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Abstract

Background: Minimotifs are short contiguous peptide sequences in proteins that have known functions. At its simplest
level, the minimotif sequence is present in a source protein and has an activity relationship with a target, most of which are
proteins. While many scientists routinely investigate new minimotif functions in proteins, the major web-based discovery
tools have a high rate of false-positive prediction. Any new approach that reduces false-positives will be of great help to
biologists.

Methods and Findings: We have built three filters that use genetic interactions to reduce false-positive minimotif
predictions. The basic filter identifies those minimotifs where the source/target protein pairs have a known genetic
interaction. The HomoloGene genetic interaction filter extends these predictions to predicted genetic interactions of
orthologous proteins and the node-based filter identifies those minimotifs where proteins that have a genetic interaction
with the source or target have a genetic interaction. Each filter was evaluated with a test data set containing thousands of
true and false-positives. Based on sensitivity and selectivity performance metrics, the basic filter had the best discrimination
for true positives, whereas the node-based filter had the highest sensitivity. We have implemented these genetic interaction
filters on the Minimotif Miner 2.3 website. The genetic interaction filter is particularly useful for improving predictions of
posttranslational modifications such as phosphorylation and proteolytic cleavage sites.

Conclusions: Genetic interaction data sets can be used to reduce false-positive minimotif predictions. Minimotif prediction
in known genetic interactions can help to refine the mechanisms behind the functional connection between genes revealed
by genetic experimentation and screens.
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Introduction

Minimotifs are short contiguous peptide sequences in proteins

that are associated with known biological functions. Minimotifs

are generally of less than 15 residues in length and confined to a

single secondary structure element. Functions encoded by

minimotifs include direct covalent modification of the minimotif,

binding determinants for other molecules, and protein trafficking

tags.

Minimotifs are defined by a common set of attributes for their

sequence and function [1]. A collection of the same type of

minimotif in a set of proteins is often reduced to a consensus

sequence or position-specific scoring matrix (PSSM). Consensus

sequences indicate completely or partially conserved positions, as

well as completely redundant positions often indicated by an ‘‘x’’

(e.g., PxxPx[KR] where ‘‘x’’ indicates any amino acid and [KR]

indicates either amino acid in the 6th position). PSSMs are

matrices that indicate the probability of the 20 amino acids at each

position of the minimotif.

Consensus sequences and PSSMs can be used to predict new

minimotifs, and thus new functional elements in protein queries.

However, because the minimotifs are relatively short when

compared to the more complex sequence definitions for protein

domains, there is most often a high probability that minimotifs

occur in a protein by random chance. Thus false-positive

predictions are a general problem in minimotif prediction by

websites such as Minimotif Miner, Eukaryotic Linear Motif

Server, and ScanSite [2–5].

We and other groups have used other types of data to reduce

false-positive predictions including protein-protein interactions,

molecular and cellular protein functions, evolutionary conserva-

tion, protein disorder, protein structure, protein surface prediction,

and protein localization [2,6–10]. Although each of these filters

reduces false-positive predictions, it remains a problem and new

approaches to reduce false-positives are needed.

In this paper, we assessed whether genetic interaction (GI) data

can be used to reduce false-positive minimotif predictions, and

implemented several filters as a part of the Minimotif Miner web
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system [8,2]. Systematic reverse genetic analysis of yeast, worms,

flies, and several other organisms provides a rich data set of true-

positives with 100,000 s of GIs that can be used to refine minimotif

prediction. Using GIs is likely to have value in minimotif

prediction because there are some examples where GI of a

minimotif in one protein with a target protein that binds or

modifies the minimotif is already known. For example, Jnk kinase

has a GI with several of its natural substrates [11] and Polo binds a

motif in Mtrm and both proteins have a GI [12].

One potential caveat of this approach is that several papers

indicate that only a portion of GIs map to physical protein-protein

interactions [13–15]. We do not see this as a critical problem in

minimotif analysis because a portion of minimotifs is not expected

to have identifiable physical interactions. For example, an enzyme

that catalyzes a covalent change of the minimotif (e.g., lipidation,

phosphorylation, proteolysis, etc.) is a typical enzyme-substrate

interaction and such transient complexes are most often not

detected by high-throughput techniques used to identify protein-

protein interaction, but may still have a GI related to the enzyme/

substrate relationship.

