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Abstract

Background: Ginkgo biloba (Ginkgoaceae) is one of the most ancient living seed plants and is regarded as a living fossil. G.
biloba has a broad spectrum of resistance or tolerance to many pathogens and herbivores because of the presence of toxic
leaf compounds. Little is known about early and late events occurring in G. biloba upon herbivory. The aim of this study was
to assess whether herbivory by the generalist Spodoptera littoralis was able to induce early signaling and direct defense in G.
biloba by evaluating early and late responses.

Methodology/Principal Findings: Early and late responses in mechanically wounded leaves and in leaves damaged by S.
littoralis included plasma transmembrane potential (Vm) variations, time-course changes in both cytosolic calcium
concentration ([Ca2+]cyt) and H2O2 production, the regulation of genes correlated to terpenoid and flavonoid biosynthesis,
the induction of direct defense compounds, and the release of volatile organic compounds (VOCs). The results show that G.
biloba responded to hebivory with a significant Vm depolarization which was associated to significant increases in both
[Ca2+]cyt and H2O2. Several defense genes were regulated by herbivory, including those coding for ROS scavenging enzymes
and the synthesis of terpenoids and flavonoids. Metabolomic analyses revealed the herbivore-induced production of several
flavonoids and VOCs. Surprisingly, no significant induction by herbivory was found for two of the most characteristic G.
biloba classes of bioactive compounds; ginkgolides and bilobalides.

Conclusions/Significance: By studying early and late responses of G. biloba to herbivory, we provided the first evidence that
this ‘‘living fossil’’ plant responds to herbivory with the same defense mechanisms adopted by the most recent
angiosperms.
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Introduction

Dating back more than 200 million years (Myr), Ginkgo biloba,

the only species remaining from the family Ginkgoaceae, is one of

the oldest seed plants often referred to as a ‘‘living fossil’’ because it

is known to have existed early in the Jurassic period [1].

Evolutionary studies on fossil leaves and reproductive organs

revealed that the morphology of G. biloba has little changed during

the last 100 Myr [2,3], and molecular analysis of the G. biloba

genome (incomplete) suggests a much closer relationship to cycads

than to conifers [4,5]. Paleoecological inferences based on both

morphology and sedimentary environments support the idea that

G. biloba was displaced in riparian habitats by angiosperms with

better adaptations to frequent disturbance [3]. G. biloba cDNA

libraries have been constructed [6,7] and, recently, a total of

64,057 ESTs were generated using the 454 GS FLX sequencing

platform and integrated with the Ginkgo ESTs in GenBank [8].

G. biloba has a broad spectrum of resistance or tolerance to many

pathogens and herbivores and because of its hardiness the trees are

frequently planted in large cities [1]. G. biloba anatomy, structure

and growth of the shoot apex, heterophylly, patterns of venation

and internal secretory structures have been described since the

beginning of the last century [9,10].

Upon herbivore attack, chemical defense mechanisms are

usually divided into constitutive and induced, both of them acting

either directly or indirectly. Inducibility, or the ability to increase

defensive traits after herbivore attack, is viewed as a way for plants

to cope with high resource demands and the unpredictability of

herbivore attack [11]. All induced defenses require a cascade of

events starting from the recognition of the initial herbivore attack

to the production of specific defense molecules, upon gene

expression and metabolic activation [12–14]. With regards direct

defenses, some plants that store monoterpenes, like Mentha aquatica,
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respond to herbivory by increasing terpenoid production and up-

regulating the expression of genes involved in terpenoid biosyn-

thesis [15]. Species of milkweed (Asclepias spp.) use cardenolides to

fight both above and belowground herbivores [16], whereas cotton

(Gossypium spp.) produces gossypol and a variety of other gossypol-

like terpenoids that exhibit toxicity to a wide range of herbivores

[17]. Important constituents present in G. biloba leaves are terpene

trilactones (e.g., ginkgolides A, B and C), many flavonol glycosides,

biflavones, proanthocyanidins, alkylphenols, simple phenolic acids,

6-hydroxykynurenic acid, 4-O-methylpyridoxine, polyprenols,

bilobalide, and ginkgotoxin [18,19]. Ginkgolide biosynthesis is

initiated by the cyclization of the diterpene levopimaradiene and

the isolation and characterization of a cDNA encoding G. biloba

levopimaradiene synthase has been described [20]. The antioxi-

dant, antiischemic, cardioprotective, neurosensory, cerebral,

pharmacokinetics, and antiaging activity has been established on

standardized G. biloba extract, EGb 761 [21–25]. EGb 761 has also

been demonstrated to be a potent scavenger of free radicals

[26,27]. Thus, EGb might have a potential for scavenging reactive

oxygen species (ROS) [28]. The antioxidant properties of G. biloba

flavonoids can also result from their ability to complex metal ions

such as Cu2+, Fe2+, Zn2+ and Mg2+ [29].

The pharmacological properties of G. biloba correlate with its

strong repellent effect on herbivores. In fact, the fecundity of

spider mites was almost zero, because they did not survive the

intake of toxic G. biloba leaf constituents, making impossible

rearing spider mites on G. biloba, while the rearing of spider mites

on other plants was successful [30,31]. The potential of G. biloba

and its synthetic metabolites for preventing apple feeding and

infestation by neonate lame of the codling moth, Cydia pomonella,

has been demonstrated [32].

In order to react promptly to herbivore attacks, plants must be

able to detect their predators and to react quickly with early

signaling. Early events include calcium signaling and the

production of ROS, leading to unbalances in the ion distribution

across the plasma membrane that eventually alter the plasma

transmembrane (Vm) potential, as recently reviewed [14]. These

early events and the effect of herbivore-associated elicitors [33] are

followed by activation of protein kinase cascades [34], eventually

leading to gene expression and production of direct and indirect

defenses [35,36]. Plant tissues that are attacked by herbivores also

emit volatile organic compounds (VOCs), that may both induce

defense on the same or different plants and attract predators of the

attacking herbivore [11,37,38].

To better understand the role of direct and indirect defenses in

G. biloba, we evaluated early and late responses in leaves either

mechanically wounded or damaged by the generalist herbivore

Spodoptera littoralis. Here we show that S. littoralis feeding on G. biloba

induces the typical signaling pathways found in angiosperms.

These responses include Vm variations, time-course changes in

both cytosolic calcium concentration ([Ca2+]cyt) and H2O2

production, the regulation of gene expression, the induction of

direct defense compounds and the release of VOCs.

Results

Herbivory induces early response defense signaling in G.
biloba: Vm, Ca2+ and H2O2 variations

G. biloba is characterized by different leaf types, depending on

the age and shape of the leaf: bilobed, multi-dissected and fan-

shaped. Before herbivore wounding (HW), we mapped the

distribution of Vm values in healthy leaves belonging to the three

leaf types. We found that bilobed and fan-shaped leaves had

almost the same average values (P.0.05), whereas multi-dissected

leaves showed statistically lower values (P,0.05). A more careful

analysis of fan-shaped leaves showed that epidermal cells had

statistically lower Vm values (P,0.05) when compared to palisade

and spongy parenchyma cells (Fig. 1).

When Vm was evaluated after mechanical damage (MD) a small

and not significant depolarization was observed, no matter the time

lapsing after the MD event. On the other hand, a significant Vm

depolarization was found up to 6 h after HW (Fig. 1) in all three leaf

types (bilobed: 11.0160.98 mV, P,0.05; multi-dissected:

7.5560.71 mV, P,0.01; fan-shaped: 6.5860.53 mV, P,0.01).

