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Abstract

We performed a genome-wide association study (GWAS) on levels of serum total protein (TP), albumin (ALB), and non-
albumin protein (NAP). We analyzed SNPs on autosomal chromosomes using data from 9,103 Japanese individuals, followed
by a replication study of 1,600 additional individuals. We confirmed the previously- reported association of GCKR on
chromosome 2p23.3 with serum ALB (rs1260326, Pmeta = 3.161029), and additionally identified the significant genome-wide
association of rs4985726 in TNFRSF13B on 17p11.2 with both TP and NAP (Pmeta = 1.2610214 and 7.1610224, respectively).
For NAP, rs3803800 and rs11552708 in TNFSF13 on 17p13.1 (Pmeta = 7.2610215 and 7.5610210, respectively) as well as
rs10007186 on 4q21.2 near ANXA3 (Pmeta = 1.361029) also indicated significant associations. Interestingly, TNFRSF13B and
TNFSF13 encode a tumor necrosis factor (TNF) receptor and its ligand, which together constitute an important receptor-
ligand axis for B-cell homeostasis and immunoglobulin production. Furthermore, three SNPs, rs4985726, rs3803800, and
rs11552708 in TNFRSF13B and TNFSF13, were indicated to be associated with serum levels of IgG (P,2.361023) and IgM
(P,0.018), while rs3803800 and rs11552708 were associated with IgA (P,0.013). Rs10007186 in 4q21.2 was associated with
serum levels of IgA (P = 0.036), IgM (P = 0.019), and IgE (P = 4.961024). Our results should add interesting knowledge about
the regulation of major serum components.
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Introduction

Serum proteins possess various biological functions such as

hormones, enzymes, antibodies, and clotting agents, and some

serve as valuable biomarkers that reflect several disease

conditions. Major components of serum proteins are ALB

(approximately 60%), globulins (mainly as c-globulins, approxi-

mately 30%), and fibrinogens. Total serum protein levels range

from 6.5 to 8.5 g/dl and show significant inter-individual

variation. These variations are found to be influenced by

environmental factors. However, genetic factors are also known

to affect their levels although the range of genetic effects varies

by the reports from 20% to 77% [1]. Genome-wide association

studies (GWAS) recently demonstrated that serum levels of

several proteins can be strongly influenced by common genetic

variants through either cis or trans effects [2–4].

We previously reported the GWAS results for hematological

and biochemical traits, including TP and ALB, in the Japanese

population [5]. An associated SNP for TP, rs4273077 (P-

value = 4.5610210), is located in an intron of TNFRSF13B

(Tumor Necrosis Factor Receptor Superfamily member 13B),

which encodes TACI (transmembrane activator and calcium-

modulator and cytophilin interactor), one of three TNF-receptor

family members (BAFF-R, TACI, and BCMA) [6]. However,

since rs4273077 showed no significant association with the serum

ALB level (P = 0.089), we suspected that this SNP would have

genetic effects primarily on the levels of the non-albumin

fraction. TACI is expressed mainly in activated B cells and

binds with a high affinity to two TNF ligands; APRIL (a

Proliferation-Inducing Ligand, encoded by TNFSF13), and BAFF

(B Cell-Activating Factor, encoded by TNFSF13B) [7]. TACI is

implicated in B- cell homeostasis (including B- cell survival,

activation, and differentiation), immunoglobulin production, and

antibody class switching [8–10]. Hence, the association of

variants in TNFRSF13B with TP is likely to reflect the

immunoglobulin serum levels.

