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Abstract

Background: Accurate prognostication of locally advanced nasopharyngeal carcinoma (NPC) will benefit patients for
tailored therapy. Here, we addressed this issue by developing a mathematical algorithm based on support vector machine
(SVM) through integrating the expression levels of multi-biomarkers.

Methodology/Principal Findings: Ninety-seven locally advanced NPC patients in a randomized controlled trial (RCT),
consisting of 48 cases serving as training set and 49 cases as testing set of SVM models, with 5-year follow-up were studied.
We designed SVM models by selecting the variables from 38 tissue molecular biomarkers, which represent 6 tumorigenesis
signaling pathways, and 3 EBV-related serological biomarkers. We designed 3 SVM models to refine prognosis of NPC with
5-year follow-up. The SVM1 displayed highly predictive sensitivity (sensitivity, specificity were 88.0% and 81.9%,
respectively) by integrating the expression of 7 molecular biomarkers. The SVM2 model showed highly predictive specificity
(sensitivity, specificity were 84.0% and 94.5%, respectively) by grouping the expression level of 12 molecular biomarkers and
3 EBV-related serological biomarkers. The SVM3 model, constructed by combination SVM1 with SVM2, displayed a high
predictive capacity (sensitivity, specificity were 88.0% and 90.3%, respectively). We found that 3 SVM models had strong
power in classification of prognosis. Moreover, Cox multivariate regression analysis confirmed these 3 SVM models were all
the significant independent prognostic model for overall survival in testing set and overall patients.

Conclusions/Significance: Our SVM prognostic models designed in the RCT displayed strong power in refining patient
prognosis for locally advanced NPC, potentially directing future target therapy against the related signaling pathways.
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Introduction

Nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)

associated malignancy, has a remarkable racial and geographical

distribution in Southeast Asia [1,2]. Compared with the early stage

patients, cancer mortality associated with disease relapse still

sustained a high level in advanced NPC [3]. An accurate

identification of patient prognosis will benefit this subset for

developing distinct therapeutic and follow-up strategies in future.

Biomarker has been proven to be critical in predicting disease

prognosis by complimenting TNM classification for risk definition

[4]. More importantly, biomarkers, with dual functions for both

disease monitoring and novel molecular targeting, had shed the

light on personalized therapy. For example, overexpression of

EGFR, which occurred in 90% of head and neck squamous cell

carcinoma (HNSCC) [5], predicted an inferior patient outcome

[6]. EGFR monoclonal antibody Cetuximab had demonstrated a

survival benefit in combination with chemotherapy or radiother-

apy for HNSCC [2,7]. In recent BATTLE (Biomarker-Integrated

Approaches of Targeted Therapy for Lung Cancer Elimination)

study [8], the first large clinical trial to use tumor biomarkers to

guide therapy, 11 biomarkers associated with four NSCLC

molecular pathways were analyzed for directing treatment choice.

The results showed that each of the four treatments (erlotinib,

vandetanib, erlotinib plus bexarotene, and sorafenib) targeted

potently a specific molecular signature. Thus, identifying the
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pathogenesis pathway related biomarkers, that not only refining

the patient prognosis but also providing guidance for pathway

specific target therapy, will be of great benefit for advanced cancer

patients.

Data mining, including decision tree, neural networks (artificial

and fuzzy), and SVM, has been applied to predict cancer patient

prognosis [9,10,11]. Taken breast cancer and NSCLC for

example, SVM had been confirmed to be a strong tool to refine

the patient prognosis by integrating multi-gene profile [10,11]. In

head and neck cancer, the specific molecular pathway related

biomarkers signature had not yet been characterized using the

learning algorithms method based prognosis prediction model.

In the present study, we studied the expression levels of 38

markers, which represented 6 pathological signaling pathways,

and 3 EBV-related serological biomarkers associated with

tumorigenesis of NPC. We addressed the prognostic effect of

multi-biomarkers integrated SVM models with special focus on

whether SVM model could subgroup patient prognosis in head

and neck cancer.

