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Abstract

The progression of neoplastic malignancies is a complex process resulting not only from the accumulation of mutations
within tumor cells, but also modulation of the tumor microenvironment. Recent advances have shown that the recruitment
and subsequent heterotypic interactions of stromal cells—including fibroblasts and bone marrow-derived mesenchymal
stem cells (MSCs)—are crucial for carcinogenesis. Though extensive work has been done analyzing the signals that recruit
these cells, the governing mechanical properties have not been fully investigated. Here, we report that despite their initial
similarities, MSCs respond not only faster but also more dramatically to pro-migratory tumor-secreted soluble factors.
Utilizing multiple particle tracking microrheology to probe the cytoskeletal mechanical properties, we show that MSCs
stiffen completely within one hour, three times faster than fibroblasts. In addition, unlike fibroblasts, MSCs exposed to
tumor-secreted soluble factors display a functionally different phenotype characterized by morphological elongation,
decreased actin stress fiber density, and decreased adhesion. Quantitative real-time PCR indicates these phenomena occur
based on differential expression of small GTPases RhoA and Cdc42, but not Rac1. These findings demonstrate a fundamental
difference in the recruitment of fibroblasts and MSCs.
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Introduction

The microenvironment in a solid tumor develops under the

constant influence of inflammatory mediators [1]. These mole-

cules, which include a milieu of cytokines, chemokines, and growth

factors, are important targets for recruitment of a variety of cells

such as leukocytes, macrophages, monocytes, fibroblasts and

mesenchymal stem cells (MSCs) [2]. Previous literature on MSCs

and fibroblasts suggests functional similarity as indicated both by

global gene expression [3] as well as immunosuppression in

allogeneic transplantation [4]. In the tumor stroma both can also

form activated cancer-associated fibroblasts (CAFs) or myofibro-

blasts [2,5], though MSCs can additionally differentiate into

pericyte progenitor cells (PPCs) [6]. Increased numbers of

myofibroblasts in the wound bed and in other sites of chronic

inflammation have also been associated with MSC progenitors [2].

Notably, both cell types also aid in tumor growth and metastasis

via autocrine and paracrine signaling [7,8]. In light of this, recent

studies have begun to investigate these cells not only as alternative

targets for anti-cancer therapy [9], but also for use as targeted

gene-delivery vehicles [10].

For the latter approach, MSCs have shown greater promise

than fibroblasts [11]. This may be in part because fibroblasts are

recruited locally to form activated CAFs [12], whereas MSCs

derived from the bone marrow must natively home through

circulation to distal tumor sites. Consequentially, the therapeutic

use of systemically infused MSCs to tumors has been investigated

in breast [13], colon [14], ovarian carcinomas [15], gliomas [16],

and Kaposi’s sarcomas [17]. Despite this potential, extended ex vivo

culture reduces homing capacity of MSCs [18] and the majority of

systemically infused MSCs become trapped in the lungs [5,19,20].

To overcome this, breast cancer cell-conditioned media [7],

hypoxic preconditioning [21,22], and treatment with individual

chemokines or growth factors [23,24] have all been investigated to

increase MSC mobility; however, the effects of inflammatory

mediators on the microscopic mechanical properties of MSCs

have not been fully elucidated.

The mechanical properties within the cell are largely regulated

by the actin cytoskeleton, a complex network of interconnected

actin filaments and regulating proteins [25,26]. Dynamic changes

in the organization of the cytoskeleton transform cell shape and

generate mechanical forces required for numerous cellular

processes, including adhesion, migration, division, molecular

transport, and differentiation [27]. Cytoskeletal effector proteins

coordinate these changes by polymerization, depolymerization,

cross-linking, and bundling of actin filaments into actin stress

fibers, lamellipod extensions, and actin networks. Parallel bundles

of actin filaments provide tensile strength and strong contractile

activity, whereas cross-linked bundles of actin filaments increase

intracellular elasticity [27]. Chemical and physical stimuli have

been shown to alter cell shape and cytoskeletal organization by

activating cytsokeletal mediators, including RhoA, Rac1, and

Cdc42 [28,29,30]. Recent studies have highlighted the importance

of mechanical [31] and chemical [32] cues on MSC fate: in these

PLoS ONE | www.plosone.org 1 March 2012 | Volume 7 | Issue 3 | e33248



studies, soluble factors [32], cell shape [32], and extracellular

matrix rigidity [31] regulated the lineage commitment of MSCs

through RhoA signaling pathways.

This study sought to understand the underlying mechanical

differences in MSCs and fibroblasts as they migrate toward

tumors. In order to best simulate the signals migrating cells would

receive in vivo, we utilized 4T1 breast tumor cell conditioned media

(TCM) to stimulate the cells in vitro. We found that after treatment

with TCM, MSCs underwent an exaggerated response as

compared to fibroblasts, and that this response could potentially

be explained by altered gene expression of Rho GTPases Cdc42

and RhoA. We further demonstrate that even one hour incubation

with TCM increases cell motility, indicating a novel ‘mechanical

priming’ achieved by short-term TCM preconditioning.

Results

Characterization of Bone Marrow Derived MSCs
To verify the phenotype of MSCs, cells were assayed for both

cell surface marker expression and differentiation capacity. After

purification by adherence to plastic, MSCs were negative for

myeloid and hematopoietic stem cell markers CD11b and CD45

and positive for Sca1, CD29, CD61, and VCAM1 (Fig. 1A, Left).