The aim of this study is to identify the genetic variations

associated with serum levels of non-albumin proteins (NAP),

particularly those of immunoglobulins by GWAS of Japanese

subjects.
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Results

GWAS of Total Protein (TP), Albumin (ALB), and Non-
albumin Protein (NAP)

We conducted a GWAS using genotyping data and clinical

information on 9,103 individuals who had been collected in the

BioBank Japan Project [11] (Table 1, Table S1). Genotyping was

performed using Illumina Human610-Quad BeadChip (Illumina,

CA, USA). After applying stringent quality control (QC) filters for

selection of individuals and SNPs (Materials and Methods), we

additionally performed whole-genome imputation analysis using

the data of HapMap Phase II East Asian populations, and we

obtained the information of 2,178,644 SNPs on autosomal

chromosomes with minor allele frequencies (MAF) of $0.01 and

Rsq of $0.7. We then evaluated the association of the SNPs with

the adjusted Z scores of serum levels of total protein (TP), albumin

(ALB), and non-albumin protein (NAP). A Quantile-quantile (Q-

Q) plot for each trait indicated low possibility of population

stratification (inflation factors (lGC) for TP, ALB and NAP were

1.04, 1.02 and 1.02, respectively) (Figure S2).

Several SNPs with strong linkage disequilibrium (LD) (r2.0.8)

in intronic regions of TNFRSF13B on chromosome 17p11.2

showed significant associations with both TP and NAP

(rs4985726, P = 2.8610212 and 2.4610222, respectively)

(Table 2, Table S2, Figure 1A and 1B, and Figure 2A and 2B).

In addition, rs3803800 and rs11552708 in coding regions of

TNFSF13 on chromosome 17p13.1 demonstrated significant

associations with NAP (P = 1.8610212 and 7.061029, respectively)

(Table 2, Figure 1B, and Figure 2C).

Since TNFSF13 encodes APRIL, a ligand of TACI encoded by

TNFRSF13B, this ligand- receptor interaction is likely to play a

critical role in regulation of the serum NAP levels. However, we

did not find any synergistic effects between SNPs in the receptor

and ligand on NAP levels.

Rs10007186 located near ANXA3 (annexin A3) on chromosome

4q21.2 also revealed significant association with NAP

(P = 3.361029; Table 2, Figure 1B, and Figure 2D), and a cluster

of highly linked SNPs near the 59 flanking region of AFF3 (AF4/

FMR2 family, member 3) on 2q11.2 indicated suggestive

associations with NAP (rs4851274, P = 9.9561028) (Table S2).

For serum ALB, SNPs rs1260326 (in exon) and rs3817588 (in

intron) in GCKR (glucokinase regulator) on 2p23.3 revealed

significant associations (P = 3.461028 and 4.161028, respectively)

(Figure 2E, Table 2, and Table S2).

Conditional logistic regression analysis for the SNPs on 17p13.1

indicated that both rs3803800 and rs11552708 conferred

independent associations with NAP levels when adjusted for each

other (P,0.023). These two SNPs were in strong LD (D9 = 0.99,

r2 = 0.30) and the haplotype analysis of these two SNPs identified

that a haplotype (rs3803800 [A] – rs11552708 [G]) revealed

stronger association with NAP than individual SNP

(P = 2.59610213) (Table S3). Similarly, rs1260326 and

rs3817588 in GCKR exhibited independent associations with

ALB levels (P,0.022), and were in LD (D9 = 0.95, r2 = 0.50).

Moreover, the haplotype (rs1260326 [C]–rs3817588 [C]) indicat-

ed stronger association with serum ALB (P = 2.8361029) (Table

S4). For the 17p11.2 and 4q21.2 loci, no SNP remained significant

after accounting for the effect of marker the SNPs rs4985726, and

rs10007186, respectively.

When we examined the genetic contribution of these variations

for the traits, the combinations of the SNPs indicated above could

explain nearly 0.5%, 2.3%, and 0.3% of variations in serum TP,

NAP, and ALB, respectively.

Replication Study
To validate the GWAS results, we performed a replication study

using an independent set of ,1,600 subjects from BioBank Japan

[11] (Table 1). For each trait, we selected marker SNPs for the

replication analysis at each locus that indicated the genome-wide

significant level of 5.061028 (rs4985726 in TNFRSF13B,

rs3803800 in TNFSF13, rs1260326 in GCKR, and rs10007186

on 4q21.2). In addition, the two SNPs that remained significant

after accounting for the effect of each marker SNP at two loci

(rs11552708 in TNFSF13 and rs3817588 in GCKR) were also

further investigated.