Results

Immunohistochemical (IHC) Staining, Univariate and ROC
Curve Analysis

The baseline of patient clinicopathologic features of these two

cohorts were displayed in Table 1. The median follow-up period

was 63.8 months (range: 9.5 to 89.9 months) for overall patients.

As our previous report, the IC/RT and IC/CRT subgroups

displayed the similar OS (P = 0.783). The median overall survival

was 73.9 and 70.1 months, respectively, in IC/RT and IC/CRT

subgroups. The 2-year and 5-year OS was respectively 84.1% and

73.8% in IC/RT subgroup, compared with 81.8% and 72.3% in

IC/CRT subset. The typical IHC staining of 38 biomarkers in

these NPC samples was shown in Figure 1. As revealed in Table 2,

each feature, that dichotomized by ROC curve generated cutoff

point (Figure 2A), was subjected to univariate analysis. In training

subgroup (48 patients), high tumor CENP-H (HR, 4.698;

P = 0.023) and MMP 2 (HR, 3.489; P = 0.039) expression were

associated with poor OS. In testing set, high Aurora-A (HR, 3.647;

P = 0.021), Bcl-2 (marginal; HR, 4.423; P = 0.052) and VCA-IgA

(HR, 3.787; P = 0.017) levels predicted an inferior OS. For all

patients enrolled, high Aurora-A (HR, 2.872; P = 0.010), MMP 2

(HR, 2.942; P = 0.010) and VCA-IgA (HR, 2.688; P = 0.014) levels

were correlated with worse OS. ROC curve analysis showed that

SVM models had the largest area under the curve (AUC)

compared with each individual AUC of 38 tissue molecules and

3 serological biomarkers (Figure 2), suggesting that SVM models

was the most powerful prognostic value in refining patient

outcome.

SVM1 and OS
The SVM1 model showed highly sensitivity by integrating the

expression levels of 7 tissue molecular biomarkers, including of

Aurora-A, Beclin 1, Ki-67, N-cadherin, nm23-H1, P27 and TIMP

2. After educating the model in the training set, we identified 19

patients with high risk to death and 30 patients with low risk at

testing set. The 5-year OS of the subgroup with high risk to death

was 38.9% compared with 89.5% in low risk subset (Figure 3A,

P,0.0001). Specifically, the predictive value of SVM1 in

sensitivity, specificity, positive predictive value, negative predictive

value, and overall accuracy were 78.6%, 77.1%, 57.9%, 90.0%

and 77.6%, respectively. Cox multivariate regression analysis

confirmed that SVM1 model was indeed the significant indepen-

dent predictive model for patient risk to death (Table 3; HR,

42.275; 95% CI, 2.474 to 722.425; P = 0.010).

By summarizing the training and testing set as a group, we

identified 30 patients with high risk and 67 patients with low risk to

death. The 5-year OS of the patients with high risk to death was

24.1% compared with 95.3% in low risk subgroup (Figure 3A,

P,0.0001). Specifically, the predictive value of SVM1 in

sensitivity, specificity, positive predictive value, negative predictive

value, and overall accuracy were 88.0%, 81.9%, 62.9%, 95.2%

and 83.5%, respectively. Cox multivariate regression analysis

confirmed that SVM1 model was the significant independent

predictive model for patient risk to death (Table 3; HR, 320.826;

95% CI, 36.705 to 2804.256; P,0.0001). Moreover, a prognostic

effect on age, Aurora-A, Ki67 and P27 were also observed in

overall patients, though with relatively low HR (Table 3). The

clinical features, including of gender, TNM stage as well as

therapeutic regimens, and other molecular biomarkers however

failed to prove any prognostic value.

