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Abstract

Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain
largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee
(Apis cerana japonica) uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica). Instead of
stinging the hornet, Japanese honeybees form a ‘‘hot defensive bee ball’’ by surrounding the hornet en masse, killing it with
heat. The European honeybee (A. mellifera ligustica), on the other hand, does not exhibit this behavior, and their colonies
are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by
mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we
identified an A. cerana homolog (Acks = Apis cerana kakusei) of kakusei, an immediate early gene that we previously
identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active
brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom
bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between
the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of
a hot defensive bee ball. In addition, workers exposed to 46uC heat also exhibited Acks expression patterns similar to those
observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity
observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing.
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Introduction

In nature, animals threatened by predators exhibit a variety of

adaptive behaviors to escape or actively defend themselves against

the predators [1]. Some animals exhibit characteristic anti-

predator behaviors against their natural enemies that are

considered to be an evolutionary consequence of adaptation to

the threat of natural enemies [2,3]. The neural bases of the anti-

predator behaviors and how during evolution they were acquired,

however, remain unknown.

Honeybees (Genus Apis) commonly use their stingers to

counterattack an intruder [4]. Japanese honeybees (Apis cerana

japonica), however, fight against the giant hornet (Vespa mandarinia

japonica), their most formidable natural enemy [5], by exhibiting a

characteristic behavior called ‘hot defensive bee ball formation’.

In autumn, giant hornets attack Japanese honeybee colonies to

steal their larvae and pupae. If a foraging hornet tries to enter the

beehive, a group of more than 500 workers quickly forms a

spherical assemblage called a ‘hot defensive bee ball’, trapping the

hornet inside the ball. In the ball formation, honeybees vibrate

their flight muscles to produce heat. The temperature in the ball

quickly rises to almost 47uC, which is lethal to the hornet but not

to the honeybees. The high temperature phase continues for

approximately 20 min. Within ,30 to 60 min after initiating the

bee ball formation, the hornet is killed by the heat produced [6].

On the other hand, European honeybees (A. mellifera ligustica),

which are a related but allopatric species and were introduced to

Japan in the Meiji era (about 140 years ago) for apiculture, exhibit

only stinging behavior against the hornet. The rigid exoskelton of

the giant hornet renders the bee stings ineffective, however, and

colonies of the European honeybees are often destroyed [7]. Thus,

the defensive bee ball formation is considered to result from

Japanese honeybee-specific selective pressure to avoid predation

by the giant hornets that inhabit East Asia, including Japan [6].

We used the Japanese honeybee’s defensive behavior as a model

of the evolution of adaptive anti-predator behavior against a

natural enemy. In the present study, to elucidate the neural

mechanism underlying this behavior, we used an immediate early

gene (IEG) to map the active brain regions of Japanese honeybee

workers during the formation of a defensive bee ball. IEGs are
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widely utilized for neuroethological studies in vertebrates [8–12],

and we recently identified the first insect neuronal IEG from the

European honeybee, naming it kakusei [13]. The kakusei transcript

does not contain a long open reading frame (ORF) that encodes a

protein, suggesting that it functions as a non-coding RNA, unlike

vertebrate IEGs, which generally encode proteins [10]. In a

previous study, we used kakusei as a neural activation marker to

identify the brain regions in the European honeybee that are

active during foraging behavior [13,14]. In the present study, we

identified the kakusei homolog in the Japanese honeybee and found

that the neural activity of one subtype of intrinsic neurons of the

mushroom bodies (MBs) is preferentially increased in the brains of

the Japanese honeybee workers during the formation of a hot

defensive bee ball. Furthermore, we asked what kind of sensory

information induces the pattern of neural activity observed during

defensive bee ball formation and found that it may relate to the

processing of thermal information.

Results

Identification of the kakusei homolog in the Japanese
honeybee

To map the active regions in the brains of the Japanese

honeybee workers during the formation of a defensive bee ball, we

intended to use the kakusei homolog as a neural activity marker.

Because no kakusei homolog had been identified in any other

animal species, including insects, however, we first amplified parts

of kakusei cDNA from the Japanese honeybee using primers

designed from the European honeybee kakusei cDNA sequences.

Rapid amplification of the cDNA end (RACE) method was then

used to identify the Apis cerana kakusei (Acks: Apis cerana kakusei)

cDNA of approximately 7.8 kb in length. No 59-upstream or 39-

downstream cDNA sequence was obtained by the RACE method,

leading us to conclude that we obtained a full-length Acks cDNA.

The nucleotide sequences of Acks cDNA of approximately 7.1 kb

in length shared approximately 85% sequence identity with the

European honeybee kakusei cDNA, and had additional unique

sequences of approximately 700b at its 39 end. The Acks cDNA

contained six putative ORFs longer than 150b, and the longest

ORF was 342b (Figure 1A). A comparison of the positions of the

ORFs with those of kakusei cDNA revealed that one of the six

ORFs is conserved among kakusei and Acks. This conserved ORF,

however, was located at the 39-region of the Acks cDNA, and its

length was only 183b (Figure 1A). We previously showed that, in

addition to the neural activity-inducible kakusei transcript, multiple

neural activity-independent transcripts are constitutively expressed

from the same kakusei locus, and the nucleotide sequences

corresponding to +1925b to +5160b of the consensus kakusei

cDNA are specifically contained in the neural activity-inducible

kakusei-transcript [15]. Comparison of the structure and nucleotide

sequences of Acks and kakusei cDNAs revealed that the nucleotide

sequences corresponding to +1946b to +5175b of Acks cDNA was

equivalent to the kakusei cDNA corresponding to the neural

activity-inducible transcript (Figure 1A). These findings suggest

that the cloned Acks cDNA also contained nucleotide sequences

corresponding to the putative neural activity-inducible Acks

transcript, and that, like the kakusei-transcript, the Acks transcript

functions as a non-coding RNA.