SNPs rs4985726 in the TNFRSF13B locus as well as rs3803800

and rs11552708 in the TNFSF13 locus revealed significant

associations with both TP and NAP (Table 2). The association

of rs1260326 in GCKR with serum ALB was also replicated

(P = 0.029; Table 2). Meta-analyses combining the GWAS and the

replication study yielded stronger associations of these SNPs than

the GWAS alone (Table 2 and Figure 2A, B, C, and E).

Table 1. Characteristics of the examined proteins.

TP ALB NAP IgG * IgA * IgM * IgE *

GWAS Replication GWAS Replication GWAS Replication

No. 9,090 1,626 9,103 1,607 9,077 1,629 1,794 1,675 1,649 549

M6S.D a 7.106

0.50
7.066

0.73
4.256

0.35
4.006

0.51
2.856

0.42
3.076

0.57
1.446

0.61
0.276

0.15
0.116

0.07
1306.546

5598.06

Age b 69.526

10.44
59.526

15.43
69.526

10.44
59.546

15.39
69.516

10.44
59.486

15.52
59.706

15.46
59.386

15.73
59.426

15.57
62.546

18.61

Female % 37.45 45.08 37.41 45.12 37.46 45.12 55.30 54.57 54.88 63.93

BMI b 22.916

3.45
23.316

5.67
22.916

3.45
23.346

5.69
22.916

3.45
23.296

5.67
23.176

5.00
23.206

5.09
23.196

5.07
22.736

4.22

Smokers % 42.11 51.91 42.11 52.15 42.05 51.81 51.90 51.82 52.27 48.63

Drinkers % 29.37 51.97 29.37 52.08 29.40 51.81 51.00 50.81 50.82 41.35

aM6S.D: mean value6standard deviation of each protein is indicated in g/dl except for IgE, which is indicated as IU/ml.
bAge and body mass index (BMI) are indicated as mean values6standard deviation.
*Log-transformed values were applied in the analysis.
Abbreviations: GWAS: genome-wide association study, TP: total protein, ALB: albumin, NAP: non-albumin protein.
doi:10.1371/journal.pone.0032683.t001

TNFRSF13B, TNFSF13, and ANXA3 and Serum Proteins
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Rs10007186 near ANXA3 revealed a suggestive association in the

replication study (P = 0.065), and meta-analyses indicated that the

association was unlikely to be false positive (P = 1.361029) (Table 2

and Figure 2D).

Association of the SNPs Identified in the GWAS of NAP
with Serum Immunoglobulin Isotypes

Immunoglobulin isotypes constitute the major components of

NAP. Hence, we further examined the NAP-associated SNPs in

the GWAS (TNFRSF13B, TNFSF13, and ANXA3) for the

association with various serum immunoglobulins using the samples

in BioBank Japan [11] (IgG: n = 1,794, IgA: n = 1,675, IgM:

n = 1,649, and IgE: n = 549; Table 1).

We found significant associations of rs4985726 in TNFRSF13B

as well as rs3803800 and rs11552708 in TNFSF13 with serum

levels of IgG (P,0.0023) and IgM(P,0.018) (Table 3). For IgA,

rs3803800 and rs11552708 in TNFSF13 also revealed the

significant association (P,0.013), while rs4985726 in TNFRSF13B

revealed no significant association (P = 0.099) (Table 3).

Rs10007186 near ANXA3 indicated significant association with

IgA (P = 0.036), IgM (P = 0.019), and IgE (P = 4.961024).

However, these associated SNPs explained only 1.4%, 0.9%,

1.3%, and 2.0% of the variances of log-transformed values of

serum IgG, IgA, IgM, and IgE, respectively.

Discussion

On the basis of the information of 10,716 Japanese individuals,

we identified one genetic locus (TNFRSF13B) on chromosome

17p11.2 associated with both TP and NAP, two loci (TNFSF13 on

17p13.1 and a region near ANXA3 on 4q21.2) associated with

NAP, and one locus (GCKR) on 2p23.3 associated with ALB at the

level of genome-wide significance.