G. biloba has a particular venation pattern. Leaf blades show

unconnected veins, veins which are anastomosed marginally but

unconnected basally, and veins which end a considerable distance

from the margin. It was speculated that the anastomoses found in

G. biloba are of a simple, archaic type and are apparently analogous

to the anastomoses in the leaves of certain ferns and in the leaflets

of various cycads [39]. When Vm was measured below and aside

the wounding zone no significant differences were found,

indicating that the depolarizing signals is transmitted independent

of the anastomotic pattern (Fig. 1). Based on the above results, we

chose to run all following analyses on fan-shaped leaves.

In order to evaluate whether G. biloba uses the same signaling

pathway demonstrated in angiosperms (e.g., Lima bean [40]), MD

and HW fan-shaped leaves were pre-incubated with the dyes

calcium orange (for the quantitative determination of cytosolic

calcium concentration, [Ca2+]cyt) and Amplex Red (for the

quantitative determination of H2O2 production) [41,42].

Figure 2 shows time-course variations of [Ca2+]cyt following MD

(Fig. 2A) and HW (Fig. 2B), with respect to intact leaves. No

significant differences were observed between MD and intact

leaves (data not shown). After 30 min, a significant increase in

[Ca2+]cyt was only found following HW (Fig. 2B). However, after

4 h of HW, [Ca2+]cyt drastically decreased (Fig. 2B). DPI

(diphenyleneiodonium) is a suicide inhibitor of the phagocytic

NADPH oxidase and an inhibitor of NADH-dependent H2O2

production by peroxidase [43]. DPI prompted a strong inhibition

of the increase of [Ca2+]cyt in HW at 30 min; however, values were

significantly higher with respect to MD (compare Figs. 2A and 2B).

The calcium ion chelating agent, EGTA has been used to

demonstrate the specificity of the effect of Ca2+ [44]. When EGTA

was used after 30 min of feeding, the chelating agent was found to

inhibit the increase of [Ca2+]cyt (Fig. 2B). Even in this case, HW

showed significantly (P,0.05) higher [Ca2+]cyt values than MD in

response to EGTA (Fig. 2B). Verapamil is a voltage-gated Ca2+

channel antagonist which has a significant effect on herbivore-

induced Ca+2 release [45,46]. Verapamil significantly reduced

HW [Ca2+]cyt after 30 min, although values were still higher with

respect to MD (Figs. 2A and 2B). In general, the pharmacological

agents all inhibited early HW-dependent [Ca2+]cyt increases and

had no effects on late HW-induced [Ca2+]cyt variations.

One of the first reactions to biotic attack is the production of

ROS [47]. Hydrogen peroxide (H2O2) is generated upon

herbivore attack in several angiosperms [45]. G. biloba fan-shaped

leaves showed a significantly higher H2O2 production 30 min after

HW, when compared to MD leaves; however, after 4 h from

feeding, HW values dropped to MD levels (Fig. 3). The use of DPI

inhibited HW-dependent H2O2 production that remained at MD

levels, and the same was found after 30 min of HW by using

EGTA. Verapamil had no effect on MD-dependent H2O2

production (Fig. 3A) and significantly increased H2O2 in HW,

especially after 30 min of herbivory (Fig. 3B).

The subcellular localization of [Ca2+]cyt was found mainly at the

cytoplasmic level and was evidenced by the calcium orange dye as

patches not associated with specific organelles (Fig. 4A); on the
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other hand, H2O2 localization by Amplex Red showed a clear

association with microbodies (probably peroxisomes) and/or

mitochondria (Fig. 4B).

Heterologous gene expression analysis of G. biloba on
Arabidopsis microarray reveals the presence of several
conserved defense genes

Analysis of the G. biloba transcriptome after herbivory by

heterologous microarray hybridization on Arabidopsis thaliana

genome microarrays revealed the presence of several conserved

up- and down-regulated defense genes (see Table S1). Bioinfor-

matic approaches aimed to find orthologous sequences in G. biloba

ESTs using the oligonucleotide sequences present on the

Arabidopsis microarray showed generally a low percentage of

sequence identity, with the exception of a protein kinase

(At3g01300) (Table S2). Among 146 significantly (fold change

$2, P#0.05) modulated genes on the Arabidopsis microarray, we

chose 24 genes (17 up and 7 down-regulated) for real-time PCR

(qPCR) validation on G. biloba cDNA. qPCR confirmed the

differential expression for most of these genes, with the exception

of some down-regulated genes in the microarray data that were

found up-regulated by qPCR, after 4 h of larvae feeding on leaves

Figure 1. G. biloba is characterized by different leaf types, depending on the age and shape of the leaf. A, bilobed; B, multi-dissected
and; C, fan-shaped. Vm values are reported along with standard errors (in brackets) as mV (n<50). Herbivore wounding is shown in leaf segments and
Vm values are indicated below and aside the wounding zone. The leaf section of C shows Vm values of the different mesophyll and epidermal cells of
a fan-shaped leaf. D, Spodoptera littoralis feeding on G. biloba leaves.
doi:10.1371/journal.pone.0032822.g001
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(Table 1). Most of these genes were associated with biotic and

abiotic stress responses. Some were transcription factor regulators:

these included a Dof-type zinc finger protein, the phosphate-

responsive protein EXO, a MYB transcription factor, and a F-box

family protein transcription factor. Other genes, encoding b-

galactosidase, guanylate kinase, lipoxygenase, ABC transporter

protein, and phospholipase D, are usually involved in plant stress

responses. A strong up-regulation was found for a gene (similar to

VAMP 724) which encodes a protein that plays a key role in

vesicle trafficking to vacuoles and delivery of molecules to their

destination. High fold-change expression values were also found

for 20S proteasome alpha subunit PAA2 and a putative

cytochrome b5. Ubiquinol cytochrome c reductase, belonging to

the family of reductases specifically acting on diphenols, was up-

regulated. Down-regulation was confirmed for a protein kinase

similar to Arabidopsis APK1A (Table 1).

Considering the indication that ROS levels are modulated upon

feeding, as shown by confocal laser scanning microscopy (CLSM),

we extended our gene expression study to four genes coding for

ROS-scavenging enzymes: superoxide dismutase (SOD), peroxi-

dase (POX), ascorbate peroxidase (APX) and catalase (CAT),

following MD and HW treatment (Fig. 5). With respect to MD

(dotted line), SOD and CAT were up-regulated at both time points,

whereas POX and APX showed opposing trends: POX was up-

Figure 2. Calcium variations in G. biloba upon mechanical damage and herbivore wounding. A. Mechanically wounded G. biloba leaves,
values (n = 5) are expressed as mM Ca2+ calculated from a calibration curve. The same letter indicates not significant (P.0.05) variation. B. Herbivore
wounded G. biloba leaves, values (n = 5) are expressed as mM Ca2+. Different letters indicate significant (P,0.05) differences, the asterisks indicate
significant (P,0.05) differences with respect to mechanical damage. In both panels, calcium orange indicates the absence of pharmacological
inhibitors.
doi:10.1371/journal.pone.0032822.g002

Figure 3. H2O2 variations in G. biloba upon mechanical damage and herbivore wounding. A. Mechanically-wounded G. biloba leaves,
values (n = 5) are expressed as mM H2O2 calculated from a calibration curve. The same letter indicates not significant (P.0.05) variation. B. Herbivore-
wounded G. biloba leaves, values (n = 5) are expressed as mM H2O2. Different letters indicate significant (P,0.05) differences, the asterisk indicate
significant (P,0.05) differences with respect to mechanical damage. In both panels, amplex indicates the absence of pharmacological agents.
doi:10.1371/journal.pone.0032822.g003
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regulated at 30 min and down-regulated at 4 h, whereas APX was

down-regulated at 30 min and up-regulated at 4 h (Fig. 5).