Transient induction of Acks expression in response to
seizures

In our previous study, quantitative reverse transcription-

polymerase chain reaction (RT-PCR) revealed that kakusei

expression is induced transiently in the worker brain, peaking at

15 min after a seizure induced by awakening from anesthesia [13].

To determine whether Acks has properties as a neural IEG, we

used quantitative RT-PCR to analyze the time course of Acks

expression in response to seizures. The primers and probes for

quantitative RT-PCR were designed based on the nucleotide

sequences corresponding to the above-mentioned putative neural

activity-inducible Acks transcript (Figure 1A). We induced seizure

by awakening the Japanese honeybee workers from CO2-induced

anesthesia at room temperature (25uC) as described previously

[13], and measured the Acks expression levels in the whole brain

using quantitative RT-PCR. The relative Acks expression was

approximately 5 to 7-fold higher from 30 to 60 min after seizure

induction, and then decreased to basal levels (Figure 1B). In

control bees kept under anesthesia, there was no significant change

in the expression level at any time-point sampled. This finding

suggested that Acks shares similar properties with the European

honeybee neural IEG, kakusei. In addition, we also examined

whether Acks upregulation after neural activation begins earlier

under a higher temperature, because the temperature in the hot

defensive bee ball rises to almost 47uC [6,16]. In the bees

awakened from anesthesia under the high temperature (46uC), Acks

expression also peaked at 30 to 60 min (Figure 1C). Although

there was an additional expression peak at 120 min, there was no

statistically significant difference between the basal Acks expression

levels and expression at 120 min. The expression levels during

peak times at the higher temperature were similar to those at room

temperature. The ef-1a (elongation factor-1 alpha) expression levels

did not differ significantly between control and seizure-induced

workers at any sampling time, irrespective of the experimental

temperature (25uC or 46uC; data not shown). Based on these

findings, we concluded that Acks has neural IEG properties, even

at the high temperature the bees are exposed to during the

formation of a hot defensive bee ball.

Visualizing neural activity in the Japanese honeybee
brain with detection of Acks expression

We then examined whether Acks can be used as a neural activity

marker in the Japanese honeybee brain by visualizing the spatial

distribution of the Acks transcript in the brain after seizure

induction using in situ hybridization with digoxigenin (DIG)-

labeled antisense probe based on the putative neural activity-

inducible Acks transcript (Figure 1A). Bees at 30 min after seizure

induction and control bees without anesthesia or seizures were

analyzed. In the seizure-induced bees, a large number of Acks

signals was observed in most brain regions, including the MBs

(higher brain center), optic lobes (OLs, primary visual center), and

a restricted area between the dorsal lobes (DLs) and the OLs, as

spots localized in the somata (Figure 2C–H). A previous study

using fluorescent in situ hybridization demonstrated that kakusei

transcript signals are localized exclusively in the nuclei, suggesting

that the kakusei transcript functions as a nuclear noncoding RNA

[13]. Thus, our findings of the spotted Acks signals in the somata

coincided with our notion that the Acks transcript also functions as

a nuclear noncoding RNA. On the other hand, the brains of the

control bees contained very few signals (Figure 2I–N). These

findings suggest that neural activity was induced in various brain

regions, including the MBs, OLs, and the area between the DLs

and the OLs, in the Japanese honeybees soon after induction of

the seizure. A time course analysis demonstrated that Acks

expression peaked at 30 and 60 min after the seizure (Figure 1B

and C). Thus, we concluded that Acks could be utilized as a marker

of neural activity that occurred 30 to 60 min before in the brains

of Japanese honeybees, although we could not detect the spotted

signal in the antennal lobes (ALs, primary olfactory center),

Neural Activity during Forming a ‘‘Hot Bee Ball’’
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suggesting that Acks, like kakusei, is not useful for detecting neural

activity in the ALs (data not shown).

Identification of brain regions active in the Japanese
honeybees during the formation of a hot defensive bee
ball

Using Acks as the neural activity marker, we next attempted to

find brain regions of the Japanese honeybee workers that were

active during the formation of a hot defensive bee ball. Because the

hot defensive bee ball is usually formed within the beehive [6], it is

difficult to collect only the workers involved in forming the bee

ball. Therefore, we attempted to induce Japanese honeybee

workers to form a bee ball artificially using giant hornets as a

decoy. First, the bees were presented with a giant hornet that was

hung by a wire at the entrance of the beehive (Figure 3A). After a

short time (approximately 5 min), when the decoy giant hornet

was inserted into the beehive through the entrance, the Japanese

honeybee workers immediately crowded around the decoy hornet

to form a hot defensive bee ball (Figure 3B). The bee ball was then

recovered from the upper site of the hive and transferred to a glass

beaker to collect only workers that formed the bee ball (Figure 3C).

We sampled the bees from the surface of the bee ball at 0, 30, and

60 min after formation of the bee ball and examined the Acks-

expressing brain regions using in situ hybridization (n = 5, 7 and 7

for 0, 30 and 60 min, respectively). The decoy hornet inside the

bee ball was dead within 60 min after the formation of the bee

ball, as usually occurs in nature (Figure 3D).