The marker SNP rs4985726 shows association with TP and

NAP is located in an intron of TNFRSF13B on chromosome

17p11.2. A possible mechanism for its association with these traits

could be explained by its strong LD with rs34562254 (D9 = 1,

r2 = 0.97), which exhibits a missense variation (C.T, Pro251Leu)

located in the intracellular domain of the receptor molecule. The

in silico prediction of the amino acid substitution by rs34562254 in

the PolyPhen-2 and SNPinfo database [12,13] suggested a

‘‘probably damaging’’ effect on the protein structure.

The SNPs in TNFSF13 (encoding APRIL) that identified as

being associated with NAP are missense variants; rs3803800

(A.G, Asn96Ser), and rs11552708 (G.A, Gly67Arg). APRIL was

first described as having a promoter function for tumor-cell

proliferation and survival [14]. APRIL is cleaved in the Golgi

apparatus by furin at its 104Arg/105Ala site [15], and

interestingly, rs3803800 is closely located to this cleavage site.

Hence, this SNP might affect the cleavage affinity. Another

possibility is the effect on splicing, because both SNPs are

predicted to be located within binding sites of splicing regulatory

elements [13]. However, further investigation should be required

to address these possibilities.

The SNP rs4985726 in TNFRSF13B as well as rs3803800 and

rs11552708, in TNFSF13 also revealed significant associations with

serum levels of IgG, IgA, and IgM. It is notable that the two genes

encode a TNF-receptor and ligand axis that plays important roles

for mediating antibody class switching and regulating immuno-

globulin production [8,9]. Furthermore, knockout mice of either

TNFRSF13B or TNFSF13 presented a common phenotype of the

IgA deficiency with impaired antibody response to T cell-

independent antigens [16]. In addition, germ-line mutations in

TNFRSF13B were reported in cases of common variable

immunodeficiency (CVID; MIM # 607594) and selective IgA

deficiency (IGAD; MIM # 137100) [17]. The combination of

these significant statistical and biological evidences would suggest

that the association of these two loci with NAP reflect at least their

associations with regulation of serum immunoglobulin levels. It is

also known that immunoglobulins are the major components of

NAP, which provides compelling evidence for our results. The

facts that both SNPs rs3803800 [A] and rs11552708 [G] in

TNFSF13 were reported to be associated with the susceptibility to

the Systemic Lupus Erythematosus (SLE) in the Japanese

population and that high serum APRIL was detected in the sera

of individuals with the rs3803800 [A]–rs11552708 [G] haplotype

[18] further support the significance of these SNPs in the

regulation of immunoglobulin production. In this study, we

observed that possession of two copies of SLE-risk alleles was

associated with higher serum levels of NAP, IgG, IgA, and IgM

(Figure S3), providing a good example of genetic loci that influence

both quantitative traits and susceptibility to complex diseases.

Rs10007186, which was associated with NAP

(Pmeta = 1.361029) is located about 57.4 kb downstream of ANXA3

encoding annexin A3, a member of annexin family of calcium-

Table 2. Summary results of the GWAS and the replication study of TP, ALB, and NAP.

Trait SNP Chr: Position
Nearest
Gene

A1/
A2a MAF GWAS Replication Meta analysis

%
variance
explained

Effectb (s.e) Pc Effectb (s.e) Pc Effectb (s.e) Pc

TP rs4985726* 17:16804363 TNFRSF13B C/G 0.375 0.108 (0.015) 2.8610212 0.100 (0.030) 0.0010 0.107 (0.0138) 1.2610214 0.53

ALB rs1260326 2:27584444 GCKR T/C 0.445 20.082 (0.015) 3.461028 20.070 (0.032) 0.029 20.080 (0.014) 3.161029 0.32

NAP rs4985726* 17:16804363 TNFRSF13B C/G 0.375 0.148 (0.015) 2.4610222 0.090 (0.028) 0.0013 0.135 (0.013) 7.1610224 1.03

rs3803800 17:7403693 TNFSF13 G/A 0.311 0.108 (0.015) 1.8610212 0.090 (0.029) 0.0022 0.104 (0.013) 7.2610215 0.53