Fibroblast expression is provided for comparison (Fig. 1A, Right).

Figure 1. Characterization of bone marrow isolated MSCs and fibroblasts. Phenotypic analysis was performed by flow cytometry was
performed on adherent bone marrow cells and Swiss 3T3 fibroblasts with positive populations in red given with S.E.M.(A). Purified MSCs
differentiated into adipocytes (B) and osteoblasts (C) within 3 weeks in lineage-specific differentiation media as shown both my staining and RT-PCR
(scale bar = 100 mm).
doi:10.1371/journal.pone.0033248.g001

Mechanical Changes of MSCs and Fibroblasts
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Osteogenesis and adipogenesis were induced in passage 4 MSCs

using standard protocols [33]. After 4 week incubation in either

adipogenic media or osteogenic media, MSCs differentiated into

adipocytes (Fig. 1B) and osteoblasts (Fig. 1C) as verified by

histological staining and reverse transcriptase PCR [34].

Morphological Changes after Incubation with Tumor
Cell-Secreted Soluble Factors

To investigate the response of MSCs to tumor cell-conditioned

media (TCM), cells were incubated in serum-free TCM or control

media (CM) for 24 hours. MSCs underwent a morphological

change from a cobblestone appearance to an elongated phenotype

(Fig. 2A–B). In comparison, Swiss 3T3 fibroblasts (Fig. 2C–D) and

primary isolated kidney fibroblasts (Fig. 2E–F) had similar initial

morphologies, but did not undergo a morphological change upon

treatment with TCM. A 3D sandwich culture model was used to

determine if tumor cells could stimulate elongation through a

viscoelastic collagen gel. Moreover, MSCs elongated through the

collagen gel toward a monolayer of 4T1 tumor cells (Fig. 2H) but

did not elongate towards a monolayer of MSCs (Fig. 2G).

Cytoskeletal Changes after TCM Treatment
We next examined the changes in cytoskeletal arrangement

necessary to produce the elongated phenotype. To accomplish

this, CM and TCM treated cells were fixed and stained for

filamentous actin, microtubules, and nuclei (Fig. 3A). Cytoskeletal

parameters were quantified from maximum intensity projections

of confocal image stacks (3 images per stack) using a custom-

written MATLAB algorithm. First, the cell elongation factor was

quantified using a ratio of the minor to major cell axis (Fig. 3B).

For control MSCs and 3T3 fibroblasts, the cell shape factors were

near unity, indicating similarity in their native cell shape. In the

presence of TCM, MSCs elongated by ,30% after 12 hours

(p,0.05) and ,75% after 24 hours (p,0.001); whereas, the

elongation factor of 3T3 fibroblasts remained near unity. We then

quantified the stress fiber factor, which is the density of stress fibers

normalized to cell area (Fig. 3C). The stress fiber factor of TCM-

treated 3T3 fibroblasts remained constant; whereas, the stress fiber

factor of MSCs was reduced more than 25% within 12 hours.

Though this could in part be due to control cells being flatter than

TCM treated cells, the use of maximum intensity projections

minimizes this possibility, suggesting the changes are in fact due to

decreases in actin stress fiber density. Upon stimulation with

TCM, the nuclei of MSCs elongated dramatically (Fig. 3A). A

nuclear shape factor was used to characterize nuclear elongation

(Fig. 3D), with a value of one indicating the nucleus is perfectly

round. Initially, MSCs and 3T3 fibroblasts had nuclear shape

factors of approximately 0.75; however, upon incubation with

TCM for 12 hours, MSC nuclei were elongated by approximately

13% (Fig. 3D). Nuclear elongation was never seen in 3T3

fibroblasts and no further elongation was observed in MSCs from

12–24 hours (Fig. 3D).

TCM Alters the Distribution and Strength of MSC Focal
Adhesions

The cytoskeleton is linked to the extracellular environment via

focal adhesion complexes, which are important regulators of cell

motility. To determine the effects of TCM on cell adhesion,

control and TCM-treated MSCs and 3T3 fibroblasts (treated for

24 hours) were fixed and stained with FITC anti-vinculin, a focal

adhesion marker, and Rhodamine-Phalloidin, which stains

filamentous actin (Fig. 4A,C). TCM treatment dramatically

affected the overall number and morphology of focal adhesions

on MSCs (Fig. 4A–C); however, it had no apparent effect on 3T3

fibroblast focal adhesions (Fig. 4C). For MSCs, the ratio of

vinculin to actin was quantified from confocal images using a

MATLAB routine (Fig. 4A,B). Twenty-four hours after TCM

addition, the vinculin to actin ratio was reduced by 50% (Fig. 4B),

and focal adhesions no longer displayed their characteristic brush-

like pattern (Fig. 4B–C) but were instead localized at the tips of

elongated cells (Fig. 4A,C).

A centrifuge-based adhesion assay was used to determine if

changes in vinculin expression were correlated with changes in cell

adhesion (Fig. 4D). MSCs incubated for 24 hours with 80% or

100% TCM were significantly less adhesive, with a 36% or 54%

reduction in the adherent cell fraction, respectively. Incubation

with 100% TCM also reduced 3T3 fibroblast adhesion by 24%.