The previous experiments indicated a 30- to 60-min time lag

between neural activation and Acks upregulation in the worker

brain. Therefore, we considered that the Acks signals detected at

each sampling time mainly reflect neural activity involved in the

following phases of the bee ball formation; 0 min: normal phase

before presentation of the hornet; 30 min: early phase of bee ball

formation, such as the recognition of the hornet and/or formation

of the bee ball; 60 min: late phase of the bee ball formation, such

as the maintenance of the bee ball. In several brain regions,

Figure 1. Identification and characterization of Acks, the Japanese honeybee kakusei homolog, as a non-coding IEG. (A) Overview of
Acks cDNA and open reading frame (ORF) analysis. The yellow bar and black bar represent the Acks cDNA region highly conserved among the Acks
and kakusei cDNAs and the region adjacent to the Acks cDNA, respectively. The arrow indicates the region corresponding to the putative neural
activity-inducible Acks transcript. The orange bar indicates the region corresponding to sense and antisense probes used in the in situ hybridization.
Horizontal boxes under the upper yellow and black bar indicate open reading frame analysis in each reading frame of the Acks cDNA, respectively.
The blue and pink bars present in each box indicate positions of initiation and termination codons, respectively. Colored squares on the horizontal
boxes indicate potential ORFs longer than 150b. The blue (in Frame 1) and red box (in Frame 1) indicate the longest ORF and the ORF conserved
among Acks and kakusei cDNAs, respectively. (B) Time course of Acks expression level investigated by quantitative RT-PCR after seizure induction
under room temperature (25uC). Values are means 6 SEM (a, different from 0 min P,0.01; b, different from 30 min P,0.01; c, different from 45 min
P,0.01; d, different from 60 min P,0.01; Tukey-Kramer’s test). Sz-induced, seizure-induced. (C) Time course of Acks expression level investigated by
quantitative RT-PCR after seizure induction under the high temperature (46uC). Values are means 6 SEM (a, different from 0 min P,0.01; b, different
from 15 min P,0.05; c, different from 90 min P,0.01; d, different from 150 min P,0.05; Tukey-Kramer’s test).
doi:10.1371/journal.pone.0032902.g001
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characteristic Acks expression was observed in a region-preferential

and sampling time-dependent manner (Figure 4B).

Honeybee MBs are a paired structure comprising many

thousands of intrinsic neurons called Kenyon cells (KCs). The

KC dendrites form two cup-shaped neuropils called calyces and

terminals of KC axons and their postsynaptic targets form the

lobes. The KCs are classified into two distinct types, termed Class

I and Class II KCs [17–19]. Whereas somata of the Class I KCs

are located inside of the MB calyces, somata of the Class II KCs

are located outside of the calyces (Figure 4C). When in situ

hybridization was performed with sections corresponding to the

middle (Figure 4, Figure S1, and Figure S2), more rostral (Figure

S3) and more caudal brain parts (Figure S4), the Acks signals were

most densely detected in the Class II KCs at 30 and 60 min after

the bee ball formation (Figure 4H, I, K, and L, Figure S3H, I, K,

and L, and Figure S4H, I, K, and L), whereas they were scarcely

detected at 0 min (Figure 4G and J, Figure S3G and J, and Figure

S4G and J). In contrast, much less Acks signals were detected in the

OLs, during sampling time (Figure 4P–R, Figure S3M–O, and

Figure S4M–O). In the middle brain part, however, Acks signals

were also detected in some neurons whose somata formed a cluster

in a restricted region between the DLs and the lobula of the OLs at

60 min after the bee ball formation (Figure 4O and Figure S2).

Scarce Acks signals were detected at 0 min in this restricted region

between the DLs and the lobula of the OLs (Figure 4M), indicating

that the Acks signals were detected in a sampling time-dependent

manner. No significant signal was detected in any of the brain

regions hybridized with sense probe (data not shown).

Statistical analyses of the number of Acks signals detected in in

situ hybridization experiments using sections corresponding to the

Figure 2. Seizure-induced neural activity in the brains of the Japanese honeybee workers. (A) Schematic diagram of the lateral view of a
bee brain. Areas colored in light orange indicate neuropil regions. D, dorsal; V, ventral; R, rostral; C, caudal. MB, mushroom bodies; AL, antennal lobes;
and SOG, subesophageal ganglion. The green line indicates the position of sections analyzed in this experiment. (B) A schematic diagram of a middle
right brain hemisphere of the Japanese worker honeybee. Areas colored in light grey indicate brain areas where the somata of neurons are located.
Red squares correspond to brain areas whose in situ hybridization results are presented below. M, medial; L, lateral. OL, optic lobe; DL, dorsal lobe. (C–
N) Expression analysis of Acks by in situ hybridization using coronal brain sections of seizure-induced (Sz-induced) (C–H) or control Japanese
honeybee workers (I–N). The upper panels (C and I), middle panels (E and K), and lower panels (G and M) correspond to MB, OL, and area between the
DL and OL, which are boxed in (B). Bars indicate 100 mm. (D, F, H, J, L, and N) Magnified views of the regions delineated by dotted lines in panels (C),
(E), (G), (I), (K), and (M), respectively. Yellow arrowheads indicate Acks signals. Bars indicate 10 mm.
doi:10.1371/journal.pone.0032902.g002
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middle brain parts (n = 5, 5, and 4 for 0, 30, and 60 min,

respectively) revealed that there was a significant increase in the

number of Acks signals at 30 and 60 min after the bee ball

formation in both the Class I and the Class II KCs, and at 60 min

after the bee ball formation in the brain area between the DLs and

the OLs, and in the OLs (Figure 4S). The Acks signal density,

however, was highest in the Class II KCs at both 30 and 60 min

after the bee ball formation. These findings suggested that neural

activity of the KCs, especially the Class II KCs and a certain

subpopulation of neurons located between the DLs and the OLs,

was increased in the brains of workers during formation of the hot

defensive bee ball. It is also plausible that some visual input was

processed in the OLs of the workers after the bee ball formation,

because we picked up the bee ball outside the hives to sample the

workers.