Herbivory induces the regulation of G. biloba direct
defenses: flavonoid biosynthesis and gene expression

G. biloba leaves are characterized by the presence of several

secondary metabolites, including the terpenoids ginkgolide A, B and C,

and bilobalide, and several glycosylated flavonoids (Table 2). Analysis

of MD and HW G. biloba leaves revealed that the main flavonoid

backbones present were quercetin, kaempferol, myricetin and

isorhamnetin, which were glycosylated in position 3 by b-D-glucose

and a-L-rhamnose (Fig. 6). Chemical analyses were performed 4 h

after both MD or HW, which was considered a time long enough to

identify trends in metabolic adaptations to insect feeding.

With respect to MD, HW prompted an almost two fold increase

in several glycosylated flavonoids, particularly 3-O-(b-D-glucosyl)k-

aempferol (2.74-fold, P,0.01), 3-O-[6-O-(a-L-rhamnosyl)-b-D-

glucosyl]isorhamnetin (2.6-fold, P,0.05), 3-O-[6-O-(a-L-rhamno-

syl)-b-D-glucosyl]kaempferol (2.50-fold, P,0.05) and 3-O-[2-O-(b-

D-glucosyl)-a-L-rhamnosyl]quercetin (2.46-fold, P,0.05). HW

induced the synthesis of two new compounds: glycosyl myricetin

and 3-O-[2-O-(b-D-glucosyl)-a-L-rhamnosyl]kaempferol. Surpris-

ingly, no significant differences were found between HW and MD

for one of the most bioactive compounds of G. biloba, bilobalide,

whereas ginkgolides A, B and C were significantly reduced by HW

treatment with respect to MD (21.33-fold, P,0.05; 21.44-fold,

P,0.05 and; 21.47-fold, P,0.05, respectively) (Table 2 and

Fig. 6). Control analyses performed on intact leaves showed no

significant differences with respect to MD (data not shown).

We then measured the expression levels of some genes related to

phenylpropanoid and terpenoid biosynthesis, respectively, since

these compounds are modulated by G. biloba responses to HW.

Chalcone synthase (CHS), which catalyzes the first committed step

in flavonoid biosynthesis, was induced comparably at 30 min and

4 h, whereas phenylalanine ammonia lyase (PAL), flavanone 3-

hydroxylase (F3H), and anthocyanidin reductase (ANR) were

significantly up-regulated by HW only after 4 h. In contrast,

flavonol synthase (FLS) was down-regulated at both time points

(Fig. 7). In G. biloba, the universal sesquiterpene precursor farnesyl

diphosphate (FPP) is synthesized from geranyl diphosphate by the

enzyme FPP synthase (FPPS), whereas the diterpene precursor

geranylgeranyl diphosphate (GGPP) is synthesized from isopente-

nyl diphosphate and FPP by the enzyme GGPP synthase (GGPPS)

[8]. Ginkgolide biosynthesis is initiated by protonating GGPP to

give labdadienyl diphosphate, then the allylic diphosphate

ionization is followed by cyclization, 1,4 hydride shift, methyl

migration, and deprotonation to yield levopimaradiene. Levopi-

maradiene synthase (LPS) catalyzes the initial cyclization step in

ginkgolide biosynthesis [48]. A transient up-regulation of FPPS was

observed after 30 min of herbivory, which dropped back to control

levels at 4 h (Fig. 7). GGPPS was not significantly regulated by

herbivory, whereas a significant decrease of LPS expression was

observed with time (Fig. 7)

Herbivory induces G. biloba VOCs emission
Although G. biloba reacts to herbivory by inducing potentially

toxic defense compounds, the plant also emits VOCs (Table 3).

We analyzed the composition and quantity of VOCs by Tenax TA

adsorption and GC-MS analysis of the headspace of treated leaves

after 4 h and 24 h and found a significantly (P,0.05) higher

emission after infestation by S. littoralis in comparison to

mechanical damage (Table 3).

After 4 h feeding by S. littoralis, the emission of 1-octanol (3-

fold), 2-heptenal (2.4-fold) and the sesquiterpenes a-copaene (6-

fold) and b-caryophyllene (4.6-fold) was always significantly

(P,0.05) higher in HW with respect to MD. The green leaf

volatile (GLV) 2-hexenal did not show significant changes,

whereas the emission of 2-octenal was significantly higher in MD.

After 24 h, the emission of 2-methyl butane increased

significantly in HW plants with respect to MD (Table 3). A

significant increase was also observed in HW for the two GLVs, 2-

hexenal and 2-heptenal. In HW leaves, the emission of 1-octanol

was still significantly enhanced, and a significant increase was

found for 2-nonenal and ethyl benzoate. The emission of the two

sesquiterpenes a-copaene (2.6-fold) and b-caryophyllene (3-fold)

was still higher in HW in comparison to MD, although to a lesser

extent with respect to 4 h time point.

Discussion

Plants and insects have coexisted for as long as 350 million

years, if the earliest forms of land plants and insects are included,

and have developed a series of relationships affecting the

organisms at all levels, from basic biochemistry to population

Figure 4. Subcellular localization of [Ca2+]cyt and H2O2 in G. biloba leaves upon herbivory. A. False color images from confocal laser
scanning microscopy shows that upon herbivory [Ca2+]cyt was found mainly in the cytosol, indicated by the calcium orange dye as green patches not
associated with any specific organelle. Metric bar = 10 mm. B. H2O2 localization by Amplex Red shows a clear associations with microbodies (probably
peroxisomes) and/or mitochondria but not with chloroplasts. Metric bar = 20 mm. In both panels, single arrows indicate the dye, double arrows
indicate chloroplasts.
doi:10.1371/journal.pone.0032822.g004
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genetics. Although some of the relationships between the two

kingdoms, such as pollination, are mutually beneficial, the most

common interaction involves insect folivory and plant direct and

indirect defenses against herbivorous insects [35,49,50]. On the

basis of this long-standing relationship, it is not surprising that the

strategies used by plants to resist or evade insect herbivores may be

based on a common strategy. Although some species accumulate

high levels of toxic compounds which function as direct

biochemical defenses, other may not commit resources for this

strategy, but seek to minimize herbivore damage through rapid

growth and development, dispersion, choice of habitat, or by

emitting VOCs able to attract enemy’s enemies [11,36,51].

Despite this diversity, our study on G. biloba shows that there is a

general common defensive mechanism for plant response to

herbivore wounding.

Our results show that the so called ‘‘living fossil plant’’ G. biloba

uses early and late responses which are comparable to those found in

angiosperms [13,14,40,52]. This is not surprising, since lower plants

like the fern Pteris vittata have been shown to respond to herbivory by

ROS production and the emission of volatile compounds [53]. In G.

biloba, Vm variations, although small, were significantly different

between HW and MD, indicating that also in this species early

detection of herbivory involves an ion imbalance across the plasma

membrane [40] and possibly the perception of insect elicitors by

plant cell receptors. In angiosperms such as Lima bean, Vm

variations are associated to changes in calcium homeostasis [46]. G.

biloba leaves reacted to HW with a burst of [Ca2+]cyt, that was

inhibited by the use of the calcium chelator EGTA and the inward

calcium channel inhibitor Verapamil, as found in angiosperms

[13,41]. Surprisingly, DPI also inhibited HW-induced [Ca2+]cyt,

suggesting an interplay between H2O2 and calcium homeostasis

[45]. In fact, the use of Verapamil induced a significant burst of

H2O2, whereas EGTA reduced H2O2 production. The subcellular

localization of calcium and H2O2 signaling upon HW were in the

cytosol and mitochondria/peroxisomes, respectively, as already

observed in angiosperms [45,46,52].