rs11552708 17:7403279 TNFSF13 G/A 0.401 20.084 (0.015) 7.061029 20.070 (0.027) 0.0091 20.081 (0.013) 7.5610210 0.36

rs10007186* 4:79808069 ANXA3 T/C 0.307 0.095 (0.016) 3.361029 0.053 (0.029) 0.065 0.085 (0.014) 1.361029 0.38

aA1/A2: major/minor alleles.
bThe effect of the minor allele on the normalized values based on an additive genetic model.
cFor the GWAS and replication analysis, P-values were obtained by linear regression test model, for the Meta analysis by inverse-variance method.
*SNPs obtained by whole-genome imputation analysis.
Abbreviations: GWAS: genome-wide association study, MAF: minor allele frequency, TP: total protein, ALB: albumin, NAP: non-albumin protein, s.e: standard error.
doi:10.1371/journal.pone.0032683.t002

TNFRSF13B, TNFSF13, and ANXA3 and Serum Proteins
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dependent phospholipid-binding proteins [19]. Annexin A3 was

found to be translocated into phagosomes in dendritic cells [20],

which are antigen-presenting cells that serve as messengers

between the innate and adaptive immune response, and play a

key role in allergic, inflammatory, and autoimmune conditions. In

addition, annexin A3 was also found to be associated with

neutrophil granule membranes [21], where it can play a regulatory

role in calcium-dependent granule secretions that contribute to

acute inflammation and chronic tissue destruction. The association

of rs10007186 with IgA, IgM, and IgE, would suggest additional

biological roles of annexin A3 in the immune response.

We also confirmed the association of SNPs in GCKR with serum

ALB levels (rs1260326, Pmeta = 3.161029). Rs1260326 is a

missense variant (T.C, Leu446Pro) and predicted to cause a

damaging effect on the protein structure. GCKR is a locus

frequently associated with several metabolic traits [4,22–24] and

rs1260326 has been reported to be associated with serum

triglycerides [4].

Figure 1. Manhattan plots for the GWAS of (A) TP, (B) NAP, and (C) ALB. SNPs were plotted based on their physical chromosomal positions
(horizontal axis) together with their –log10 (P-values) in the GWAS (vertical axis). The black horizontal line shows the genome-wide significance
threshold of P = 5.061028. The SNPs for which P-values were smaller than 1.0610215 are indicated at the upper limit of the plots.
doi:10.1371/journal.pone.0032683.g001

TNFRSF13B, TNFSF13, and ANXA3 and Serum Proteins
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As a conclusion, the present study identified genetic loci that

influence the inter-individual variation in serum levels of TP, ALB,

and NAP. The loci associated with NAP encompass genes

encoding a TNF-receptor and its ligand, which are implicated in

biological roles in the immune system, and their associations with

immunoglobulin isotypes were demonstrated here. Our results

should add novel insight toward understanding the genetic

background contributing to the regulation of the serum levels of

NAP and its major components.

Materials and Methods

Study Cohorts
For the GWAS, 9,103 subjects derived from 10 disease cohorts

(colorectal cancer, breast cancer, prostate cancer, lung cancer,

gastric cancer, diabetes mellitus, peripheral artery disease, atrial

fibrillation, ischemic stroke, and myocardial infarction) were

selected, and for the replication study, we used data from

.1600 independent individuals selected from the BioBank Japan

Project [11] (Table 1 and Table S1). For immunoglobulin isotypes

analyses, the data from ,1,600 additional individuals in BioBank

Figure 2. Regional plots for the associations of the SNPs in the GWAS stage of TP, ALB and NAP. SNPs plotted with their –log10 (P-values)
in the GWAS based on their physical chromosomal positions. Genotyped SNPs are indicated as circles, while imputed SNPs are indicated as triangles.
The color scheme indicated the linkage disequilibrium displayed as r2 values between all SNPs and the top-ranked SNP in each plot. The tested trait,
chromosomal locus, and the top-ranked SNPs (in purple color) in the GWAS and combined analyses together with their P-values are shown in each
plot. The blue lines represent the recombination rates estimated based on HapMap Phase II database. The plots were drawn using Locus Zoom
software.
doi:10.1371/journal.pone.0032683.g002