Comparison with brain regions active in the Japanese
honeybee workers that are exposed to heat or an alarm
pheromone component

During the formation of a hot defensive bee ball, the Japanese

honeybee workers are exposed to high temperature typically

around 47uC [6]. In addition, isoamyl acetate (IAA), which is the

major component of the honeybee alarm pheromone [20], is

emitted from a hot defensive bee ball [6]. Therefore, to investigate

what kind of information processing induces the observed neural

activity in the brains of bees from the defensive bee ball, we

examined Acks expression patterns in the brains of Japanese

honeybee workers exposed to 46uC heat or IAA. In the brains of

the workers exposed to high temperature (46uC) for 30 min, a lot

of spotted Acks signals were preferentially detected in the Class II

KCs (Figure 5D and G) and sparsely distributed in the Class I KCs

(Figure 5A). Acks signals were also detected in some neurons whose

somata formed a cluster in a restricted region between the DLs

and the lobula of the OLs (Figure 5J).

Statistical analyses of the number of Acks signals detected in in

situ hybridization experiments using sections of brains of heat-

exposed (n = 6) and non-treated control workers (n = 5) indicated

that the numbers of Acks signals significantly increased in the Class

I and Class II KCs and in the brain area between the DLs and the

OLs in the heat-exposed workers compared with those of control

workers, whereas there were no significant differences of the

number of Acks signals in the OLs (Figure 5M). The highest Acks

signal density, however, was observed in the Class II KCs. This

Acks signal distribution pattern in the brains of workers exposed to

heat well resembles that observed in the brains of workers involved

in the formation of the hot defensive bee ball (Figure 4, Figure S3,

and Figure S4).

A previous study reported that ablation of the antennal flagella

impaired warmth avoidance behavior in the European worker

honeybees [21]. Therefore, we next evaluated the contribution of

sensory input from the antennae to the activity of brain neurons

under high temperature (46uC) (Figure 5B, E, H and K). Statistical

analyses revealed that the density of Acks signals detected in the

Class II KCs of heat-exposed workers whose two antennae were

ablated at their bases was significantly lower than that in heat-

exposed intact workers (Figure 5M). There was no significant

difference, however, in the Acks signal density in the Class I KCs,

in the areas between the DLs and the OLs, or in the OLs between

the intact and antennae-deprived workers (Figure 5M). These

results suggested that thermal information received by the

antennae is mainly conveyed to the Class II KCs and that the

MBs receive thermal sensory input from other body parts besides

the antennae. On the contrary, quantitative RT-PCR using the

RNAs extracted from the MBs revealed that the difference in the

Acks expression level in the MBs between the antennae-deprived

and intact workers under high temperature was not statistically

significant. Antennae-deprived workers, however, exhibited a

tendency toward a 20% decrease in the induced Acks expression

level compared with the intact workers (Figure 5N). This result

suggested that contribution of the antennal sensory input to the

neural activity in the whole MBs of heat-exposed workers is partial

at most.

In contrast, no significant increase in the density of Acks signal

was detected in the MBs (Figure 5C, F and I) or the restricted

region between the DLs and the OLs (Figure 5L) in the brains of

workers exposed to IAA (n = 5) (Figure 5M). These findings

suggested that information processing of alarm pheromone does

not contribute mainly to the neural activity of Class II KCs, which

was observed in the brains of workers involved in the formation of

the hot defensive bee ball.

Finally, we analyzed the tissue specificity of Acks induction under

a high temperature. Quantitative RT-PCR using RNAs extracted

from brain, thorax and abdomen of workers revealed that

statistically significant and prominent Acks induction was observed

only in the brain when the bees were exposed to high temperature,

and scarce Acks expression was detected in the thorax and

abdomen under both room and high temperatures (Figure 5O),

further supporting that Acks induction under a high temperature

reflects neural activity and does not result from some ‘heat shock

responses’ that could occur independently of neural activity.

Discussion

In the present study, we identified Acks, a Japanese honeybee

homolog of kakusei, which is a neural IEG in the European

honeybee. Although no kakusei homolog has been identified in any

other insect species, including the fruit fly, mosquito, and moth,

this finding indicates that a kakusei homolog is conserved at least

Figure 3. Sampling of workers from an artificially formed hot
defensive bee ball. (A) Presentation of a wire-hung hornet to the
beehive as a decoy. (B) Hundreds of workers form a hot defensive bee
ball surrounding the wire-hung giant hornet. (C) Bee ball recovered in a
glass beaker. (D) The giant hornet is dead 60 min after the bee ball
forms.
doi:10.1371/journal.pone.0032902.g003
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among related but allopatric honeybee species, A. mellifera and A.

cerana. The Acks transcript contains an additional approximately

700b sequence at the 39-end, but overall sequence similarity with

the kakusei transcript was conserved throughout the Acks transcript,

including sequences corresponding to both the neural activity-

inducible and constitutive-type kakusei transcripts (Figure 1A). In

addition, expression analysis revealed that, like kakusei, Acks

transcript expression levels transiently increase after seizure

induced by awakening from anesthesia (Figure 1B and C), and

the induced Acks expression can be broadly visualized in several

brain regions (Figure 2). These findings suggest that the function of

the Acks transcript is similar to that of the kakusei transcript as a

nuclear non-coding RNA.

While the European honeybee kakusei showed a expression peak

15 min after seizure induction [13], the expression level of the Acks

transcript reached a maximum 30 min after seizure induction

(Figure 1B). Nonetheless, our expression analysis showed that Acks

has the properties of a neural IEG, even under high temperature

(46uC, Figure 1C), which allowed us to detect the brain regions in

the Japanese worker honeybees that were active during the

formation of a hot defensive bee ball.

Here, we first demonstrated that Acks signals were detected in

the MBs, especially in the Class II KCs of workers at 30 or 60 min

after the bee ball formation, and neurons located in a restricted

area between the DLs and the OLs of workers at 60 min whereas

they were scarcely detected at 0 min (Figure 4, Figure S3, and

Figure S4), strongly suggesting that these neurons are highly

activated in the brains of workers involved in forming the hot

defensive bee ball.