Changes in the adherent fraction were only significant at high

TCM concentration ($80%), indicating that the adhesive

response to tumor-secreted soluble factors would be most

important near the tumor.

Figure 2. Tumor-secreted soluble factors alter MSC morphol-
ogy. Brightfield images of murine MSCs (isolated from Balb/C mouse
bone marrow; A–B), Swiss 3T3 fibroblasts (C–D), and primary fibroblasts
(isolated from Balb/C mouse kidney; E–F) incubated for 24 hours in
control media (CM, top) or tumor cell-conditioned media (TCM,
bottom), then fixed in methanol, and stained with crystal violet. MSCs
elongated dramatically in response to TCM (A–B); whereas, immortal-
ized (C–D) and primary (E–F) fibroblasts did not respond to TCM
treatment. A ‘sandwich’ co-culture model was used to study the
migratory behavior of CM-DiL-labeled MSCs through a layer of
polymerized collagen toward a monolayer of MSCs (G) or 4T1 tumor
cells (H). Interestingly, MSCs elongated toward the tumor cells (H) but
not toward the MSCs. (scale bar = 100 mm)
doi:10.1371/journal.pone.0033248.g002

Mechanical Changes of MSCs and Fibroblasts
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Cytoskeletal Stiffening in Response to TCM
MPT was used to characterize the immediate effects of TCM

(30 minutes to 3 hours) on the intracellular mechanical properties

of MSCs (Fig. 5A, Fig. 6A–E) and 3T3 fibroblasts (Fig. 5B, Fig. 6F–

J). Corresponding morphological changes were not seen in

immunostained fixed MSCs until 12–24 hours after TCM

treatment and were never seen in 3T3 fibroblasts (Fig. 3–4). For

MPT studies, 100 nm probe particles, with diameters more than

100-fold smaller than the cells, were injected into the cytoplasm

(Fig. 5C), and their mobility, characterized by the ,,Dr2(Dt)..

(Fig. 5A–B), was used to determine intracellular rheology.

Initially, the amplitude and logarithmic slope of the

,,Dr2(Dt).. for MSCs and 3T3 fibroblasts were comparable,

indicating similarity in their microscopic mechanical properties

(Fig. 6A,F). Within 30 minutes, TCM treatment reduced the

,,Dr2(Dt).. for MSCs up to 20-fold; however, similar changes

were not seen in 3T3 fibroblasts until 2–3 hours after TCM

treatment. The ratio of viscous to elastic character, or phase angle

(d), of control cells was 55u,d,70u, indicating that initially the

cytoplasm behaved more like a viscous liquid than an elastic solid.

One hour after TCM treatment, the cytoplasm of MSCs had

dramatically stiffened with 10u,d,15u. This effect was not seen in

3T3 fibroblasts until 3 hours after TCM treatment. MPTM was

also used to quantify the rheological properties of the cytoplasm,

which is highly viscoelastic in part to its crowded nature. The

frequency-dependent viscoelasticity of MSCs changed dramatical-

ly after TCM treatment (Fig. 6A–E). In fact, the cytoplasm became

highly elastic with G9,400 dyn/cm2 (Fig. 6B–E).

TCM Rapidly Increases In Vitro Cell Migration
Previous studies documented increased MSC migration toward

chemotactic factors after 18–24 hours [23,24,35]. Our multiple

particle tracking studies revealed dramatic changes in intracellular

mechanics within 1 hour. To determine if these mechanical

changes were correlated with increased mobility, the migration of

control and treated cells toward CM or TCM was measured

hourly for 3 hours using transwell inserts with 3 mm (Fig. 7A) or

8 mm (Fig. 7B) pores. Without chemotactic factors present, few

MSCs and 3T3 fibroblasts migrated through 3 mm pores;

however, when TCM was added, there was a significant increase

in MSC migration within 3 hours (p,0.01, Fig. 7A). MSC

migration through 8 mm pores was almost always significantly

greater than 3T3 fibroblast migration (Fig. 7B–C)). MSCs also

responded more rapidly to TCM, with increased MSC migration

within 2 hours (p,0.001) and increased 3T3 fibroblast migration

within 3 hours (p,0.01). To determine if mechanical changes

exhibited by MSCs in the first hour were indicative of a more

migratory phenotype, we pre-treated both cell types for one hour

with TCM before seeding in 8 mm transwell inserts. Pre-treatment

with TCM increased MSC and 3T3 fibroblast migration toward

Figure 3. MSCs reorganize their cytoskeleton in response to tumor-secreted soluble factors. (A) Confocal micrographs of CM and TCM-
treated MSCs (a–c) and 3T3 fibroblasts (d–e) stained with Phalloidin (F-actin, red), anti-a-tubulin (microtubules, green), and DAPI (nucleus, blue). The
shape and cytoskeletal organization of CM-treated MSCs (a) and CM- (d) and TCM- (e) treated Swiss 3T3 fibroblasts were similar (24 hours after CM or
TCM addition); whereas, TCM-treated MSCs were elongated with extended cytoskeletal filaments (b–c). MSC elongation increased between 12- (b)
and 24- (c) hours, indicating that cytoskeletal changes may be progressive. Cytoskeletal parameters (B–D) were determined by analysis of confocal
images with a custom MATLAB routine. The cell (B) and nuclear (D) shape factors were used to characterize the circularity of an elliptical outline of the
cell or nucleus, respectively, with a shape factor of 1 indicating a perfect circle. The stress fiber factor (C) was used to characterize the density of actin
stress fibers per cell area. Cytoskeletal changes observed in TCM-treated MSCs (b–c) were confirmed using the cytoskeletal parameters (B–D), which
indicated dramatic reductions in cell and nuclear shape factors and stress fiber densities. (scale bars = 10 mm)
doi:10.1371/journal.pone.0033248.g003

Mechanical Changes of MSCs and Fibroblasts
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CM and TCM, though more significantly toward TCM (Fig. 7C).