Table 1. Gene expression of G. biloba leaves after 4 h from S. littoralis herbivory.

AGI Code Description FC qRT-PCR FC

Response to biotic and
abiotic stimuli

At1g72520 Lipoxygenase 4 (LOX4) 2.61 2.7660.38

Cell wall At4g08950 EXORDIUM (EXO); involved in response to brassinosteroid stimulus 2.33 2.8760.61

Kinase activity At3g57550 Guanylate kinase (GK-2) 3.10 1.7160.08

At3g01300 Protein serine/threonine kinase 22.88 22.3160.01

Hydrolase activity At2g05840 20S proteasome alpha subunit A2 (PAA2) 2.19 7.8360.53

At3g52840 Beta-galactosidase 2 (BGAL2). Involved in lactose catabolic process,
using glucoside 3-dehydrogenase, carbohydrate metabolic process,
lactose catabolic process via UDP-galactose.

2.30 2.4660.07

At1g59760 ATP dependent RNA helicase. Involved in N-terminal protein myristoylation 22.74 2.2760.03

At4g35790 Phospholipase D/PLD Delta. Involved in phospolipase metabolism.
Mutants are affected in hydrogen peroxide mediated cell death.

2.53 1.7460.32

At5g66080 Protein phosphatase 2C family protein/PP2C family protein. Protein
serine/threonine phosphatase activity

2.45 1.3760.27

Transporter activity At4g15780 Vesicle-Associated Membrane Protein 724 (VAMP 724). transport,
involved in vesicle-mediated transport.

2.09 8.0760.47

At2g01090 Ubiquinol Cytochrome C reductase hinge protein; mitochondrial
electron transport, ubiquinol to cytochrome c

5.25 7.8161.05

At1g09270 Importin alpha isoforms 4 (IMPA-4) 22.01 3.2760.24

At1g01620 Plasma membrane intrinsic protein 1C (PIP1C) 22.16. 2.5660.13

At5g19410 ABC-2 type transporter family protein 2.12 1.1460.10

Protein binding At2g32720 Cytochrome B5 isoform B 2.31 6.6761.18

At4g25340 FKBP-type immunophilin family that functions as a histone
chaperone. Binds to 18S rDNA and represses its expression.

2.12 2.6660.63

RNA binding At3g49390 RNA binding protein (RPB37) 2.44 1.5960.17

Transcription factors At5g53200 TRIPTYCHON (TRY), Myb transcription factor 22.17 5.4261.56

At5g59570 Brother Of lux Arrhythmo (BOA), a component of the circadian
clock. Transcription factor.

22.63 3.9960.03

At5g60850 Dof- type Zinc finger domain similar to zinc finger protein
OBP4 transcription factor

3.24 2.2760.65

At5g11060 KN1-like homeodomain transcription factor (KNAT4) 214.00 21.0160.01

Protein metabolism At5g43640 Ribosomal protein S19 family protein 2.40 1.3660.17

Unkn. biological process At2g03505 Carbohydrate-binding X8 domain superfamily protein 9.62 1.8860.09

Other metabolic process At5g44620 Cytochrome p450 family protein (CYP706A3) 2.61 1.1060.11

Data are expressed as fold change by considering gene expression in mechanically damaged leaves equal to 1. Microarray data from the heterologous hybridization
performed on Arabidopsis microarrays are listed along with qPCR data using G. biloba cDNAs. Genes are grouped by GO annotations. (6SD). Microarray Fold Change
(FC).
doi:10.1371/journal.pone.0032822.t001
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Upon HW, several genes were differentially expressed with

respect to MD. The observed increase in H2O2 was in accordance

with the increased transcript levels of SOD and CAT at all time

points, as previously found upon herbivory in the model plant Lima

bean [45]. On the other hand POX was found to be significantly

down regulated by herbivory at later times, whereas APX was down-

regulated at early times. The down-regulation of POX has been

associated to the effect of insect’s oral secretions [54].

The results obtained with our heterologous microarray

experiment showed that most of the modulated genes were

associated with biotic and abiotic stress responses. A strong up-

regulation was found for a gene encoding a protein with

transporter activity, the Vesicle-Associated Membrane Protein

724 (VAMP 724, v-SNARE). This protein forms a complex known

as SNARE (soluble N-ethylmaleimide-sensitive-factor attachment

protein receptor), that plays a key role in vesicle trafficking to

vacuoles and delivery of molecules to their destination. The major

role carried out by this protein is to move ROS from endosomes to

vacuoles. Suppression of Arabidopsis vesicle VAMP 724 expression

inhibits fusion of H2O2 containing vesicles with vacuoles [55].

Another up-regulated gene with transporter activity is ubiquinol

cytochrome c reductase (cytochrome bc1 complex or complex III).

The activity of the gene product is involved in mitochondrial ROS

production, particularly H2O2, which acts not only as a damaging

oxidant but also as a signaling molecule through either direct

(oxidation of its target) or indirect (e.g., involving peroxiredoxins)

action [56]. Interestingly, the 20S proteasome alpha subunit PAA2

proved to be highly induced by herbivory. Dahan and co-workers

[57] hypothesized a complex organization and regulation of the

20S plant proteasome and its possible stress-induced modification

into a so-called ‘‘plant defense proteasome’’, which might be

involved in the activation of plant defense reactions. The same

authors also demonstrated that 20S proteasome alpha subunit is

up regulated by elicitins in tobacco cells. Other up-regulated genes

involved in transport processes were importin á (IMPA-4), one of the

two factors of the nuclear pore-targeting complex which was found

to interact with virulence (Vir) proteins encoded by the Ti plasmid

of Agrobacterium tumefaciens [58]; and an aquaporin (PIP1c), which is

involved in water transport activity, and which has been recently

correlated to ROS signaling and/or oxidative stress response [59].

Upon herbivory cytochrome b5 was also up-regulated. Cyto-

chrome b5 is a heme-binding protein and functions as an electron

transfer component involved in a number of oxidative reactions,

such as the anabolic metabolism of lipids and the catabolism of

xenobiotics and compounds of endogenous metabolism [60]. The

oxidative reactions mediated by cytochrome b5 are also associated

with sugar supply and cytochrome b5 plays a regulatory role by

physically interacting with sugar transporters [61].

The gene encoding for a protein serine/threonine kinase,

similar to protein kinase APK1A, was found to be down regulated

upon herbivory. The involvement of protein kinases in plant-

herbivore interaction has been recently reviewed [14].

Two transcription factors, TRIPTYCHON (TRY) and a component

of the circadian clock (BROTHER OF LUX ARRHYTHMO, BOA),

showed a consistent up-regulation. TRY, which encodes a CPC-

homologous MYB-related transcription factor, is a negative regulator

of trichome development functioning in lateral inhibition and hence

most probably in cell-cell signaling [62]. BOA is a GARP family

transcription factor and is regulated by circadian rhythms in A.

thaliana. Overexpression of BOA exhibits physiological and develop-

mental changes, including delayed flowering time and increased

vegetative growth under standard growing conditions [63].