Methods

Data Sources
GIs were derived from several sources as shown in Table 1.

Databases such as Biological General Repository for Interaction

Datasets (BioGRID) database, Flybase, NCBI Entrez-Gene,

Saccharomyces genome database (SGD) contain information about

GIs [16–19]. We used this information to reduce the false-positives

in the predictions of minimotifs using Minimotif miner by filtering

the motifs, based on known GIs. The databases are chosen based

on the public availability, reliability, and amount of data. There is

a total of ,700,000 GIs from multiple species in these databases.

The Minimotif Miner 2.3 data model has information about

,5300 verified minimotifs along with the source protein where the

motif was found, and the target protein that imparts the biological

function to the minimotif. This data was used to evaluate the

efficiency of several GI-based filtering algorithms in reducing false-

positive predictions.

Implementation
We have installed the GI filters on the Minimotif Miner 2.3

website along with existing filters, such as the protein-protein

interaction filter, molecular and cell function filter, etc. This

enables the users to build custom filtering methodologies based on

their requirements or interest. As with the other filters, we also

provide users with the exclude option, to examine the motifs that

do not have known GIs.

Genetic interaction filters
We intended to develop a set of algorithms that uses GI data to

refine the predictions of minimotifs in MnM. We devised three

variations of GI-based filtering algorithms for evaluation. Since

many GIs are conserved among related and diverse species, these

interactions can be used to identify those minimotifs that have a

previously known genetic relationship. The first basic algorithm

(designated as ‘‘Genetic Interaction (GI) Filter’’) is as follows: Let P

be any putative motif, let S be its source protein, and let T be the

target protein associated with the motif P. Let S9 be the gene that

encodes protein S, and T9 be the gene that encodes protein T. All

the databases containing the GIs are searched for any direct

interaction between S9 and T9. If an interaction exists, the motif P

will be retained by this basic GI filter, otherwise the motif P will be

removed by this filter. This is repeated for all of the T proteins that

are predicted for a particular S query. Protein and Gene alias

names are taken into account while searching the databases in

order to enforce a thorough search in the database.

A set of GIs can be used to build GI networks that contain nodes

that represent genes and edges that represent interactions. This

structure enables us to explore higher order interactions in the

network that are not direct. These second-order, third-order, etc.,

GIs between nodes may be useful for minimotif filtering and our

‘‘GI-node Filter’’ algorithm is based on this concept. Given a

putative motif P along with its source protein S and it target

protein T, the genes of proteins S and T are located from different

sources. Let the genes of S and T be S9 and T9, respectively. The

following steps are repeated for N number of times, N being the

node count. All the genes interacting with S9 and T9 are identified.

Let S0 be the new set of genes identified to be interacting with S9

and T0 be the set of genes identified to be interacting with T9,

respectively. Now, the GI databases are searched for the

interaction between any genes in the set S0 with a gene in the

set T0, and for the interaction between any genes in the set of T0

with a gene in the set S0. If an interaction is found, the motif P is

retained by the filter. Otherwise, it proceeds to find the interacting

genes of S0 and T0 iteratively based on the node count. If there is

no interaction even after Nth iteration, the motif P gets filtered out

by the algorithm. The size of the interaction network for a gene

grows exponentially as N increases. When we tested this filter with

the node count of 2, 3 and 4, the results on nodes 3 and 4

produced very poor selectivity. So, we limited our experiments to a

node count of 2.

Minimotifs are often conserved across species and taxa [20–21].

In general, a GIs in one species is a poor predictor of a GIs

between orthologs and paralogs in other species, however it is

possible that many of those GIs that are conserved are mediated

through minimotifs. Thus, we assessed if minimotif source/target

pairings that have a known GI in one species could be used to

extrapolate a valid minimotif in another species. To test this

hypothesis, we designed an extension of the filtering algorithm

(‘‘GI-HomoloGene Filter’’) that aims at assessing the conservation

of gene interactions in orthologs and paralogs. For a given pair (S,

T) for a putative motif P, S being its source protein and T being its

target protein, HomoloGene database is searched for the

Table 1. Sources of genetic interaction data.