Statistical analysis also revealed synergistic effects of TCM pre-

treatment and migration toward TCM for both cell types,

suggesting that pre-treatment not only increases motility but also

causes a preferential migration towards chemotactic gradients.

Changes in Gene Expression Associated with Altered
Mechanical Response

To understand genotypic changes resulting in altered mechan-

ical responses, we performed qRT-PCR to investigate the

expression of the Rho GTPases RhoA, Rac1, and Cdc42 that

modulate the actin cytoskeleton (Fig. 8A). We found that after

TCM treatment, both cell types express significantly more Rac1

(p,.05) as compared to their respective controls. Furthermore,

ANOVA revealed that MSCs expressed significantly more RhoA

overall (p,.0001). Moreover, it showed a significant interaction

effect between cell type and TCM treatment for Cdc42 (p,.005),

suggesting that this molecule is largely responsible for the altered

mechanical response.

Discussion

In this study, TCM isolated from 4T1 metastatic breast cancer

cells was used to mimic the chemotactic factors released by

tumors. Previous studies have demonstrated that TCM is a potent

pro-migratory cocktail of growth factors and chemokines [35,36]

(for a detailed list of acronyms see Table S1). Literature on 4T1

tumor cell conditioned media shows that it contains soluble

growth factors including platelet derived growth factor (PDGF),

transforming growth factor (TGF-b1), and vascular endothelial

growth factor (VEGF) [37], as well as cytokines, chemokines, acute

phase proteins and proteases. In two separate studies [38,39],

researchers examined the gene expression profile of 4T1 tumor

cells in comparison to less metastatic cell lines, finding a variety of

up-regulated pro-migratory soluble factors including (a) growth

factors angiopoietin 2, VEGF-C, insulin-like growth factor 2, (b)

chemokines CCL5, CCL7, CXCL1, CXCL16, CSF2, CSF3, (c)

interleukins 1a and 23, and (d) matrix metalloproteases 13,3,9. Yet

this list is not comprehensive, as the complexity of TCM continues

to yield novel pro-migratory soluble factors [36] in addition to

unique miRNA secretomes [40].

Some of these growth factors, such as PDGF, TGF- b1, and

VEGF, have been shown to directly induce mechanical and

migratory changes in MSCs and fibroblasts [23,24,35,41,42,43].

However, the effects of other soluble factors present in TCM are

often much more difficult to determine. Menon et al. found that

MSC exposure to tumor cell conditioned media up-regulates

mRNA levels of 104 genes, including genes for stromal cell-derived

factor 1 (SDF-1/CXCL12), monocyte chemotactic protein 1

(MCP-1/CCL2), and growth-regulated protein b (Gro-b/

CXCL2), which are all potent chemokines that act in an autocrine

fashion to further stimulate MSC migration [35]. In the same

study, Menon et al. also found that TCM altered the organization

of cytoskeletal actin, resulting in increased polarity and directional

migration [35]. In another study, soluble factors (identified as

extracellular matrix peptides) in LLC1 tumor cell conditioned

media induced bone marrow derived cell secretion of pro-

inflammatory cytokines, including IL-1b, IL-6, and tumor necrosis

Figure 4. Changes in the distribution and strength of focal adhesions. Confocal micrographs (A) of 24-hour CM- (left) and TCM- (right)
treated MSCs stained with Phalloidin (F-actin, red), and anti-vinculin (green). The vinculin to actin ratios quantified from confocal images (B)
demonstrated a reduced concentration of focal adhesion proteins in TCM-treated MSCs. Epifluorescent microscopy was used to further investigate
the effect of TCM on focal adhesion distribution in MSCs and 3T3 fibroblasts (C). CM-treated MSCs displayed a brush-like pattern of focal adhesions;
whereas, focal adhesion on TCM-treated cells appeared as points at the end of cytoskeletal extensions. TCM-treatment had no effect on the pattern of
focal adhesions on 3T3 cells. A centrifuge-based adhesion assay was used to determine the effects of TCM-treatment on the adhesion of MSCs and
3T3 fibroblasts (D). TCM treatment resulted in a reduced fraction of adherent cells in a dose-dependent manner for both cell type (left), but
significantly more for MSCs (right). (scale bars = 10 mm)
doi:10.1371/journal.pone.0033248.g004

Mechanical Changes of MSCs and Fibroblasts
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factor a (TNF-a), whereas serum-free media and 3T3 conditioned

media had no effect on cytokine production [44]. In contrast,

tumor cells exchange paracrine signals with normal fibroblasts,

which have been shown to promote matrix remodeling and tumor

cell invasiveness [41]. One way this occurs is through tumor cell

secretion of soluble factors, such as IL-1, FGF-2, PDGF, and/or

TGF- b, which induce hepatocyte growth factor (HGF) secretion

from fibroblasts. HGF then binds with its cognate receptor, c-

MET, which is expressed by normal and cancer stem cells [45].

