membrane

domains (see e.g. Figure 3A), while membrane at the base of a

pseudopod tends to be flatter or even concave. Thus, the

observation that convex regions are more easily excited by cAMP

is consistent with our hypothesis that recent pseudopod activity

makes the membrane more locally excitable. While these examples

of memory involve chemotactic stimulation, vegetative motion

shares many of the same key pathways with chemotaxis [7,8,33],

so it is reasonable to expect that directional memory is common to

motion under both conditions.

Pseudopod activity alters the local membrane lipid composition,

localizes many associated proteins, and changes the cortical actin

meshwork. Since these modifications are produced by excitable

bursts, it is reasonable to suppose that they are favorable to further

excitability. In one example of persistent protein localization,

when latrunculin treated cells are stimulated with attractant, at

least one component of the positive feedback loop – phosphoino-

sitide 3-kinase (PI3K) – stays localized to the membrane even after

it is no longer active [32]. Such pre-localized but inactive proteins

would be expected to increase local excitability. Another possibility

for membrane-associated memory is large-scale cortical structure.

Propagating actin waves in latrunculin-treated cells leave in their

wake an altered cortical structure, which reverts to its basal state

over 30–60 seconds with the help of cortexillin [49]. Contractile

myosin preferentially localizes to the basal cortical state, and is

excluded from the wave-produced state. Since contractile myosin

and protruding actin are incompatible (reviewed in [50]), it follows

that the myosin-excluding cortical structure created by actin

activity should be more permissive for future actin-associated

bursts than the basal cortical structure elsewhere in the cell.

Supporting a structural, cortex-based memory is the finding that

the cortex at the leading edge of a migrating cell couples more

weakly to the cell membrane [51]. This allows the membrane to

more readily detach from the cortex and form blebs, which have

been found to contribute to Dictyostelium motility [52]. Blebs form

too rapidly to be distinguished from actin-based protrusion at our

0.5 Hz imaging rate, so the pseudopods we detect likely grow

through a combination of both protrusion modes [6].

In addition to cortical memory, a recent model by Otsuji et al.

suggests that disassembly of old pseudopods may create a localized

source of molecules, which could then form a cytosolic gradient

[24].

Extensions and summary
Although the EC&M model was developed with wild-type

Dictyostelium in mind, it could be altered very simply to describe

mutants, other cell types, and chemotaxis. For example, cells
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lacking phospholipase A2 have pseudopods which grow more

slowly but live longer, though the molecular mechanism is not

known [5]. At first glance, one might expect longer-lived

pseudopods to help pla2-null cells maintain a straight path longer

than wild-type cells. Somewhat counterintuitively, however,

despite longer-lived pseudopods these cells actually have a shorter

persistence time than wild-type cells, as a result of a decreased zig-

zag bias. In our model, longer lived pseudopods would give the

memory of a grandparent pseudopod more time to disperse and

decay, which would make grandchildren less likely to zig-zag. In

this interpretation, a pla2-null cell would take larger steps, but each

step would take so long that the cell would forget its previous

direction. gc-null cells, which cannot produce cGMP and thus have

less cortical myosin and a more excitable membrane, could be

modeled by decreasing the global inhibition and increasing basal

excitability. Fibroblast-like behavior can be produced by decreas-

ing global inhibition strength so that multiple bursts occur

simultaneously, though still preferentially at one region of the cell

where the cortex is more excitable.

In summary, the EC&M model presented in this paper

combines the two key features of excitability and zig-zagging to

explain persistent cellular motion. In our model pseudopods

appear as bursts of an excitable medium, and pseudopod activity

makes the cortex locally more excitable, thus creating memory.

Contrary to previous work, both our model and new experimental

results reveal that the probability distribution of pseudopod

placement depends on the details of previous pseudopod activity.

The assumptions of the EC&M model are well-supported in the

literature, and this model presents a new framework for

interpreting future models and motivating future experiments to

investigate how eukaryotic cells stay on target.

Methods

Simulations
Simulations were performed using MATLAB. We represented the

cell as a circle with diameter 15 mm, and we discretized the model

equations using a spatial resolution of dx = 0.1 mm and a time step of

dt~ dxð Þ2
.

2DMð Þ, with periodic boundary conditions. This specific

time resolution was chosen to prevent numerical instability. In each

timestep the variables M and L were updated according to Equations

(2) and (3), and G was set to 1 if a pseudopod was active or 0

otherwise. Then for each active pseudopod a uniformly distributed

random number was drawn from the interval 0 to 1, and if the

random number was smaller than the probability of stopping at the

center of the pseudopod from Equation (4), the pseudopod stopped in

that timestep. Finally, at each point on the membrane the rate of

pseudopod formation was found from Equation (1), another uniform

random number was drawn, and if the new random number was less

than the rate of formation a new pseudopod was formed at that

location. All pseudopods were given the same width of 3 mm of arc

length. Other parameters used for the simulation are given in Table 1.

Cell tracks were calculated by assuming cells move with constant

speed in the direction of any active pseudopod. If multiple

pseudopods are active the cell moves in the direction of their vector

mean. To calculate the mean squared displacement versus time

interval t, we averaged the squared euclidean distance between all

points on the path that were separated by the time interval t.