Interestingly, the Acks distribution patterns observed in the

brains of workers involved in the bee ball formation were clearly

mimicked by those observed in the brains of heat-exposed workers

but not by those observed in IAA-exposed workers (Figure 5).

These results strongly suggest that the neural activity detected in

the brains of workers involved in the formation of the hot defensive

bee ball is induced by heat but not by IAA generated during the

formation of the bee ball. There are two possible explanations for

this result: 1) The neural activity detected in the brains of workers

involved in the formation of a hot defensive bee ball reflects

thermal stimuli processing in the brain. 2) Alternatively, the Acks

induction is evoked as a ‘heat shock response’ in some population

of brain neurons.

As for the first possibility, the MBs are believed to be a higher-

order center of the insect brain that processes complex multimodal

information [18,19,22,23]. Sophisticated roles in adaptive behav-

iors such as predictive motor actions [24], short- and long-term

associative memory [25–30], and temperature preference behavior

[31], are currently ascribed to the MBs. On the other hand, the

formation of a hot defensive bee ball is a highly adaptive anti-

predator behavior. Because there is only 3–5uC difference in the

lethal temperature between the Japanese honeybee and the giant

hornet [6,16], accurate monitoring and precise control of heat

generation during forming a hot defensive bee ball seem critical for

the Japanese honeybees. In insect, the mechanism of temperature

sensing has been studied mainly in Drosophila melanogaster and is

known to depend on some transient receptor potential (TRP)

channels [32–34]. Drosophila TRPA1 (DTRPA1) [32,35,36],

Pyrexia [37], and Painless [33,38,39], all of which are TRPA

subfamily members, respond to ‘‘warm’’ or ‘‘hot’’ temperatures

and are required for various temperature-related behaviors (The

temperature thresholds are 24–29uC, 37.5–40uC, and 42–45uC,

for DTRPA1, Pyrexia, and Painless, respectively). These thermo-

sensitive TRPA channels are expressed in several body parts not

only at the periphery but also in the brain [35,38]. Interestingly, in

the brains of adult flies, Painless is mostly expressed in the MBs

[38]. Thus, it might be that the Class II KCs are involved in

temperature sensing in the Japanese honeybee workers during the

formation of a hot defensive bee ball. We speculate that the MBs,

especially the Class II KCs, might be involved in thermal

information processing, to appropriately regulate the duration of

flight muscle vibration and control heat generation during forming

the bee ball, although the projection pattern of the thermosensitive

neurons to the MBs is not well characterized in insects [40].

Statistical analyses indicated that the Acks signal density

decreased to approximately 45% by antennae deprivation in

heat-exposed workers (Figure 5M), suggesting that there is some

unknown projection(s) from the antennal thermoreceptive neurons

to the Class II KCs. In contrast, quantitative RT-PCR revealed

that the amount of Acks transcript in the whole MBs of the heat-

exposed workers was not significantly affected by antennae

deprivation. Therefore, it might be that the contribution of the

antennal sensory input to the neural activity of the MBs of heat-

exposed workers is partial or minor. It is plausible that some MB

neurons that receive thermal information from peripheral neurons

expressing TRP channels and/or other MB neurons expressing

TRP channels themselves are responsible for the increased neural

activity in the MBs of heat-exposed workers.

In the European honeybee, somata of a GABAergic recurrent

neuron cluster called A3v are located in this restricted brain

portion between the DLs and lobula of the OLs. These neurons

receive input from the lobe of the MBs and provide inhibitory

feedback to the calyces [41,42,43]. A previous electrophysiological

study demonstrated that individual feedback neurons showed

multimodal sensitivity [44]. It might be that the neurons located in

this area are also involved in processing thermal information in the

worker honeybees. To test this possibility, it will be necessary to

Figure 4. Neural activity in the middle part of the brain during bee ball formation. (A) Schematic diagram of the lateral view of a bee brain.
The green line indicates the position of sections that correspond to a middle part of the brain used for this in situ hybridization experiment. (B)
Schematic representation of the Acks signals detected in the right brain hemisphere of the workers that formed the bee ball. The red dots indicate
induced Acks signals at 30 or 60 min after the bee ball formation. The boxed regions (a–e) correspond to the Class I KCs whose somata are located
inside the calyces (a), parts of the Class II KCs whose somata are located outside of calyces (b and c), the restricted area located between the DL and
lobula of the OL (d), and a part of the OL (e), whose in situ hybridization results are presented in the right panels (D–R). (C) Magnified schematic
representation of the MB indicating the distribution of the somata of the Class I (green) and the Class II KCs (yellow), respectively. (D–R) In situ
hybridization of Acks in each brain area shown in (B) in the brains of workers at 0 (D, G, J, M, and P), 30 (E, H, K, N, and Q) and 60 min (F, I, L, O, and R)
after the bee ball formation. (D–F), (G–I), (J–L), (M–O), and (P–R) correspond to the boxed brain regions (a), (b), (c), (d), and (e), respectively. The dotted
Acks signals were detected most densely in the Class II KCs (H, I, K, and L), and less densely in the Class I KCs (E and F) at 30 and 60 min after the bee
ball formation, respectively. Note that the Acks signals were detected moderately in the restricted region between the DLs and the lobula of the OLs
(O), and less densely in the OLs (R) at 60 min after the bee ball formation. Staining observed in area surrounded by dotted ellipse (P–R) represents
non-specific staining of trachea, which was also observed in sections hybridized with the sense probe (data not shown). Bars indicate 50 mm. (S)
Quantification of Acks-positive cells in various brain regions. Values are means 6 SEM. Asterisks indicate significant difference compared to that at
0 min (*, P,0.05; **, P,0.01; Dunnett’s test).
doi:10.1371/journal.pone.0032902.g004
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examine whether the Acks-expressing neurons are A3v neurons by

double staining for Acks expression and immunoreactivity to GAD,

a GABA-synthesizing enzyme.