Phenolic compounds are apparently important in the defense

mechanisms of conifers [64] and the induction of leaf flavonoids is

a specific defense response of many plants against insect herbivory

[65,66]. Our results on G. biloba flavonoid metabolism and gene

expression indicate an involvement of flavonoids in response to

herbivory. PAL, CHS, F3H and ANR gene expression were up-

regulated after 4 h. This increased gene expression was accom-

panied by the increased abundance of several flavonoids like 3-O-

(b-D-glucosyl)kaempferol, 3-O-[6-O-(a-L-rhamnosyl)-b-D-gluco-

syl]kaempferol, 3-O-[2-O-(b-D-glucosyl)-a-L-rhamnosyl]kaemp-

ferol and 3-O-[6-O-(a-L-rhamnosyl)-b-D-glucosyl]isorhamnetin.

Kaempferol diglycoside, kaempferol triglycoside, and quercetin

glycosides were also found to be significantly increased by beetle

damage [67]. In G. biloba, 3-O-[2-O-(b-D-glucosyl)-a-L-rhamno-

Figure 5. Time-course quantitative gene expression of some ROS scavenging genes in G. biloba upon herbivory. Gene expression of
superoxide dismutase (SOD) and catalase (CAT) was up-regulated by herbivory at all times. Upon herbivory, peroxidase (POX) was significantly down-
regulated after 4 h, whereas ascorbate peroxidase (APX) was down-regualted after 30 min. The dotted lines represent control values (mechanical
damage), different letters indicate significant (P,0.05) differences, asterisk indicates significant (P,0.05) differences with respect to control.
doi:10.1371/journal.pone.0032822.g005
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syl]quercetin was also increased after 4 h herbivory, although the

gene expression of a flavonol synthase (FLS), which leads to the

synthesis of quercetin from dihydroflavonols, was down-regulated.

Although increased contents of bilobalide, ginkgolide A and

ginkgolide B have been observed in G. biloba cell cultures induced

with biotic elicitors of Candida albicans [68] or in plants exposed to

elevated levels of O3 [69], the concentration of bilobalide did not

show significant changes in response to herbivory, whereas the

ginkgolides A, B and C were all significantly reduced by insect

feeding. Ginkgolide B has been shown to confer bioactivity by

inhibiting oxidative stress generation, and the dose-response effects

of ginkgolide B on ROS generation in human cells has been

demonstrated [70]. We may speculate that the increased ROS

activity upon HW may exert a negative effect on ginkgolide

production. The observed down-regulation of LPS at all times

correlated with the reduction of ginkgolide content.

Herbivory also induced G. biloba VOCs emissions. Previous attempts

to induce VOC emission from G. biloba with spider mites (Tetranychus

urticae) were unsuccessful, because leaves were not accepted as a host

plant. However, treatment of G. biloba leaves with 1 mM jasmonic acid

(JA) induced VOC emission [31], suggesting the potential of this plant

to emit terpenoids. The generalist S. littoralis accepted G. biloba leaves

although feeding induced a delay in molting and the death of some

insect (unpublished results). Herbivore-induced VOCs included the

sesquiterpenes a-copaene and b-caryophyllene, which have been

shown to be released by G. biloba upon JA treatment [31]. These two

sesquiterpenes have also been described to be involved in attraction of

insect’s predators in several plant-interactions [51]. Finally the

increased emission of some HW-induced sesquiterpenes was accom-

panied by the up-regulation of FPPS, a key gene in sesquiterpene

synthesis [71]. The conversion of FPP to the sesquiterpenes a-copaene

[72] and b-caryophyllene [73] has been demonstrated.

In conclusion, we showed that the ‘‘living fossil’’ plant G. biloba

responds to herbivory by inducing early responses, such as the

variation of the plasma transmembrane potential and the induction of

both calcium and ROS signaling. These events preceded the

activation of ‘‘second line’’ defense systems including the activation

of defense genes and the production of secondary plant metabolites

(e.g., many glycosylated flavonoids). Furthermore the emission upon

herbivory of specific VOCs indicates the ability of the plant to

potentially activate indirect defenses along with the activation of

direct defenses, although the ability of emitted VOCs to attract

predators of herbivores was not yet demonstrated. Current research

in our laboratory is under way to evaluate the possible attraction of

predators by emitted VOCs as well as S. littoralis tolerance to G. biloba

toxic metabolites and the mechanisms underlying its resistance.

Materials and Methods

Plant and animal material
Ginkgo biloba L. seeds were collected from an adult (.100 years

old) female G. biloba tree growing in the Botanical Garden of the

Table 2. Comparative analysis of flavonoids, bilobalide and ginkolides between mechanically damaged (MD) and Spodoptera
littoralis wounded (HW) Ginkgo biloba leaves after 4 h feeding.

Compound Spectra [M-H]2 MD HW

Quinic acid MS:190.8; MS2[190.8]: 173; 127; 111; 93; 85 3.25 ( 1.81) 3.81 ( 0.48)

3-O-[2-O, 6-O-Bis(a-L-rhamnosyl)-b-D-glucosyl]quercetin MS:755; MS2[755]: 609; 301 1.01 ( 0.69) 1.66 ( 0.17)

3-O-[6-O-(a-L-rhamnosyl)-b-D-glucosyl]myricetin MS:625; MS2[625]: 317 MS3[317]: 288; 271; 179 0.51 ( 0.38) 1.60 ( 0.53)

3-O-(b-D-glucosyl)quercetin MS:463; MS2[463]: 301 1.78 ( 1.34) 5.66 ( 1.12)

3-O-[6-O-(a-L-rhamnosyl)-b-D-glucosyl]isorhamnetin MS:623; MS2[623]: 315 18.80 ( 5.35) 49.34 ( 0.78)

Glucosyl myricetin MS:625; MS2[625]: 317 MS3[317]: 288; 270; 179 nd 1.44 ( 0.21)

3-O-[2-O-(b-D-glucosyl)-a-L-rhamnosyl]isorhamnetin MS:623; MS2[623]: 315 MS3[315]: 301; 272; 255 8.64 ( 2.82) 16.01 ( 1.85)

3-O-[6-O-(a-L-rhamnosyl)-b-D-glucosyl]quercetin MS:609.1; MS2[609]: 301 20.42 ( 2.38) 39.09 (10.19)

3-O-[6-O-(a-L-rhamnosyl)-b-D-glucosyl]-39-methylmyricetin MS:639.1; MS2[639]: 331 MS3[331]:316; 289; 271 3.05 ( 1.31) 5.27 ( 0.44)

3-O-(a-L-rhamnosyl)isorhamnetin MS:463; MS2[463]: 315 MS3[315]:301 46.10 (14.89) 93.44 ( 0.13)

3-O-[2-O-(b-D-glucosyl)-a-L-rhamnosyl]quercetin MS:609.1; MS2[609]: 301 MS3[301]:271; 24.11 ( 9.37) 59.12 ( 4.96)

3-O-[6-O-(a-L-rhamnosyl)-b-D-glucosyl]kaempferol MS:593; MS2[593]:285 MS3[285]: 257; 229 12.08 ( 2.86) 30.22 ( 6.67)

3-O-[2-O-(b-D-glucosyl)-a-L-rhamnosyl]-39-methylmyricetin MS:639; MS2[639]: 331 MS3[331]:316; 287; 271 1.57 ( 0.83) 2.45 ( 0.08)

Diglucosyl isorhamnetin MS:623.1; MS2[623]: 315 MS3[315]: 300; 271; 255 14.10 ( 1.95) 19.62 ( 0.28)

Glucosyl quercetin MS:463; MS2[463]: 301 51.49 ( 5.59) 56.73 ( 2.44)

3-O-[2-O-(b-D-glucosyl)- a-L-rhamnosyl]kaempferol MS:593; MS2[593]:285 nd 7.72 ( 1.95)