Table 3. Association of the SNPs in the GWAS of the NAP with immunoglobulin isotypes.

SNP Gene IgG IgA IgM IgE

Effect a (s.e) P b %EV Effect a (s.e) P b %EV Effect a (s.e) P b %EV Effect a (s.e) P b %EV

rs4985726 TNFRSF13B 0.071 (0.022) 1.461023 0.51 0.049 (0.030) 0.099 – 20.090 (0.032)5.961023 0.40 0.039 (0.064) 0.54 –

rs3803800 TNFSF13 20.074 (0.024)2.261023 0.47 20.086 (0.031)6.261023 0.39 20.082 (0.034)0.018 0.29 20.117 (0.067)0.080 –

rs11552708 TNFSF13 0.067 (0.022) 2.361023 0.46 0.072 (0.029) 0.013 0.31 0.078 (0.032) 0.014 0.31 0.059 (0.060) 0.33 –

rs10007186 ANXA3 20.018 (0.022)0.42 – 20.063 (0.030)0.036 0.20 20.078 (0.033)0.019 0.27 0.200 (0.057) 4.961024 2.02

aThe effect of the minor alleles on the standardized values.
bP-values for the associations of SNPs with each normalized immunoglobulin isotype obtained by using a linear regression model.
Abbreviations: s.e: standard error, %EV: percentage of the explanatory variance.
doi:10.1371/journal.pone.0032683.t003

TNFRSF13B, TNFSF13, and ANXA3 and Serum Proteins
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Japan [11] was used (Table 1). The clinical information for the

samples is updated annually using a standard questionnaire in the

66 hospitals participating in the project. Written informed consent

was obtained from all subjects. The research project was approved

by the ethical committees in the Institute of Medical Science, the

University of Tokyo, and the Center of Genomic Medicine,

RIKEN, Yokohama, Japan.

Genotyping and Quality Control (Q.C) Filters
In the GWAS, SNPs were genotyped using the Illumina

HumanHap610-Quad BeadChip (Illumina, CA, USA). After the

exclusion of samples with call rates of ,0.98, we excluded closely

related individuals (in 1st or 2nd degree kinships) using identity-by-

descent (IBD) evaluated by PLINK version 1.0.6 [25]. We also

excluded individuals who were outliers in the cluster analysis using

the principle component analysis performed by EIGENSTRAT

3.0 along with HapMap Phase II populations (Figure S1). In

addition, SNPs with call rates of ,0.99, MAF of ,0.01 and Hardy

Weinberg equilibrium of P ,1.061027 were excluded.

Genotyping data of the SNPs selected for replication analyses

and for testing with immunoglobulin levels were generated using

multiplex PCR- based Invader Assay (Third Wave Technologies,

Madison, WI, USA) [26]. Genotypes were judged by visual

inspection, following the application of QC measures of

individuals’ call rates of .98% and SNPs call rates of .99% of

individuals. We could not obtain the genotype data of rs3817588

in GCKR using the Invader assay.

Whole-genome Imputation of Genotypes
We performed whole-genome imputation of the GWAS subjects

in a two-step procedure, as described elsewhere [27]. HapMap

phase II Japanese (JPT) and Han Chinese (CHB) individuals

(release 24) were adopted as reference panels. We excluded the

imputed SNPs with MAF of ,0.01 or Rsq of ,0.7. As a result, a

total of 2,178,644 SNPs on autosomal chromosomes were used for

the GWAS.