The HGF/c-MET signaling pathway triggers cell growth and

angiogenesis, which are important mechanisms of cancer devel-

opment, normal growth, and wound healing [41].

We hypothesize that several of the growth factors and

chemokines in TCM, such as VEGF, PDGF, TGF- b1, directly

stimulate changes in MSCs and fibroblasts; however, other factors

in TCM, such as IL-1b, colony-stimulating factor (CSF), and

TNF-a are more potent mediators of changes in MSCs due to

autocrine signaling pathways including SDF-1, MCP-1, and Gro-

b, which they activate rapidly. Interestingly, a more detailed

analysis of MSC migration to individual growth factors and

chemokines found that TNF-a stimulation was necessary for MSC

migration towards all chemokines tested, but had little effect on the

migration of MSCs toward growth factors [23]. Due to the

complicated nature of the autocrine and paracrine signaling

pathways involved in the recruitment of cells to tumors, we focused

our study on characterizing the effects of a cocktail of these factors

in TCM on MSC and fibroblast behavior.

The molecular response of MSCs to various soluble factors has

been well characterized, but the mechanical properties that

govern their migration are yet to be fully investigated. MPTM

was used to analyze the real-time changes in live-cell mechanics.

Previous MPT studies have demonstrated not only that induced

pluripotent stem cells differ with respect to intracellular rheology

from their parental fibroblasts line [46], but also that fibroblasts

stiffen both during migration and in response to activation of

RhoA, Cdc42, or Rac1, with the largest response to RhoA

[25,42]. This technique revealed cytoskeletal stiffening after

TCM treatment larger than previously documented, completely

changing the intracellular mechanical phenotype, three-fold

faster in MSCs (Fig. 5, 6).

Analysis of expression of RhoA in untreated MSCs and

fibroblasts revealed two-fold higher expression in MSCs (Fig. 8A),

which could account for more rapid cytoskeletal stiffening of

MSCs. RhoA can act by Rho Kinase (ROCK) to induce stress

fiber formation and focal adhesions or to crosslink actin filaments

via the downstream effector a-actinin [47]. In MSCs, inhibition of

ROCK has been shown to increase cell motility, an effect which is

increased in presence of the RhoA activator lysophosphatidic acid

(LPA) [48]. In fibroblasts, equivalent stiffening to that induced by

TCM was found by inhibition of ROCK before RhoA activation

[25]. Moreover, this increase in elastic character is in good

agreement with in vitro experiments analyzing actin polymerization

and crosslinking dynamics [49]. A simplified schematic of this

process can be seen in Figure 8B.

Figure 5. Multiple particle tracking microrheology. The ensemble averaged mean squared displacements (,,r2(Dt)..) of 100 nm particles
embedded in the cytoplasm of TCM-treated MSCs (A) and 3T3 fibroblasts (B) were evaluated from 0–3 hours. For both cell lines, treatment with TCM
reduced the rate of cytoplasmic particle transport in a time-dependent manner. Fluorescent image of 100 nm particles (green) in the cytoplasm of a
MSC, which was fixed and stained with phalloidin (red) and DAPI (blue) (C). The phase angle, d= arctan (G0(v))/G9(v)), was used to characterize the
viscoelastic nature of the cytoplasm over the course of the experiment (D). The viscoelastic nature of MSCs and 3T3 fibroblasts were similar initially
and 3 hours after TCM-treatment; however, MSCs responded much more rapidly to TCM with a 4-fold reduction in d within 60 minutes. (scale
bar = 10 mm)
doi:10.1371/journal.pone.0033248.g005

Mechanical Changes of MSCs and Fibroblasts
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Transwell migration assays further illustrated how crucial this

stiffening was for chemotaxis, as significant migration to TCM

over control media was not achieved until the time point after cells

had transitioned to a primarily elastic phenotype (Fig. 7B).

Additionally, in vitro migration assays show that even a one hour

exposure to TCM increases MSC migration. Since soluble factors

mediate cell migration by interacting with cell surface receptors

that require much longer synthesis and transport times [50], these

results suggest a novel ‘mechanical priming’ achieved by short-

term TCM preconditioning.

Initially, the morphology of fibroblasts and MSCs was similar;

however, after prolonged TCM treatment, MSCs acquired an

elongated spindle-shape morphology, and 3T3 and primary

fibroblasts maintained their original shape (Fig. 2C–F). This

morphological change in MSCs coincided with the extension of

linear actin filaments and microtubules (Fig. 3A). These changes

further support the importance of RhoA, as activation of Rho

effector mDia1 induces cell elongation coupled with parallel

alignment of linear actin and microtubules [51].

The prolonged exposure of MSCs to TCM also resulted in

visible loss of stress fibers (Fig. 3B) and focal adhesions (Fig. 4A–C).

These changes correlate with increased expression of Cdc42,

which can block Rho-induced focal adhesions and stress fibers

[52]. Furthermore, Cdc42 is crucial in cell elongation processes,

such as neurite outgrowth [53]. ANOVA revealed that only Cdc42

shows a significant interaction effect between cell type and

treatment, suggesting it is a primary contributor to the long-term

differences.