To simulate external gradients we replaced k0 in Eq. 2 with

kg hð Þ~k0 1z
g

2
cos h

� �
,

where h varies from 0 to 2p around the cell, and g is the gradient

across the cell relative to the mean, i.e.:

g~
kg 0ð Þ{kg pð Þ

kg
p

2

� � :

For each gradient strength, 64 cells were simulated for 5 hours

each, and the chemotactic index for each cell was calculated as the

distance traveled in the direction of the gradient divided by the

total distance traveled, i.e.

CI~

Ð
d x!:ĝgÐ
d x!
�� �� :

Cell culture, microscopy, and image processing
Plasmids number 381 and 475 encoding mRFPmars-LimE [53]

and GFP-myosin II [54] respectively were obtained from the

dictyBase stock center (http://dictybase.org/StockCenter) [55].

Dictyostelium discoideum AX2 cells were transformed with these

plasmids to ensure full labeling of both leading and trailing edges

of cells. The transformed cells were grown on lawns of B|r-1 E. coli

on agar plates. For microscopy, we picked vegetative cells from the

feeding front, washed them of bacteria, and allowed the cells to

settle in development buffer on clean glass coverslips. We imaged

these cells using a confocal microscope, capturing several z-slices

to be sure to find all extensions. We merged the two fluorescent

channels, used thresholding to define cell outlines, and then

refined these outlines using an active contours method [21,22].

Pseudopod detection
To define pseudopods, we first found individual membrane

extensions in each time step by comparing the binarized cell image

from each time step to the binarized image from the previous

timestep. These extensions were then grouped into pseudopods

using hierarchical clustering (for complete details see Methods S1

and Fig. S1). Briefly, we defined a distance metric quantifying the

distance from each extension to all other extensions. This metric

depends on time, spatial distance, extension angle, and the

proportion of the newer extension which grew out of the older

extension. Using this distance metric, the algorithm iteratively

grouped the nearest two extensions, creating new grouped objects

which were used in the next rounds of clustering. All clustered

groups of extensions that were linked before the algorithm reached

a specified distance cutoff were considered to compose a single

pseudopod. Any pseudopods which did not persist for at least 2

time steps or which covered a total area less than 7.5 mm2 were

excluded from further analysis. This hierarchical clustering

approach has the advantage that one must only perform the

clustering once. Then different cutoffs can be chosen according to

experimental conditions so that pseudopods split where a human

observer would consider them to be two distinct pseudopods. A

larger distance cutoff would result in fewer splits and larger

pseudopods, while a smaller distance cutoff would result in more

splits and smaller pseudopods.

Statistical analysis
The standard error of a proportion p of zig-zagging pseudopods

out of N observed pseudopods is sp~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1{pð Þ=N

p
. We plot zig-

zag ratios r~p= 1{pð Þ rather than proportions, so we show the

standard error of the ratio as sr~ p+sp

� ��
1{p+sp

� �
. Logistic
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regression evaluates the importance of one or more variables in

determining the probability of an event. In particular, logistic

regression fits the equation p~1
.

1ze{b0{
P

bixi

� �
, where p is

the probability of an event, b0 is a constant offset, the xi’s are the

explanatory variables, and the bi’s are fit coefficients. We

performed logistic regression using the glmfit function of

MATLAB, using the binomial distribution and the logit link

option. Pearson and Kendall rank correlations were calculated

using the corr function.

Supporting Information

Figure S1 Illustration of the pseudopod clustering
algorithm. A) A sample extension from a single time step. The

cell was moving from left to right. A spline fit to every other pixel

of the inner boundary is shown in blue and a similar spline

through the outer boundary is shown in green. Dashed grey lines

represent the protrusion lines, and a spline through their

midpoints is shown in red. The overall angle of the extension is

shown by the black arrow. B) A series of extensions, with splines

through their boundaries (solid lines colored by pseudopod) and

arrows showing their extension angle. The 28 extensions are

numbered and labeled by the frame in which they appeared. C) A

dendrogram illustrating the clustering process. Dashed lines show

linkages that were formed after the distance cutoff was reached,

and clusters are colored by pseudopod. D) The six pseudopods

formed by the clustering algorithm. The directions of individual

extensions are shown by thin lines, and the directions of

pseudopods are shown as solid arrows. Solid contours mark the

outer boundaries of extensions within each pseudopod.

(TIFF)

Figure S2 Zig-zag statistics excluding pseudopods with
smaller turning angles. The group of bars on the left display

statistics including all pseudopods as reported in Results, and the

bars on the right display the same statistics after excluding any

pseudopods for which either its own or its parent’s turning angle

was less than 30u. Shown within each group are the zig-zag ratio

and the base-10 logarithm of the P-values as predictors of zig-

zagging for the turning angle, the parent’s turning angle, whether

or not the parent was third in a zig-zag sequence, the area of the

grandparent, and the time delay after the grandparent, as

determined by a logistic regression analysis (see Methods). A

separate regression was performed for Agp. The dashed line marks

the cutoff for significance at P,0.05.

(TIFF)

Movie S1 The movie corresponding to the path shown
in Figure 3. GFP-myosin is in green, localizing to the rear of the

cell, and RFP-LimE is in red, localizing to the leading edge. For

each frame, each channel is scaled to enhance visualization. The

cell outline for the current frame is in white, and the outline for the

subsequent frame is in cyan. White arrows denote extending

pseudopods, and the arrows turn gray when the pseudopod stops

extending. The frames are 2 seconds apart.

(MOV)

Methods S1 Pseudopod detection via hierarchical clus-
tering.
(DOC)
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