Statistical Analysis
We obtained the non-transformed values of TP, ALB and NAP

(mg/dl) for the subjects from the clinical information stored in

BioBank Japan [11], and adjusted them in linear regression

models with age, gender, body mass index (BMI), smoking,

drinking status, and affection status of the disease as covariates.

The residuals were then normalized as Z scores and subjects with

Z scores of ,24 or .4 were removed from each trait analysis.

The associations of the SNPs with Z scores were evaluated in

linear regression models assuming additive effects of allele dosages,

using mach2qtl software. The same methods of data normalization

and statistical models were applied for the replication analyses and

for testing the association with common log-transformed values of

immunoglobulin isotypes (IgG IgA, IgM, and IgE). Meta-analyses

of the GWAS and the replication study were performed using the

inverse-variance method assuming a fixed-effects model.

The significance level used was 561028 in the GWAS stage. For

the replication stage, we considered 0.05 as significant for the

association of rs4985726 with TP and rs1260326 with ALB. For

the association of SNPs rs4985726 in TNFRSF13B, rs3803800

and rs11552708 in TNFSF13 with NAP, 0.017 (0.05/3) was

considered to be significant. These significance levels represent the

Bonferroni correction for multiple statistical tests. In addition, we

set a level of 0.05 to consider the association of the selected SNPs

with immunoglobulin isotypes as significant.

The haplotype analyses were performed using the Haplo Stats

package (version 1.4.0) implemented in R statistical software.

Epistatic effects of the SNPs in TNFRSF13B and TNFSF13 were

evaluated using a linear regression model incorporating the

product of the allele dosages of the SNPs in the loci as an

independent variable. All statistical analyses including haplotype

analyses were performed using the R statistical software version

2.9.1 except for genome-wide linear regression analyses. LD

analyses were performed using Haploview 4.2 software, PLINK,

and the SNAP database.

Web Resources
The URLs for the data presented in this paper are as follows:

The BioBank Japan Project, http://biobankjp.org/

PLIKN software, http://pngu.mgh.harvard.edu/̃purcell/plink/

EIGENSTRAT software, http://genepath.med.harvard.edu/

r̃eich/EIGENSTRAT.htm

The International HapMap Project, http://www.hapmap.org/

MACH and mach2qtl software, http://www.sph.umich.edu/

csg/abecasis/MaCH/index.html

R statistical environment, http://www.r-project.org/

Haploview software, www.broad.mit.edu/mpg/haploview/

SNAP, http://www.broadinstitute.org/mpg/snap/ldsearch.

php

Locus Zoom, http://csg.sph.umich.edu/locuszoom/

Supporting Information

Figure S1 Principal component analysis Plot of cohorts
included in the GWAS. All individuals who were finally

incorporated in the GWAS together with the four populations in

the HapMap Phase II database (Japanese: JPT; Han Chinese:

CHB; Africans: YRI, and European: CEU) were plotted based on

the first two eigenvectors.

(PDF)

Figure S2 Quantile-Quantile (Q-Q) plots for the GWAS
of (A) TP, (B) NAP, and (C) ALB. The inflation factor, lGC, for

the analysis is shown in the legend of each plot. The SNPs for

which P-values were smaller than 1.0610215 are indicated at the

upper limit of the plots.

(PDF)

Figure S3 Relationship between the genotypes of SNPs
identified in the study and the levels of tested proteins:
(A) rs4985726, (B) rs3803800, (C) rs11552708, (D)
rs10007186, and (E) rs1260326. For each box plot, the bold

line indicates the median value which is the 50th quartile. The

limits of each box are the 25th and 75th quartiles.

(PDF)

Table S1 Characteristics of the GWAS cohorts.
(DOC)

Table S2 SNPs showed suggestive associations with
each examined trait (P,1.061026).
(DOC)

Table S3 Haplotype analysis of rs3803800 and
rs11552708 in TNFSF13 in association with NAP.
(DOC)

Table S4 Haplotype analysis of rs1260326 and
rs3817588 in GCKR in association with ALB.
(DOC)
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