Data source Species interactions tested # genes Reference

BioGrid Many species 124410 9020 [16]

SGD Saccharomyces cervesiae 151046 7155 [17]

Flybase Drosophila melanogaster 76411 2904 [18]

Entrez Gene Many species 387159 - [19]

doi:10.1371/journal.pone.0032630.t001
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HomoloGene clusters of S an T. Let S9 be the HomoloGene

cluster of S, and let T9 be the HomoloGene cluster of T. Gene

interaction databases were used to check if GI (A, B) or (B, A)

exists such that A belongs to S9 and B belongs to T9. If one such

interaction is found, the motif P passes the filter, else it fails the

filter. We also enforced an additional constraint that if there exists

an interaction (A, B), then both A and B should belong to the same

species for the putative motif P to be retained by the filter.

ROC and statistical analysis of minimotif filters
ROC (Receiver Operating Characteristic) curves for comparing

GI filters were generated using R software package [22]. A ROC

curve is a graphical plot of true positive rate against the false

positive rate for different filter thresholds. The area under the

curve is a measure of the accuracy of the filter, and the p-value

specifies the statistical significance of the filter. The calculated

binomial curve fit is shown in the figures.

Results

Evaluation of genetic interaction filter algorithms
We wanted to evaluate which filters performed best by yielding

a clear separation between true positives and false-positives. The

effectiveness was tested by comparing metrics of a set of verified

motifs to a set of known negatives. Minimotif Miner database 2

was used as the source of data for verified motifs, as it has a total of

,5300 minimotifs annotated from the literature and has support-

ing experimental evidence. Each minimotif has associated

information such as source protein, which contains the minimotif

and a target protein that engages the minimotif, respectively, and

is associated with an activity such as binds, modifies, or traffics.

About 3000 minimotifs have both source and target accession

numbers that can be cross-referenced to GI data. Therefore, the

MnM2 database was used as the source for validated motifs for the

true dataset.

As there is no direct access to a true-negative dataset of

minimotifs, we generated a negative dataset comprised of protein

pairs that are not likely to have a minimotif relationship or a

genetic interaction. We randomly paired genes for this purpose,

since the number of known GIs relative to the total number of

possible GIs is negligible. For instance, 25,000 genes have ,312

million possible pair-wise interactions, but the number of known

GIs is small and should not impact our conclusions. We generated

,27,000 such pairs of source-target genes, and used this as our

negative dataset in the process of validating the filters against false-

positives.

Measures such as sensitivity and selectivity were employed to

validate our algorithms. Our sensitivity analysis measures if a

putative motif that is retained by the filter is indeed a part of the

true dataset. It is the percentage of true positives that are retained

by the filter. Our selectivity metric was based on a computation of

the percentage of true-negatives that are accepted by the filter.

Thus, algorithms with a higher sensitivity and a lower selectivity

are desirable. Hence, the discrimination ratio (DR), the ratio of

sensitivity to selectivity, with values more than 1 is favorable. The

higher the ratio, the more favorable the filter is in discriminating

true minimotifs from incorrect predictions.

The results comparing metrics for the three GI filters are shown

in Table 2. The basic GI filter performed best recovering ,21%

of the true positives and had a strong preference for retaining

positives rather than negatives. As expected, the analysis of the GI-

node filter showed a much higher sensitivity, but the selectivity was

compromised producing a lower discrimination ratio that the basic

GI filter. This was using a distance of 2 GI nodes; analysis of 3 and

4 nodes produced much poorer selectivity (data not shown).

Likewise the GI-HomoloGene filter also yielded poorer selectivity

and also had the undesirable property that it only had a modest

increase in sensitivity over the basic GI filter. We also combined

both the GI-node and GI-HomoloGene filters and found that the

combined filters were not as effective as the individual filters.

Therefore, we conclude that the basic GI filter was the best

performing filter on the test dataset.

GI algorithms in combination with other Filters
We wanted to know whether the GI filters were providing any

additional information for reducing false positive minimotif

predictions when compared to other existing minimotif filters.

The frequency filter is based on the minimotif complexity and

likelihood of occurrence of a minimotif [2] and the cellular

function filter is based on whether or not source/target pairs share

a common cellular function [10] derived from the Gene Ontology

database [23]. These filters are based on two conceptually different

principles than a GI filter.