Figure 6. TCM alters cytoplasmic rheology. The time-dependent ensemble averaged MSDs of 100 nm particles embedded in the cytoplasm of
MSCs and 3T3 fibroblasts were converted to frequency-dependent elastic (G9, solid lines) and visous (G0, dashed lines) moduli using a custom
algorithm written for Matlab software. The ensemble-averaged frequency-dependent viscoelasticities of MSCs (A–E, left) and 3T3 fibroblasts (F–J,
right) prior to (A,F) and 30 minutes (B,G), 1 hour (C,H), 2 hours (D,I), or 3 hours (E,J) after treatment with TCM. The cytoplasm of MSCs became
predominantly elastic within 60 minutes; whereas, 3T3 fibroblasts required 3 hours to undergo a similar change.
doi:10.1371/journal.pone.0033248.g006

Figure 7. Effect of TCM on Cell Migration. Tranwell assays were used to measure the migration of MSCs and 3T3 fibroblasts through 3 mm- (A)
and 8 mm- (B) pore transwell inserts toward CM or TCM. The average number of cells per image (n = 9), collected with a 106-objective, was reported.
TCM significantly increased MSC migration, compared to CM, through 3 mm pores within 3 hours and 8 mm pores within 2 hours; however, fibroblast
migration was only increased through 8 mm pores within 3 hours. MSCs and 3T3 fibroblasts were then treated with CM or TCM for 1 hour and
allowed to migrate through 8 mm-pore transwell inserts toward CM or TCM for 3 hours (C). Pre-treatment with TCM resulted in synergistic effects on
chemotactic migration for both cell types.
doi:10.1371/journal.pone.0033248.g007

Mechanical Changes of MSCs and Fibroblasts
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Two unique obstacles in MSC homing as compared to

fibroblasts include extravasation from the bone marrow to enter

circulation and intravasation into the site of inflammation [54].

The differential cellular elongation could aid as cells squeeze

through the basement membrane. Since undifferentiated MSCs

have a more deformable nucleus, they are better suited for this task

[55]. Our results indicate that MSC nuclei elongate in response to

TCM (Fig. 3D). In contrast to fibroblasts, MSCs have the ability to

squeeze through 3 mm pore transwell inserts, which are approx-

imately 3-fold smaller than the cell diameter (Fig. 7A). The up-

regulation of Cdc42 may also prove beneficial in this process, as it

is critical for nuclear translocation [56].

These results elucidate a fundamental difference in the

recruitment of fibroblasts and MSCs to tumors by utilizing a

unique set of mechanical changes to overcome their extensive

physiological barriers. Furthermore, this new knowledge may be

used in the development of novel therapeutics. Understanding the

mechanisms of MSC homing can be used for more successful

tumor targeting. Further studies can be focused on discovering the

complex interactions of Rho GTPases and their effectors which

modulate these cell-specific mechanical changes.

Materials and Methods

Materials
Cellgro IMDM, RPMI 1640, DMEM, L-glutamine, sodium

bicarbonate, PBS, and penicillin-streptomycin were purchased

from Mediatech. FBS was purchased from Atlanta Biologicals

and Type I, II collagenase from Worthington Biochemicals. Rat

anti-mouse PE-Sca1, PerCP-CD45, PE-CD29, and APC-CD11b,

and red blood cell lysis buffer were purchased from Biolegend.

Rhodamine-Phalloidin, rabbit vinculin monoclonal antibody,

Alexa Fluor 488 anti-rabbit IgG, FITC-conjugated mouse anti-

alpha tubulin, and Fluospheres carboxylate-modified 100 nm

particles (F8801) were purchased from Invitrogen. Cy3-SMA

was purchased from Sigma. PDS-1000 Biolistic Helium Particle

Injection, 1800 psi rupture discs, and macrocarriers were

purchased from BioRad. Primers for gene analysis were obtained

from IDT. All other reagents were purchased from VWR or

Sigma-Alrich unless otherwise specified.

Cell Culture
Swiss 3T3 fibroblasts and 4T1 mammary carcinoma cells were

purchased from American Type Cell Culture and cultured

according to manufacturer’s protocol. MSCs were isolated from

murine bone marrow and cultured in MSC growth media (IMDM

supplemented with 20% FBS, 2 mM L-glutamine, 100 U/ml

penicillin, and 100 U/ml streptomycin). Bone marrow was

extracted from the femurs and tibias of 8–10 week old Balb/C

mice (Charles River Laboratories, Wilmington, MA) by crushing

the bones in FBS solution (1 mg/ml Type I collagenase in 30%

FBS and 70% PBS), filtering the cell suspension using a 70-mm cell

strainer, and centrifuging at 20006 g for 10 minutes. The bone

marrow cells were resuspended in MSC growth media and seeded

at 36106 cells/cm2. After 24 hours, non-adherent cells were

removed, and cells were cultured in MSC growth media (replaced

3 times per week). Differentiation was induced with either

adipogenic or osteogenic media per standard protocols [33]. See

Figure 8. Alterations in Gene Expression. Changes in expression of small Rho GTPases RhoA, Rac1, and Cdc42 before and after prolonged
treatment with TCM (A). A simplified diagram of short-term response of cells to treatment with TCM by actin polymerization and crosslinking (B). After
24 hour exposure to TCM, alterations in morphology and adhesion can be explained by differential gene expression in MSCs and fibroblasts (C).
doi:10.1371/journal.pone.0033248.g008
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Information S1 for details of kidney fibroblast isolation. All animal

studies were approved by the Institutional Animal Care and Use

Committee at Georgia Institute of Technology.