3-O-(b-D-glucosyl)kaempferol MS:447; MS2[447]: 285 MS3[285]: 255, 227, 151 2.34 ( 0.88) 6.42 ( 0.52)

3-O-(a-L-rhamnosyl)quercetin MS:447; MS2[447]: 301 MS3[301]: 179; 151 26.46 ( 2.52) 50.94 ( 9.78)

7-O-(a-L-rhamnosyl)kaempferol MS:431; MS2[431]: 285; 227 19.01 ( 2.83) 22.90 ( 4.45)

Bilobalide MS:325; MS2[325]: 251; 207; 193; 163 265.28 (15.02) 233.03 (15.77)

Ginkgolide A [M+CO2]2 453; MS2[453]:407; 379; 351 318.47 ( 9.31) 239.87 (17.69)

Ginkgolide B MS:423; MS2[423]: 395; 367 404.22 (24.76) 279.91 ( 8.43)

Ginkgolide C MS:439; MS2[439]: 411; 383; 321 65.74 ( 8.17) 44.60 ( 3.09)

nd, not detected.
Values (n = 5–8) are expressed as ng g21 fr. wt. (6SEM). In the same row, boldface HW values indicate significant (P,0.05) differences between HW and mechanically
damaged (MD) leaves.
doi:10.1371/journal.pone.0032822.t002
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University of Turin. Seeds were germinated in plastic pots with

sterilized potting soil at 27uC during the day and 22uC during the

night and 60% humidity using daylight fluorescent tubes at

approximately 120 mmol m22 s21 with a photoperiod of

16 hours. Experiments were conducted with three-month old

plants on fully developed leaves which were found to be the most

responsive leaves.

Larvae of the generalis herbivore Spodoptera littoralis (Boisd. 1833)

(Lepidoptera, Noctuidae) (kindly supplied as egg clutches by Dr.

Roland Reist, Syngenta Crop. Protection Münchwilen AG, Stein,

Figure 6. Structure formulae of the main representative G. biloba compounds.
doi:10.1371/journal.pone.0032822.g006
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Switzerland), were used because to our knowledge there are no

reports on herbivores feeding on G. biloba. Larvae were reared in

Petri dishes at 22–24uC with a 14–16 h light phase. They were fed

on artificial diet as previously described [46].

All experiments, except preliminary Vm tests on bilobed and

multi-dissected leaves, were carried out by using G. biloba fan-

shaped leaves at the same developmental stage. S. littoralis larvae

(third instar) were starved for 24 h before transfer to leaves. The

mechanical damage was done by a pattern wheel. Damaged leaves

were harvested by cutting the petiole and immediately frozen in

liquid nitrogen and stored at 280uC until use.

Membrane potentials
Membrane potentials were determined in leaf segments. G.

biloba bilobed, fan-shaped and multi-dissected leaves were

analyzed. The transmembrane potential difference (Vm) was

determined as previously reported [46]. Vm variations were

recorded both on a pen recorder and through a digital port of a

PC using a data logger. The results of Vm are shown as the

average number of at least 50 Vm measurements.

Determination of intracellular calcium variations using
confocal laser scanning microscopy (CLSM) and calcium
orange

Calcium orange dye (stock solution in DMSO, Molecular

Probes, Leiden, The Netherlands) was diluted in 5 mM MES-Na

buffer (pH 6.0) containing 0.5 mM calcium sulfate and 2.5 mM,

dichlorophenyldimethylurea (DCMU) (Sigma-Aldrich, Milan,

Italy) to a final concentration of 5 mM. This solution was applied

on G. biloba fan-shaped leaves attached to the plant. The leaf was

gently fixed on a glass slide and a drop of 5 mM calcium orange

solution (about 45 ml) was applied and covered with another glass

slide. After one hour of incubation with calcium orange, the leaf

was mounted on a Nikon Eclipse C1 (Nikon Instruments, Tokyo,

Japan) spectral CLSM stage without separating the leaf from the

plant in order to assess the basic fluorescence levels as a control.

Calcium variations were also monitored following MD and HW

for 30 min and 4 h in the presence of either 15 mM diphenyle-

neiodonium (DPI; Sigma-Aldrich), 100 mM Verapamil (Fluka

Biochemika, Buchs, Switzerland) or 250 mM ethylene glycol-bis(2-

aminoethylether)-N,N,N9,N9-tetraacetic acid (EGTA, Sigma-Al-

drich).

The microscope operated with a Krypton/Argon laser at

543 nm and 568 nm wavelengths: the first wavelength excited

calcium orange, resulting in green fluorescence and the second

mainly excited chlorophyll, resulting in red fluorescence. Images

generated by the FluoView software were analyzed using the NIH

image software as described earlier [41]. Measurements were

repeated at least 5 times (biological replicates).

CLSM localization of H2O2 and active peroxidases using
10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red)

The amplex red hydrogen peroxide/peroxidase assay (Molec-

ular Probes) was used for the detection of H2O2 and active

peroxidases. G. biloba fan-shaped leaves from intact plants in pots

were incubated with a 50 mM amplex red solution (in 5 mM Mes-

Na buffer, pH 6.0, containing 0.5 mM calcium sulfate and 5 mM

Figure 7. Time-course quantitative gene expression of some G. biloba genes involved in phenylpropanoid and terpenoid
metabolism upon herbivory. Phenylalanine ammonia lyase (PAL) and anthocyanidin reductase (ANR) were significantly up regulated by herbivory
only after 4 h, whereas flavonol synthase (FLS) was down-regulated at 30 min and 4 h. Chalcone synthase (CHS) showed a constant up-regulation,
whereas flavanone 3-hydroxylase (F3H) showed an increased up regulation after 4 h. Farnesyl diphosphate synthase (FPPS) was significantly
upregulated only after 30 min whereas geranylgeranyl diphosphate synthase (GGPP) showed no regulation at all times. Levopimaradiene synthase
(PPS) was significantly down-regulated at all times. The dotted lines represent control values (mechanical damage), different letters indicate
significant (P,0.05) differences, asterisks indicate significant (P,0.05) differences with respect to control.
doi:10.1371/journal.pone.0032822.g007
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DCMU) as reported earlier [45]. Leaves were mounted on a

Nikon Eclipse C1 spectral CLSM stage without separating the leaf

from the plant in order to determine the background fluorescence.

H2O2 variations were monitored after MD or HW treatment for

30 min and 4 h, and in addition in the presence of either 15 mM

DPI, 100 mM Verapamil or 250 mM EGTA. The microscope was

operated with an Ar-Laser (458 nm/5 mW; 476 nm/5 mW;

488 nm/20 mW; 514 nm/20 mW), a HeNe-Laser (543 nm/

1,2 mW) and a HeNe-Laser (633 nm/10 mW). Measurements

were repeated at least 5 times (biological replicates).

Isolation of total RNA and cDNA synthesis
Total RNA was extracted from treated (HW) and control (MD)

G. biloba leaves by using the Agilent Plant RNA Isolation Mini Kit

(Agilent Technologies), following manufacturer’s instructions. To

remove residual genomic DNA, total RNA was treated with

RNAse-free DNAse I set (Qiagen, Hilden, Germany) The RNA

quality was checked using the Agilent 2100 Bioanalyzer on RNA

6000 Nano LabChips Kit (Agilent Technologies). Quantitative

analysis was performed using the NanoDrop ND-1000 micro scale

spectrophotometer (Thermo Fisher Scientific, Waltham, MA, US)

as previously reported [15].