As for the above second possibility, we previously showed that

the expression of the kakusei transcript was induced specifically in

the brain but not in any other body part when the European

honeybee workers woke up from anesthesia [13]. In the present

study, we also showed that Acks was induced almost exclusively in

the brain under the high temperature (Figure 5O). These results

seem to argue against the possibility that Acks induction in the

brains of workers involved in the formation of a hot defensive bee

ball or heat-exposed workers represents mere ‘heat shock

response’. We cannot, however, completely exclude the second

possibility, because some vertebrate heat shock proteins are

induced in specific body parts [45], although other heat shock

protein genes are expressed ubiquitously irrespective to the body

part and cell types [46]. Because some physiological processes

operating in the nervous system, such as the activation and

inactivation of ion channels, the conduction velocity of action

potentials, presynaptic transmitter release and postsynaptic

reception, are considerably affected under high temperature

condition [47,48], it could be that the neural activity detected in

the heat-exposed workers reflects a direct effect of high

temperature. To clarify this point, it would be necessary to isolate

thermosensitive TRP channels and examine their possible

involvement in forming a hot defensive bee ball.

There was no distinct Acks signal in the brains of IAA-exposed

workers (Figure 5). This result, however, might not necessarily

mean that IAA plays no significant role in this defensive behavior

because the Acks induction was not clearly observed in the ALs of

the Japanese honeybee workers even after the seizure-induction,

suggesting that Acks might not be applicable for detection of neural

activity in the ALs (data not shown).

We previously used kakusei to demonstrate that neural activity of

the small type KCs, one subtype of the Class I KCs whose somata

are located at the inner core of the calyces, is preferentially

increased in the brains of European honeybee foragers [13]. In

contrast, in the present study, we detected unique neural activity of

the Class II KCs in the brains of Japanese honeybee workers

involved in the formation of a hot defensive bee ball. These results

suggest that the underlying neural mechanisms are largely

different between the foraging behavior and the hot defensive

bee ball formation. Although the details of such a species-specific

neural mechanism remain largely unknown, our findings may

provide important insight into the neural mechanisms underlying

the species-specific adaptive behaviors. Future electrophysiological

and comparative studies will further elucidate the neural circuits

involved in this defensive behavior of the Japanese honeybee

workers.

Materials and Methods

Bees
Japanese honeybees (Apis cerana japonica) maintained at the

apiary in Tamagawa University (Tokyo, Japan) and giant hornets

(Vespa mandarinia japonica) caught near the apiary were used for all

experiments.

cDNA cloning
Total RNA was extracted from the whole brains of Japanese

honeybee workers with seizures induced by awakening from

anesthesia, using TRIzol Reagent (Invitrogen, Carlsbad, CA). To

obtain cDNA fragments of the kakusei homolog in Japanese

honeybee, PCR was performed using a set of primers designed

based on the nucleotide sequence of the European honeybee

kakusei, 59-GGGGAAGCCAGGAGCCGCGGGTTTACAT-39

and 59-AGGCAACAGCACACCATGGGCCTTGGAT-39, with

Ex Taq (Takara, Tokyo, Japan). After sequencing the PCR

products, we performed the RACE method with a SMART

RACE cDNA Amplification Kit (Clontech, Mountain View, CA)

following the manufacturer’s instruction. Amplification was

performed with two sets of gene-specific primers for 59-RACE

and 39-RACE. These amplified products were subcloned into

pGEM-T vectors (Promega, Madison, WI) and sequenced.

Quantitative RT-PCR of the Acks transcript in the brains of
workers after seizure induction

Japanese honeybee workers kept in a plastic chamber were

maintained overnight in a dark incubator (LH-70CCFL; NK

System, Osaka, Japan) at 25uC. The bees were then anesthetized

in CO2 for 3 min. To induce seizures, the bees were then left in

normal air at room temperature. The bees were sampled at 0, 15,

30, 45, 60, 90, 120, 150, or 180 min after seizure induction.