Flow Cytometry
To determine cell phenotype, cells were analyzed with a LSR-II

flow cytometer. Briefly, cells were detached, centrifuged, and

separated into 100 ml aliquots then labeled with either 2% PerCP-

CD45, PE-Sca1, and APC-CD11b antibodies or PE-CD61,

FITC-CD29, and APC-VCAM1. A negative control for each cell

type was used to determine positive populations. All studies were

performed in triplicate with n = 100,000 events per sample.

Conditioned Media Collection
Murine mammary carcinoma 4T1 cells were cultured to

confluency in 10 cm dishes with standard growth media, then

washed in PBS, and incubated in 8 mL unsupplemented DMEM

for 24 hours. Cell-free TCM was obtained by centrifugation and

filtration. TCM was prepared in a single batch, aliquoted and

frozen at 280uC for future use. For all assays with TCM, control

media was unsupplemented DMEM.

3D Co-Culture Model
To create the 3D ‘sandwich’ model either 4T1 or MSCs were

first plated in a 24-well plate at a density of 10,000 cells/cm2.

Next, 500 ml of a 2 mg/ml collagen solution (pH 7.4) was added to

the top of the first cell layer. The collagen solution was prepared

by diluting 4.0 mg/ml type I rat tail collagen (BD Bioscience) with

serum-free DMEM and buffering solutions. After the collagen was

polymerized, fluorescently-labeled MSCs (stained with CM-DiI

(Invitrogen) as previously described [57]) were added to the top of

the collagen gel (10,000 cells/cm2), and the plate was incubated

overnight before imaging with the Nikon Eclipse Ti inverted

epifluorescent microscope (Fig. 2G,H).

Microrheological Characterization
Multiple particle tracking microrheology (MPT) was used to

measure the mechanical properties within the cytoplasm of living

cells [58]. With this technique, the thermal displacements of

fluorescent probe particles are monitored with a fluorescent

microscope and related to the viscoelastic properties of the fluid

surrounding the tracked particles using the Stokes-Einstein

equation [26].

For these studies, cells were cultured to 60–80% confluency on

35 mm glass bottom dishes. Fluorescent 100 nm microspheres, to be

used as mechanical probes, were diluted 1:10 in 100% ethanol and

dialyzed overnight against 100% ethanol at 4uC. The microsphere

solutions were then equilibrated to room temperature, sonicated and

briefly centrifuged, to remove particle aggregates. 20 mL of the

particle solution was then added to the surface of each macrocarrier.

The macrocarriers were dried overnight in the dark and used the

next day to inject microspheres into the cell cytoplasm with the PDS-

1000 Biolistic Helium Particle Injection System and 1800 psi rupture

discs. After injection, microspheres on the cell surface were removed

by extensive washing with PBS, and the cells were incubated

overnight in growth media. The following day growth media was

replaced with serum-free media, which was used in all experiments.

Injected cells were placed on the stage of a Nikon Eclipse Ti

inverted epifluorescent microscope, which was maintained at 37uC
and 5% carbon dioxide throughout the experiment using an In

Vivo Scientific environmental cell chamber. Twenty-second videos

of particle diffusion in cells were collected at 33 ms temporal

resolution (30 frames per second) with the Photometrics QuantEM

CCD camera (Princeton Instruments). The Nikon CFI Apochro-

mat TIRF 1006oil-immersion lens was used for particle tracking.

With this lens, which has a high numerical aperature (NA = 1.49)

and a reduced signal to noise ratio, it was possible to obtain 5 nm

spatial resolution. This value was determined by tracking particles

immobilized on a glass coverslip with a strong adhesive. High

spatial resolution is obtained by tracking the 2D location of the

intensity-weighted centroid of a particle that remains in the focal

plane over the 20-second period. A custom MPT routine

incorporated in the MetaMorph software (Molecular Devices;

Downington, PA) was used to simultaneously monitor the

coordinates of 10–20 particles per video. For each condition,

particles were tracked in a minimum of 12 cells using 2–3 plates

per condition.

Particle tracking data was analyzed using a custom routine

written for MATLAB software. Briefly, the coordinates of the

particle centroids were transformed into families of time-averaged

mean squared displacements (MSDs), with MSD defined as

,Dr2(Dt). = ,[x(t+Dt)2x(t)]2+[y(t+Dt)2y(t)]2.. The ensemble-

averaged time-dependent MSDs (,,Dr2(Dt)..), reported in

Figure 5A–B, were then calculated from the individual particle

time-averaged MSDs (,Dr2(Dt).). The mechanical properties of

the viscoelastic cytoplasm were then determined from the

amplitude, ,,Dr2(v).., and logarithmic slope, a(v) = d ln

,,Dr2(t)../d ln t, of the ensemble-averaged time-dependent

MSDs ((,Dr2(Dt).)), where v= 1/t [59]. To facilitate this

analysis, the Stokes-Einstein equation was written in the Laplace

domain, where the viscoelastic modulus was defined as

G(s) = kBT/pas,,Dr2(s).. (kB = Boltzman constant, T = abso-

lute temperature, s = Laplace frequency, a = particle radius). The

frequency-dependent complex shear modulus (G*(v)) was then

determined from the projection of G(s) in the Fourier domain. The

real and imaginary components of the complex shear modulus

(G*(v)), which are the viscous (G0(v)) and elastic (G9(v)) moduli,

respectively, were reported in Figure 5. The phase angle (d, where

d= arctan (G0(v))/G9(v)) was used to characterize the degree of

stiffness (Fig. 5D), where d= 90u for a viscous liquid, d= 0u for a

Hookean solid, 0u,d,90u for a viscoelastic material.