SVM2 and OS
The SVM2 model showed high specificity by grouping the

expression levels of 12 tissue molecular biomarkers (nm23-H1,

Pontin, cyclin D1, N-Cadherin, 14-3-3s, Ki-67, Aurora-A, Bcl-2,

Beclin 1, MMP 2, EZH2 and TIMP 2) and 3 EBV-related

serological biomarkers (EA-IgA, VCA-IgA and AER). After

educating the model in the training set, we identified 14 patients

with high risk to death and 35 patients with low risk at testing set

individually. The 5-year OS of the subset with high risk to death

was 28.6% compared with 87.8% in low risk subgroup (Figure 3B,

P,0.0001). In detail, the predictive value of SVM2 in sensitivity,

specificity, positive predictive value, negative predictive value, and

overall accuracy were 71.4%, 88.6%, 71.4%, 88.6% and 83.7%,

respectively. Cox multivariate regression analysis confirmed that

SVM2 model was indeed the significant independent predictive

model for patient risk to death (Table 3; HR, 6055.528; 95% CI,

2.718 to 1.3496107; P = 0.027).

By summarizing the training and testing set as a group, we

identified 25 patients with high risk and 72 patients with low risk to

death. The 5-year OS of the patients with high risk to death was

16.0% compared with 94.2% in low risk subgroup (Figure 3B,

P,0.0001). Specifically, the predictive value of SVM2 in

sensitivity, specificity, positive predictive value, negative predictive

value, and overall accuracy were 84.0%, 94.5%, 84.0%, 94.4%

and 91.8%, respectively. Cox multivariate regression analysis

confirmed that SVM2 model was the significant independent

predictive model for patient risk to death (Table 3; HR, 346.294;

95% CI, 24.742 to 4846.721; P,0.0001). In addition, Cyclin D1,

EA-IgA and VCA-IgA were also the independent prognostic

factors in overall patients, though with relatively low HR (Table 3).

SVM3 and OS
The SVM3 model, that incorporating SVM1 with SVM2, was

subjected to refine patient risk to death when risk definition

discrepancy was confronted at SVM1 and SVM2. In SVM3

model, we integrated the expression level of 13 tissue molecular

biomarkers (nm23-H1, Pontin, cyclin D1, N-Cadherin, 14-3-3s,

Ki-67, Aurora-A, Bcl-2, Beclin 1, MMP 2, EZH2, TIMP 2 and

P27) and 3 EBV-related serological biomarkers (EA-IgA, VCA-

IgA and AER). As shown in Figure 3C, we identified 13 patients

with high risk and 36 patients with low risk to death at testing set.

The 5-year OS of the subset with high risk to death was 30.8%

compared with 85.2% in low risk subgroup (Figure 3C,

P,0.0001). Specifically, the predictive value of SVM3 in

sensitivity, specificity, positive predictive value, negative predictive
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value, and overall accuracy were 64.3%, 88.6%, 69.2%, 86.1%

and 81.6%, respectively. Cox multivariate regression analysis

confirmed that SVM3 model was indeed the independent

predictive model for patient risk to death (Table 3; HR,

1401.433; 95% CI, 0.883 to 2.2236106; P = 0.054).

By summarizing the training and testing set as a group, we

identified 24 patients with high risk and 73 patients with low risk to

death. The 5-year OS of the patients with high risk to death was

16.7% compared with 92.8% in low risk subgroup (Figure 3C,

P,0.0001). Specifically, the predictive value of SVM3 in

sensitivity, specificity, positive predictive value, negative predictive

value, and overall accuracy were 88.0%, 90.3%, 75.9%, 95.6%

and 89.7%, respectively. Cox multivariate regression analysis

confirmed that SVM3 was an independent predictive model for

patient risk to death (Table 3; HR, 540.456; 95% CI, 33.336 to

8761.995; P,0.0001). Additionally, age, P27 and VCA-IgA

showed prognostic effect for overall patients, though with the

lower HR (Table 3).