To determine if the GI filter contains orthogonal information

content we compared each filter with various pairwise filter

combinations. The GI filter performed significantly better than the

frequency score and cellular function filter. The area under the

ROC curve (p-values) were 0.93 (p = 2.9*10208) for the GI filter as

compared with 0.72 (p = 0.08) for both the frequency score and

cellular function filter (0.72, p = 0.12) respectively (Table 3)

[8,10]. This indicates that the GI filter contains orthogonal

information for reducing minimotif false positives that is not

present in either the frequency score or cellular function filter.

We next investigated if using the GI filter in pairwise

combinations with the frequency score or cellular function filter

produced better filtering results. The area under the ROC curve

was modestly better for these filter combinations (0.95–0.96 when

compared with the GI filter (0.93), but the p-values were not as

high for the pairwise filter combinations (2.9*1028 vs. 1.1*1026

21.5*1026). It was also seen that the novel motif prediction rate

for GI filter when compared against frequency score filter is 24%

and that with the cellular function filter is 56%. Similar results

were observed when the GI-HomoloGene filter was used in this

analysis (data not shown). Although the pairwise filter results

analysis are not as striking, collectively the filter comparisons show

that the GI filters contain additional informational content with

regard to eliminating false positive minimotif predictions.

We also have investigated the difference between the GI filter

and the Protein-Protein Interaction filter. It turned out that in the

true dataset 871 motifs passed the Protein-Protein Interaction

filter, while 944 passed the either-or combination of GI filter and

Protein-Protein Interaction filter. This combination of GI and

Protein-Protein Interaction filters resulted in an 8.4% increase in

the sensitivity, which indicates that the Genetic Interaction and the

Protein-Protein Interaction filters play a complementary role, to a

Table 2. Evaluation of genetic interaction filtering algorithms.

Filter Sensitivity Selectivity 1DR

GI 21.2% 2.9% 7.3

GI-node 56.2% 12.6% 4.5

GI-HomoloGene 24.3% 11.9% 2

1. DR = discrimination ratio.
doi:10.1371/journal.pone.0032630.t002
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certain degree, in predicting a true minimotif and by using the

union of both a better sensitivity can be achieved.

Do genetic interaction filters work better on different
types or properties of minimotifs?

Most minimotifs in the MnM database are for binding or

posttranslational modifications. When analyzed separately 56% of

the posttranslational modification minimotifs have a known

genetic interaction, while only 19% of binding motifs had a

known GI. Statistical analysis of this stratification using ROC plots

shows that the GI filter for both the binds and modifies minimotifs

groups are significant (p,0.01)(Table 4).

The most common posttranslational modification annotations

in the MnM 2 database are phosphorylation sites (n.100) and

protease sites (n = 20); 49% and 80% of these motifs had known

GIs, whereas 7% and 0% had GIs when the random dataset was

analyzed as a control. ROC curve analysis shows that the GI filter

for the phosphorylation, as well as the all minimotif and bind

minimotif groups are good minimotif filters (p,0.01) (Figure 1,
Table 4). We also note that the HomoloGene-GI filter (data not

shown) had similar performance to the GI filter. An ROC curve

analysis using minimotif length as a variable was performed, but

did not produce any discernable pattern (data not shown).

Collectively, these analyses suggest that a high percentage of

some types of minimotifs have GIs and supports the approach of

using GIs as filters for eliminating false positive minimotifs.

Adapting MnM2.3 User Interface for GI Algorithms
To enable the users to access these filters, we have updated the

MnM 2.3 user interface to include these filters under the section of

GI filters. This contains GI, GI-node and GI-HomoloGene filters

(Figure 2). These filters can be applied to the resulting list of

putative motifs by enabling the check box next to the respective

filter. These filters can be used in combination with other filters. If

it is preferred not to include the results based on a particular filter,

there are options to disable the filter as well. Based on the filters

selected, minimotif results table gets updated with the results that

are retained by the filters. This enables the users to focus their

search by allowing a better control on the selection criteria. The

MnM help section has more information regarding filtering.

Discussion

In this paper we explore the use of GIs as an additional source

of data that can be used to help overcome the problem of

predicting false-positive minimotifs. We expected that GIs would

provide a good basis for a false-positive filter because GIs, like

minimotifs reveal functional connections between proteins. The

first filter we tested was a basic GI filter where we removed any

minimotif where the source/target pair did not correspond with a

direct pairwise GI. Evaluation of the basic GI filter using a test

dataset revealed good discrimination for retaining true positive

minimotifs, while rejecting false-positive minimotifs. This filter

performs with similar efficiency to several other filters we have

reported, but uses a conceptually different type of data [9–10].