Centrifugal Force Adhesion Assay
Cells were seeded at 10,000 cells/cm2 in normal growth media

and cultured to 80% confluency in a tissue culture treated 96-well

plate. Normal growth media was removed and cells were then

incubated in serum-free TCM or CM for 24 hours. Cells were

then treated with 2 mM Calcein AM (Anaspec), a transmembrane

fluorescent viability marker, in PBS+2 mM dextrose for 20 min-

utes at 37uC. Cells were then carefully rinsed and covered with

PBS-dextrose before an initial emission reading was taken at

485 nm excitation, 535 nm emission on a DTX-800 Multimode

Detector microwell plate reader. (Beckman Coulter). Next, sealing

tape (Nalge Nunc) was applied to the plate before inverting it and

centrifuging it at 600 RPM (64 g) for 5 minutes in a Beckman

Coulter Allegra 25R centrifuge (TS-5.1-500 rotor). Wells were

then carefully aspirated and rinsed to remove any floating cells,

again PBS-dextrose was added and a final emission reading was

taken. Adherent fraction was calculated by normalizing the final

florescence with the pre-spin values [60].

Immunoflourescence Assays
For visualization of cytoskeletal proteins, cells cultured on glass

cover slips were briefly extracted in a buffer containing 80 mM

PIPES (pH 6.8), 1 mM MgCl2, 5 mM EDTA, and 0.5% Triton

X-100 before fixation with 0.5% glutaraldehyde in PBS. The

reaction was quenched with 1 mg/mL sodium borohydride,
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before permeabilization with Triton X-100 and blocking with

FBS. Cells were stained for one hour at room temperature with

either 1:50 FITC-conjugated anti-tubulin, 1:200 Rhodamine

Phalloidin , or 1 mg/mL rabbit anti-vinculin followed by 1:1000

goat anti-rabbit Alexa Flour 488 before sealing with Vectashield

(Vector Labs) containing DAPI. For morphological visualization,

cells were stained with crystal violet then rinsed extensively. All

cells were visualized using either an inverted Nikon Eclipse Ti or

Zeiss LSM 510 UV confocal microscope.

Quantitative Image Analysis
Quantitative image analysis was performed by a series of custom

written MATLAB algorithms. For cell elongation, borders were

manually drawn around cells before segmentation to extract cell

major and minor axis. After normalization for background, stress

fibers were segmented by a Laplacian filter, and then normalized

to cell area extracted from a built-in MATLAB thresholding

algorithm. Nuclei were analyzed using a semi-automated MA-

TLAB algorithm that visualized each image before quantification

to ensure only single nuclei were measured. Similarly, for actin

and vinculin quantification, images were normalized then

segmented for quantification.

Migration Assays
To quantify migration, 3 or 8 mm pore transwell inserts (Greiner

Bio One) were added to a 24 well plate, rinsed in PBS then

incubated overnight in serum free DMEM. The following day, the

media in the well was replaced with 600 mL of CM or TCM and

10,000 serum-starved MSCs in 100 mL of CM or TCM were

added to the top of each insert. After desired incubation time, non-

migrated cells were gently removed from the top of each transwell

using a cotton swab. The cells on the bottom of the inserts were

then fixed in 4% formaldehyde with 0.01%Triton X-100 and

stained with DAPI. For quantification, an automated image

acquisition algorithm collected 9 fields of view at 106 magnifi-

cation per transwell and nuclei were counted using standard

functions in MetaMorph software. The average number of cells

per image was reported.

Gene Expression Analysis
Total RNA was isolated using TRIzol reagent (Invitrogen) per

manufacturer’s protocol before reverse transcription using the

iScript cDNA synthesis kit (BioRad). DNA concentration and

quality were verified by spectroscopy. To verify differentiation,

PCR was run per previous literature [34]. For qRT-PCR on the

small Rho GTPases, Cdc42, RhoA, and Rac1, as well as an

endogenous GAPDH control, the real-time PCR reaction was run

using SsoAdvanced SYBR Green Supermix (BioRad) in an AB

Step One Plus thermocycler (n = 5). Primer sequences are reported

in Information S2. Values are reported as fold change in

expression over fibroblasts in CM 6 S.E.M. after normalization

to respective endogenous GAPDH control.

Statistics
All studies were performed in triplicate (unless otherwise

indicated). Statistical analysis was carried out using a student’s t-

test for comparison between two groups or analysis of variance

(ANOVA) to compare effects between cell types, considering

p,0.05 to be significant (***p,0.001,**p,0.01,*p,0.05). Data

were reported as the mean 6 s.e.m.
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