For cDNA synthesis, High-capacity cDNA Reverse Transcrip-

tion Kit (Applied Biosystems) was used according to manufactur-

er’s instructions. Briefly, the reactions were prepared by adding

1.5 mg total RNA, 2 ml of 106 RT buffer, 0.8 ml of 256 dNTPs

mix (100 mM), 2 ml 106 RT random primer, 1 ml of Multi-

scribeTM reverse transcriptase and nuclease-free sterile water up to

20 ml. Then the reaction mixtures were incubated at 25uC for

10 minutes, 37uC for 2 hours, and 85uC for 5 seconds. Samples

were stored at 220uC for further analyses.

Heterologous gene microarray hybridization
Five hundred nanograms of total RNA from MD and HW-

treated samples were separately reverse-transcribed into double-

strand cDNAs by the Moloney murine leukemia virus reverse

transcriptase (MMLV-RT) and amplified for 2 h at 40uC using the

Agilent Low RNA Input Linear Amplification Kit, two-color

(Agilent Technologies, Santa Clara, CA, US). Subsequently,

cDNAs were transcribed into antisense cRNA and labeled with

either Cy3-CTP or Cy5-CTP fluorescent dyes for 2 h at 40uC
following the manufacturer’s protocol. Cyanine-labeled cRNAs

were purified using RNeasy Minikit (Qiagen, Hilden, Germany).

Purity and dye incorporation were assessed by spectrophotometry

and electrophoresis (using the NanoDrop ND-1000 and Agilent

Table 3. Analysis of VOCs in the headspace of treated G. biloba leaves.

4 h 24 h

Compounds KI MD HW MD HW

2-Methyl butane 454 3.03 (0.26) 1.02 (0.11) 0.40 (0.50) 8.22 (1.73)

Octane 800 2.93 (0.91) 1.64 (1.11) 3.86 (0.31) 3.38 (0.29)

2-Hexenal 855 7.74 (4.40) 5.06 (3.71) 1.91 (2.53) 8.23 (0.75)

Heptanal 902 6.25 (2.19) 7.04 (2.77) 7.66 (2.34) 5.10 (3.21)

2-Heptenal 964 5.57 (0.37) 13.11 (2.10) 5.09 (0.84) 9.62 (0.55)

2-Penthyl furan 992 9.92 (1.15) 10.73 (2.97) 5.28 (1.48) 5.40 (0.54)

Decane 1000 7.15 (1.36) 6.23 (2.50) 7.31 (2.32) 5.90 (1.36)

Octanal 1004 2.30( 0.90) 3.46 (1.33) 1.34 (0.13) 0.91 (0.56)

Limonene 1029 18.71( 2.34) 20.25 (2.55) 4.42 (2.90) 12.10 (0.48)

2-Octenal 1056 10.79 (0.78) 6.76 (1.08) 4.07 (0.85) 3.40 (1.36)

1-Octanol 1068 6.38 (1.47) 19.28 (1.16) 2.78 (0.07) 4.33 (0.91)

Nonanal 1101 0.28 (0.11) 0.45 (0.27) 0.14 (0.02) 0.10 (0.01)

2-Nonenal 1149 6.74 (2.40) 7.43 (1.52) 3.83 (0.39) 10.41 (1.65)

Ethyl benzoate 1173 28.14 (7.48) 29.92 (2.61) 1.29 (0.16) 6.76 (1.83)

Decanal 1202 0.73 (0.13) 0.65 (0.52) 0.43 (0.17) 0.13 (0.11)

Benzothiazole 1218 2.97 (0.95) 3.60 (1.53) 0.86 (0.69) 0.43 (0.06)

2-Decenal 1249 6.59 (1.68) 8.01 (3.54) 1.58 (0.43) 1.53 (0.24)

Undecanal 1307 5.03 (1.81) 4.62 (2.91) 2.38 (0.59) 1.27 (0.93)

a-Copaene 1377 1.09 (0.67) 6.58 (0.53) 4.59 (2.77) 11.89 (0.22)

1-Tetradecene 1390 7.43 (1.77) 8.44 (2.69) 11.00 (2.62) 11.39 (2.58)

Tetradecane 1400 5.95 (0.38) 8.50 (0.79) 1.91 (0.42) 1.84 (0.39)

Dodecanal 1402 8.48 (1.63) 9.19 (2.87) 4.33 (2.87) 2.90 (1.70)

(E)-b-caryophyllene 1419 5.25 (1.77) 24.26 (1.52) 2.74 (0.69) 8.30 (1.70)

b-Chamigrene 1453 2.67 (0.60) 12.16 (1.82) 6.37 (0.99) 6.25 (1.63)

Pentadecane 1478 1.49 (1.14) 1.90 (0.91) 0.58 (0.10) 0.43 (0.09)

Total 198.14 (11.84) 250.02 (12.63) 97.91 (18.60) 153.07 (26.64)

Data are expressed as micrograms of VOCs per gram of leaf fresh weight (6SEM). Retention times (RT) and Kováts Index (KI) are indicated for each compound. For the
same time point, boldface HW values indicate significant (P,0.05) differences between MD and HW. HW, herbivore wounding; MD, mechanical damage.
doi:10.1371/journal.pone.0032822.t003
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2100 Bioanalyzer LabChips, respectively). Then, 750 ng of Cy3-

labeled RNA of the control condition and 750 ng of Cy5-labeled

RNA of the experimental condition (HW) were combined and

hybridized using the Gene Expression Hybridization Kit (Agilent

Technologies) onto 1622 K Arabidopsis (v2) Oligo Microarray

(Agilent Technologies).

After a 17 h incubation at 65uC and 10 rpm, the microarray

was first washed with gene expression wash buffer 1 for 1 min,

then with gene expression wash buffer 2 for 1 min, then with

100% acetonitrile for 30 s, and finally washed in the stabilization

and drying solution for 30 s.

The microarray slide was scanned with the Agilent Microarray

G2505B Scanner and data were extracted and normalized from

the resulting image using Agilent Feature Extraction (FE) software

(v.9.5.1). Data were analyzed using the GeneSpring GX 10.1.1

software (Agilent Technologies).

Bioinformatics analyses
About 4300 EST sequences isolated from G. biloba female leaf were

downloaded from the National Centre for Biotechnology Informa-

tion (NCBI) database (http://www.ncbi.nlm.nih.gov/). BlastX anal-

yses were carried out using the NCBI blast tool and The Arabidopsis

Information Resource (TAIR) database (http://www.arabidopsis.

org/), i) in order to identify G. biloba genes with similarity to those

oligonucleotide probes on the microarray which were found to be

differentially expressed by cross-hybridization, and ii) in order to

predict potential protein functions for these genes. Twenty four genes,

out of the almost 100 genes which were significantly modulated in the

microarray, were selected and validated by qPCR.

In order to find genes encoding enzymes involved the

biosynthesis of phenylpropanoids and in the ROS scavenging

system to be employed in expression analyses, an additional search

in NCBI (EST database) was carried out.