Control bees were maintained continuously in CO2 and collected

at the same time points (bees at 0 min were identical to seizure

induced bees at 0 min). Bees used for the high temperature

experiment were anesthetized and placed in an incubator set to

46uC. We sampled the bees at the same time points as in the

previous experiments under room temperature for up to 150 min

after seizure induction (at 180 min, the workers died). After

anesthetizing workers by immersing them in ice-cold water, we

dissected two brains each from five lots of workers at each time

point. After homogenizing these samples with a bead cell crusher

(MS-100; Tomy, Tokyo, Japan), total RNA was extracted using

TRIzol reagent. RNA was reverse transcribed with a PrimeScript

RT reagent Kit (Takara) and quantitative RT-PCR was

performed with LightCycler (Roche, Nutley, NJ) using SYBR

Premix Ex TaqII (Takara) and gene-specific primers (Acks; 59-

Figure 5. Neural activity in the brains of workers exposed to high temperature or IAA. (A–L) In situ hybridization of Acks in each brain area
shown as Figure 4B in the brains of workers exposed to 46uC heat (A, D, G, and J), workers whose antennae are deprived before heat-exposure (B, E,
H, and K), and workers exposed to IAA (C, F, I, and L). (A–C), (D–F), (G–I), and (J–L) correspond to the boxed brain regions shown as in Figure 4B (a), (b),
(c), and (d), respectively. In the brains of heat-exposed bees, the dotted Acks signals were detected most densely in the Class II KCs (D and G) and
moderately in the restricted area between the DLs and OLs (J), and much less densely in the Class I KCs (A), whereas there was some decrease in the
Acks signals in the Class II KCs of antennae-deprived and heat-exposed workers (E and H). On the other hand, scarce or no significant signals were
detected in these brain regions in IAA-exposed workers (C, F, I, and L). Bars indicate 50 mm. (M) Quantification of Acks-positive cells in various brain
regions. Values are means 6 SEM. Asterisks indicate significant difference compared to control (*, P,0.05; **, P,0.01; Dunnett’s test). Student’s t-test
was used to compare heat-exposed intact and heat-exposed antennae-deprived workers (n.s. = non-significant; **, P,0.01). (N) The results of
quantitative RT-PCR showing the Acks expression in the MBs of intact and antennae-deprived workers under usual (33uC) and high (46uC)
temperature. Each experimental group contained four lots of workers. A two-way ANOVA revealed that there was no interaction between
temperature and ablation of antennae (n.s. = non-significant, P = 0.15), and then Student’s t-test was conducted for intergroup comparison (**,
P,0.01). Values are means 6 SEM. (O) The results of quantitative RT-PCR showing Acks expression in the brain, thorax, and abdomen of heat-exposed
intact workers. Asterisks indicate a significant difference between heat-exposed and control workers within the same tissues (**, P,0.01; Student’s t-
test). The results for the thorax and abdomen are shown in the magnified graph because these values were extremely low. Values are means 6 SEM.
doi:10.1371/journal.pone.0032902.g005

Neural Activity during Forming a ‘‘Hot Bee Ball’’

PLoS ONE | www.plosone.org 9 March 2012 | Volume 7 | Issue 3 | e32902



AGTGATGTCTGACCGAGCA-39 and 59-CGAACGCACTT-

TGGTTAGTC-39 ef-1a; 59-TTGGTTTAAGGGATGGACTG-

39 and 59-CCATACCTGGTTTCAACACA-39 [49]). PCR prod-

ucts of Acks and ef-1a of known concentrations were used as

standards. The amount of Acks transcript was normalized with that

of ef-1a and calculated as the expression level relative to the value

of the samples at 0 min in the room temperature experiment.

Tukey-Kramer’s test was performed to examine the significant

difference in the relative expression of Acks among the time points

using JMP software (SAS, Cary, NC). There was no significant

difference in the expression of ef-1a between control and seizure-

induced workers irrespective of experimental temperature (data

not shown).

Sampling of workers from a hot defensive bee ball
To continuously collect worker honeybees from the same bee

ball, we used the following sampling procedure. A worker hornet

with its stinger cut off and hung by a wire around its thorax, was

presented to the bees at the entrance of the beehive. As soon as a

bee ball was formed in the hive, we placed the bee ball in a beaker

to separate the workers forming the bee ball from the other

nestmates. The bees were collected from the surface of the bee ball

with long tweezers at 0, 30, and 60 min after separation of the bee

ball. We sampled the workers from four bee balls collected from

three colonies. After anesthetizing the bees in ice-cold water, their

brains were dissected, embedded in TissueTek O.C.T. Compound

(Sakura Finetek, Torrance, CA), and rapidly frozen in dry ice and

stored at 280uC until use.

Exposure to high temperature
Japanese honeybee workers (n = 10 for each of antennae-

deprived and intact workers) kept in a plastic chamber were

maintained overnight in a dark incubator at 33uC. The workers

were then placed into an illuminated incubator set to 46uC. After

30 min, they were anesthetized in ice-cold water and their brains

were dissected. To deprive antennae, both antennae were cut with

fine scissors at the base of the scapus. The brains of five to six

workers for each group were used for in situ hybridization. To

validate the tissue specificity of temperature-induced Acks expres-

sion, total RNA was extracted from the brains, thoraxes, and

abdomens of five heat-exposed intact workers and then subjected

to quantitative RT-PCR. As MB samples used for quantitative

RT-PCR, the OLs, SOG and DLs were cut off from the dissected

brains and the remaining MBs were used for the RNA extraction.

We used three MBs each from four lots of workers for each group.

Statistical analysis was conducted using JMP software. For group

comparisons of two factors, a two-way ANOVA was conducted. A

P value less than 0.05 was regarded as significant.

Exposure to IAA
Japanese honeybee workers maintained in the condition similar

to those used for the heat-exposure experiments were placed into a

Ziplock bag (Lion, Tokyo, Japan). The workers were then

presented with a filter paper, on which IAA (5 ml) was spotted,

for 10 min. After the workers were removed from the Ziplock bag

and left in normal air for 20 min, they were anesthetized in ice-

cold water and their brains were dissected.

In situ hybridization and quantification of the density of
the Acks signals

Digoxigenin (DIG)-labeled sense or anti-sense riboprobes

corresponding to +4530b to +4806b were synthesized by in vitro

transcription with a DIG RNA Labeling Mix (Roche). Frozen

coronal brain sections (10 mm thick) were fixed in 4% parafor-

maldehyde in phosphate buffer (PB; pH 7.4) overnight at 4uC,

treated with proteinase K (10 mg/ml) for 15 min and then with

HCl (0.2 N) for 10 min, followed by acetic-anhydride solution for

10 min at room temperature. The slides were washed with PB

between each step. After dehydration through an ascending series

of ethanol solutions, brain sections were hybridized with the

riboprobes overnight at 60uC (.16 h). The riboprobes were

diluted in hybridization buffer (50% formamide, 10 mM Tris-

HCl, 200 mg/ml tRNA, 16Denhardt’s solution, 10% dextran

sulfate, 600 mM NaCl, 0.25% SDS, 1 mM EDTA at pH 7.6),

heat-denatured at 85uC for 10 min, and then added to each slide.