We had wanted to expand the utility of this filter to more broadly

cover other species since many GIs are discovered in tractable model

organisms such as yeast, flies, and worms. We used the HomoGene

database to expand any predicted GI across species lines and

expanded the basic GI filter to include these predicted GIs. Analysis

of the test dataset revealed that this approach was not as robust as the

basic GI filter, with a slightly higher rate of true positive predictions,

but a much higher rate of false-positive predictions.

The observation that the HomoloGene-GI filter did not

significantly improve prediction of minimotifs was mostly

consistent with previous observations about GI networks. While

it is thought that gene function is conserved among divergent

species [24], GI networks are generally though not to be well

Table 3. Statistical comparison of the efficacy of different
minimotif filters and filter combinations.

Filter Area under ROC p-value

Frequency score 0.72 0.08

Cellular function 0.72 0.12

GI 0.93 2.9*10208

PPI 0.97 3.8*10207

GI + Frequency score 0.96 1.1*10206

GI + Cellular function 0.95 1.5*10206

GI + PPI 0.96 1.1*10206

doi:10.1371/journal.pone.0032630.t003

Table 4. ROC curve statistics for differ types of minimotifs.

Minimotif type Area under ROC p-value

All 0.93 2.9*10208

Binds 0.95 1.5*10206

Modifies 0.84 4.8*10203

Phosphorylates 0.87 7.0*10203

doi:10.1371/journal.pone.0032630.t004

Figure 1. ROC curves for the GI filter with different types of
minimotifs. ROC curves are generated using R software package with
activity and sub-activity as the underlying variables. The binomial curve
fit is shown. The areas under the ROC curves are 0.93 for all minimotifs
(red lines), 0.95 for binding motifs (blue lines) and 0.87 for
phosphorylation minimotifs (orange lines).
doi:10.1371/journal.pone.0032630.g001
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conserved. Approximately 29% of GIs are conserved among

closely related Saccharomyces species separated by .100 million

years of evolution [13]. Less than 5% of worm interologs

(conserved interactions) are conserved in yeast [15].

Another adaptation of the GI filter we tested was to examine if the

path length (number of nodes) could be used to improve minimotif

predictions. GI networks are composed of pairs of genes in

complementary pathways or are involved in the same pathway

[25]. Since many minimotifs are regulatory, minimotifs may provide

feedback by connecting nodes in pathways that are more than one

node away. This hypothesis is supported by several analyses of GI

networks. In the yeast GI network a path length of two is the best

measure of relationships between protein and GIs [26]. Moreover,

analysis of the yeast GI network shows a characteristic path length of

3.3, suggesting a high density of GI interactions [27]. The GI node

filter recovered more than double the true positives as expected;

however, we observed a ,4 fold increase in the number of true

negatives. This filter has been made available on the MnM website, as

it has the advantage of having a higher sensitivity.

Beyond prediction of minimotifs, the GI filter provides a tool to

examine GIs at a finer level of granularity. Identification of a GI

infers that two genes have a related function in a complementary

pathway or in the same pathway. However, genetics does not

identify how the two genes are related. Protein-protein interaction

networks can help to identify the relationships, but only a fraction

of GIs have known protein-protein interactions. This could be due

to the fact that different protein-protein interaction databases do

not yet have extensive redundancy, suggesting that there are many

protein-protein interactions yet to be discovered. However, if

protein-protein interactions are transient, such as in an enzyme/

substrate relationship or in a highly regulated signaling complex,

these interactions are not likely to be identified in a protein-protein

interactions screen, but may be detected in a GI screen. In support

of this contention, 56% of minimotifs with a posttranslational

modification activity/substrate relationship had a known GI,

whereas only 19% of minimotifs with a binding activity had a GI.

This is the particular case where our new GI tool will help to

identify binding, trafficking and enzymatic functions for known

GIs. The user, simply enters the query source protein, identify s of

a pair of genetically interacting proteins and looks for a

relationship with the partner protein. Furthermore, this tool is

also likely to assist in construction of pathways in a similar manner.
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