Quantitative real time PCR (qPCR)
qPCR analyses were carried out using the Stratagene MPX3000

Real Time System (La Jolla, CA, USA). qPCR reactions were run

using specific primers designed with Primer3 software (http://

frodo.wi.mit.edu/primer3/) and listed in Supporting Table S3 and

G. biloba cDNAs as template. Amplifications were carried out in a

25 ml reaction mixture containing 1 ml cDNA as template (1:10

dilution of cDNA from 20 ml of RT reaction), 12.5 ml MaximaTM

SYBR Green qPCR master mix (26) (Fermentas, International,

Inc, Burlington, ON, Canada) and 100 nM primers (Integrated

DNA Technologies, Coralville, IA, US). The applied protocol was

the following: initial polymerase activation of 10 min at 95uC;

followed by 40 cycles of 30 s at 95uC, 30 s at 57uC, and 30 s at

72uC. Fluorescence was read following each annealing and

extension phase. All runs were followed by a melting curve

analysis from 55 to 95uC. Three different reference (housekeeping)

genes (actin 2, glyceraldehyde-3 phosphate dehydrogenase, 18 S

rRNA) were used to calibrate and normalize the results of the

qPCR. The best of the three genes was selected using the

Normfinder software (www.normfinder.com). The most stable

gene was actin 2. PCR conditions were determined by comparing

threshold values in dilution series of the RT product, followed by

non-template control for each primer pair. Relative expression

levels of genes were calculated by using the Pfaffl method [74].

Extraction and analysis of G. biloba compounds induced
by MD and HW

One gram of frozen leaves was ground to a fine powder by using

liquid nitrogen with the addition of 10 ml methanol (Carlo Erba

Reagents, Arese, Italy). Samples were extracted in a ultrasonic

bath at 35uC for 30 min and centrifuged at 5000 g for 10 min at

room temperature. The supernatant was transferred and the same

extraction procedure was repeated twice. Pooled aliquots were

dried under vacuum. Extracts were re-suspended in 500 ml

methanol and then centrifuged at 5000 g for 10 min at room

temperature. Extracts were filtered before injection in LC/MS.

Samples were separated by an Agilent 1200 HPLC (Agilent

Technologies) equipped with a Luna C18 (3.06150 mm, 3.0 mm,

Phenomenex, Torrance, CA, USA) reversed-phase column. The

binary solvent system was: A) double distilled water with 0.1% v/v

formic acid and B), acetonitrile (ACN) with 0.1% v/v formic acid.

Separation was performed at 0.2 ml min21 flow rate and 25uC
using an ACN gradient. The B mobile phase was held at 25% for

3 min and then increased to 30% at 7 min. Isocratic elution was

performed for 8 min. Afterwards, solvent B was increased up to

55% (15 to 22 min), and 95% (23 to 27 min). The column was

kept at 95% solvent B for 7 min. The initial mobile phase was re-

established for 10 min before the next injection.

Mass spectrometry analyses were performed with a 6330 Series

Ion Trap LC-MS System (Agilent Technologies) equipped with an

electrospray ionization source (ESI). Qualitative analyses were

made by tandem MS3 and spectra were acquired in negative mode

with 1.5 kV ion spray voltage, nebulizer curtain gas (N2) at

5 L min21 and 325uC, 1.00 V fragmentation amplitude and full

scan range 50–1000 m/z. For quantitative analyses, samples were

analyzed by LC-ESI-MS2 in MRM mode with the above

acquisition parameters. The monitored mass transitions were m/

z 407R351, 423R367, 439R383 and 325R163 for ginkgolides

A, B and C and bilobalide, respectively, and the Y0
2 aglycone ions

for flavonoid-glycosides. Spectral data were processed and

analysed by the DataAnalysis for 6330 Series Ion Trap LC/MS

4.0 software (Bruker Daltonik, Bremen, Germany). Identification

of spectra was done by manual interpretation and by comparison

with literature data [75,76]. External calibration curves were made

with standard solutions of rutin, quercetin, kaempferol, ginkgolide

A, ginkgolide C and bilobalide (Sigma-Aldrich).

VOC extraction and analysis
Headspace VOCs were collected in 4 L glass desiccators by

using four-node cuttings of fan-shaped leaves. Leaves were

illuminated with fluorescent light bulbs (70 mmol m22 s21) with

a light phase of 16 h, the temperature inside desiccators was 23uC
and the relative humidity about 70%. Glass desiccators were

connected to a GC grade air generator (HPZA-3500–220, Parker

Balston, Cleveland,OH, USA) through a cork plug with two

openings. Air was fluxed into the jars at 200 ml min21 flow rate.

Clean glass Thermal Desorption Unit (TDU) liners (Gerstel,

Mülheim an der Ruhr, Germany) were filled with 20 mg sorbent

Tenax TA 60/80 [poly-(2,6-diphenyl)- p-phenylene oxide]

(Supelco, Bellefonte, PA, USA). The sorbent was sandwiched by

silanized glass wool (Agilent Technologies). Before use, Tenax TA

was always preconditioned at 250uC on a Gerstel TDU for

10 min. Undamaged plants as control, MD-leaves and HW-leaves

with six third instar S. littoralis larvae were assayed for 4 h and

24 h. All experiments were standardized with 30% of leaf damage.

Tenax TA was desorbed in the TDU connected to a Gerstel

Cooled Injection System 3 (CIS3 cryofocusing system) which uses

liquid CO2 as cooling agent. Desorption was carried out in splitless

mode with the following temperature program: 36uC held for

0.5 min, 25uC min21 increase to 260uC. The desorption temper-

ature was held for 5 min and the CIS3 was maintained at 240uC.

After desorption, CIS3 temperature was raised at a 12uC sec21

rate up to 280uC and temperature was held for 3 min.

Herbivore-Induced Defense in Ginkgo biloba

PLoS ONE | www.plosone.org 12 March 2012 | Volume 7 | Issue 3 | e32822



Desorbed volatiles were analyzed by gas-chromatography

(Agilent Technologies, mod. 6890N) coupled with a mass

spectrometry (Agilent technologies, mod. 5973A). Compounds

were separated on a Zebron ZB-5MS (mod. 7HG-G010-11,

Phenomenex) capillary column (stationary phase: 95% polydi-

methyl siloxane - 5% diphenyl, 30 m length, 250 mm internal

diameter, 0.25 mm film thickness) with the following temperature

program: 60uC for 5 min followed by a temperature rise at a

3uC min21 rate to 270uC (held for 5 min). Tenax TA was exposed

in the TDU port during the entire GC run. Carrier gas was He

with a constant flow of 1 ml min21, transfer line temperature to

MSD was 280uC, ionization energy (EI) 70 eV, and full scan range

50–250 m/z. Separated compounds were identified by pure

standard comparison, by comparison of their mass spectra and

retention indexes (Kováts index) with those of reference substances

and by comparison with the NIST mass spectral search software

v2.0 using the libraries NIST 98 library. External calibration

curves were made with standard solution of (-)-menthol (99%,

Fluka) for quantitative measurements as previously described [15].

Statistical analysis
The overall data sets are expressed as mean values of at least

three biological replicates. Three technical replicates were run for

each biological replicate. Metric bars indicate standard error.

ANOVA and Tukey–Kramer’s HSD test (P,0.05) were used to

determine significant differences among treatments using the

SYSTAT 10 software.
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41. Mithöfer A, Mazars C, Maffei M (2009) Probing spatio-temporal intracellular

calcium variations in plants. In: Pfannschmidt T, ed. Plant signal transduction.

Totowa: Humana Press Inc., pp 79–92.
42. Swanson SJ, Choi WG, Chanoca A, Gilroy S (2011) In vivo imaging of Ca2+,

pH, and reactive oxygen species using fluorescent probes in plants. Annu Rev
Plant Biol 62: 273–297.

43. Frahry G, Schopfer P (1998) Inhibition of O2-reducing activity of horseradish
peroxidase by diphenyleneiodonium. Phytochemistry 48: 223–227.

44. Liu N, Yang YY, Mo SW, Liao JL, Jin JN (2005) Calcium antagonistic effects of

Chinese crude drugs: Preliminary investigation and evaluation by 45Ca. Appl
Rad Isotop 63: 151–155.
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