After hybridization, slides were washed in 50% formamide and

26SSC at 60uC for 30 min, treated with 10 mg/ml RNase A

(Sigma-Aldrich, St. Louis, MO) in TNE (10 mM Tris-HCl, 1 mM

EDTA, 500 mM NaCl at pH 7.6) at 37uC for 30 min, and washed

at 60uC in 26SSC for 20 min and twice in 0.26SSC for 20 min.

DIG-labeled riboprobes were detected immunocytochemically

with Anti-DIG Peroxidase (1:500; Roche), TSA Biotin System

(PerkinElmer, Salem, MA), Alkaline Phosphatase Streptavidin

(1:1000; Vector Laboratories, Burlingame, CA) and NBT/BCIP

stock solution (Roche) according to the manufacturer’s protocol.

To quantify Acks signal density, we randomly selected in situ

hybridization sections that contained the MB pedunculus and DLs

(as a schematic drawing shown in Figure 2B) for each experiment.

The square measure of each brain area containing Acks-positive

neurons (specific soma area) was measured using ImageJ analysis

software (NIH, http://rsb.info.nih.gov/ij). At the same time, the

number of Acks signals in the selected area was manually counted

and divided by the square measure to calculate the Acks signal

density. The density of signals is presented as the value relative to

10,000 mm2. Micrographs were numbered and an investigator

blind to the bee type or treatment assignment counted the signals.

Statistical analyses were conducted using JMP and Excel

(Microsoft) software. Data are shown as means 6 standard error

(SEM). We expected that Acks signals detected at 0 min (in bee ball

formation experiment) or in control bees (in heat-exposure and

IAA-exposure experiments) would reflect background level neural

activity and the neural activity in the workers forming a bee ball,

heat-exposed or IAA-exposed workers could be considerably

increased. Therefore, one-tailed Dunnett’s test was performed to

examine the significance of differences compared to that at 0 min

or of control bees. In the heat-exposure experiment, Student’s t-

test was also performed to compare intact workers with antennae-

deprived workers.

Supporting Information

Figure S1 Neural activity in the middle part of the brain
30 min after the bee ball formation. In situ hybridization was

performed using a whole brain section, which corresponds to a

middle part of a brain, of a worker collected 30 min after the bee

ball formation. In this Figure, an example of the result for the

whole right brain hemisphere of a worker is presented to show the

overall distribution of the Acks signals in the brain. Note that panels

showing the results of in situ hybridization in Figure 4, S3 and S4

are collected from some sections that are used for the same in situ

hybridization experiments, respectively. Black arrows indicate

clusters of induced Acks signals. The bar indicates 250 mm.

(TIFF)

Figure S2 Neural activity in the middle part of the brain
60 min after the bee ball formation. In situ hybridization was

performed using a whole brain section, which corresponds to a
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middle part of a brain, of a worker collected 60 min after the bee

ball formation. The bar indicates 250 mm.

(TIFF)

Figure S3 Neural activity in the more rostral part of the
brain during bee ball formation. (A) Schematic diagram of

the lateral view of a bee brain. The green line indicates the

position of sections that correspond to a more rostral part of the

brain. (B) Schematic representation of the Acks signals detected in

the right brain hemisphere of the workers that formed a bee ball.

The red dots indicate induced Acks signals at 30 or 60 min after

the bee ball formation. The boxed regions (a–d) correspond to the

Class I KCs (a), parts of the Class II KCs (b and c) and a part of

the OL (d) whose in situ hybridization results are presented in the

right panels (D–O). (C) Magnified schematic representation of the

MB indicating the distribution of the somata of the Class I (green)

and the Class II KCs (yellow), respectively. (D–O) In situ

hybridization of Acks in each brain area shown in (B) in the brains

of workers 0 (D, G, J, and M), 30 (E, H, K, and N) and 60 min (F,

I, L, and O) after formation of the bee ball. (D–F), (G–I), (J–L), and

(M–O) correspond to boxed brain regions (a), (b), (c), and (d),

respectively. The dotted Acks signals were detected most densely in

the Class II KCs (H, I, K, and L), and less densely in the Class I

KCs (E and F) at 30 and 60 min after the bee ball formation. Note

that the Acks signals were detected less densely in the OLs (O) at

60 min after the bee ball formation. Bars indicate 50 mm.

Abbreviations and colors and dotted ellipse are as in Figure 4.

(TIFF)

Figure S4 Neural activity in the caudal part of the brain
during bee ball formation. (A) Schematic diagram of a lateral

view of a bee brain. The green line indicates the position of

sections that correspond to a more caudal part of the brain. (B)

Schematic representation of the Acks signals detected in the right

brain hemisphere of the workers that formed the bee ball. The red

dots indicate induced Acks signals at 30 or 60 min after the bee ball

formation. The boxed regions (a–e) correspond to the Class I KCs

(a), parts of the Class II KCs (b and c), a part of the OL (d), and the

region adjacent to the OL (e), whose in situ hybridization results

are presented in the right panels (D–R). (C) Magnified schematic

representation of the MB indicating the distribution of the somata

of the Class I (green) and the Class II KCs (yellow), respectively.

(D–R) In situ hybridization of Acks in each brain area shown in (B)

in the brains of workers at 0 (D, G, J, M, and P), 30 (E, H, K, N,

and Q), and 60 min (F, I, L, O, and R) after bee ball formation.

(D–F), (G–I), (J–L), (M–O), and (P–R) correspond to the boxed

brain regions (a), (b), (c), (d), and (e), respectively. The dotted Acks

signals were detected most densely in the Class II KCs (H, I, K,

and L), and less densely in the Class I KCs (E and F). Note that the

Acks signals were detected less densely in the OLs (O) at 60 min

after the bee ball formation. No or scarce signal were detected in

the region adjacent to the OL (P–R) irrespective of the sampling

time. Bars indicate 50 mm. Abbreviations and colors and dotted

ellipse are as in Figure 4.

(TIFF)
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