Discussion

The important challenge complementing the anatomic TNM

staging prognostication is to integrate the nonanatomic molecular

biomarkers [12]. Indeed, circulating serological and tissue

molecular prognostic factors were currently used for predicting

cancer patient outcome individually. Here, we examined the

expression levels of 38 tissue molecular biomarkers representing 6

pathological signaling pathways and 3 EBV-related serological

biomarkers for further characterizing their prognostic value by

constructing the SVM models in a randomized controlled trial. By

integrating 16 biomarkers that displayed higher predictive values,

we designed 3 SVM prognosis models. Our finding demonstrated

that those 3 SVM models showed the powerful efficacy in defining

patient risk to death individually, indicating the promising clinical

usage in future therapeutic and follow-up management.

Accurate characterization of patient outcome, that not only

permits treatment to be individualized but also improves patient

follow-up economic benefit cost ratio, is markedly important for

locally advanced NPC. Biomarkers that aberrantly expressed in

tissue or circulation have been proven to be critical in guiding

treatment selection and predicting disease prognosis [4,12]. Both

the single biomarker reflecting the cancer phenotype in a

microscopical manner and the TNM stage system predicting

patient outcome in a macroscopical manner showed however a

limited predictive power for individual outcome. In the present

study, we designed a SVM model by integrating the expression

levels of several tissues molecular biomarkers and NPC specific

serological biomarkers to refine patient risk to death individually.

We thus raised three key clinical implications of this SVM based

prognostic model for locally advanced NPC: i) the molecular

biomarkers included in this study were detected by IHC and

ELISA and thus might be readily adaptable to clinical practice; ii)

patients with inconsistent definition of risk to death between

SVM1 and SVM2 models would be subjected to SVM3 for further

determination. iii) the therapeutic regimen for advanced NPC

might be redirected for the particular subgroup according to the

SVM risk definition. Specifically, the patients with low risk

definition could receive routine therapeutic regimen to avoid the

serious side effect of intensive treatment modality. However, for

patients with high risk definition, the standard chemoradiotherapy

might not be sufficient. The target agent that specific to the

particular molecular biomarker [13], and more aggressive

chemotherapy regimen may be employed to maximize the

therapeutic benefit.

In comparison with other data mining methods [14], such as

neural networks (artificial and fuzzy) [15], clustering [16], genetic

algorithms [17] and decision trees [18], SVM performs classifica-

tion by constructing an N-dimensional hyperplane that optimally

separates the data into two categories [19]. This feature thus

presented great priority in predicting cancer patients prognosis

that with two classifications (death VS alive). Additionally,

Newman-Keuls test was used to deal with multiple comparisons

that raised by multiple variables included in this study, ensuring

the rational IHC score for further SVM analysis. More

importantly, the higher generalization ability made SVM could

train the model with limited cases by grouping several efficient

features. Here, we designed the SVM models for advanced NPC

by integrating TNM stage, tissue molecular features (nm23-H1,

Pontin, cyclin D1, N-Cadherin, 14-3-3s, Ki-67, Aurora-A, Bcl-2,

Beclin 1, MMP 2, EZH2, TIMP 2, COX 2 and P27) along with

EBV-related biomarkers (AER, EA-IgA and VCA-IgA), which

reflected each patient tumorigenesis phenotype not only in

macroscopic but also in microcosmic aspect. Thus, these multi-

biomarkers based models would provide more powerful efficacy in

prediction of patient outcome. Indeed, our finding confirmed that

the SVM models had strong ability in refining patient risk to death

individually (Figure 3, high risk VS low risk: SVM1 24.1% VS

95.3%, SVM2 16.0% VS 94.2%, SVM3 16.7% VS 92.8%).

However, we also observed the inconsistence in predicting patient

outcome among SVMs in testing set regarding to age, Aurora-A,

P27 and VCA-IgA. Taken Aurora-A for example, P value were

0.608, 0.683 and 0.098 for SVM1, SVM2 and SVM3,

respectively. The underlying reasons might lie in the small cohort

size in testing set since the significant prognostic value was

observed when the cohort combined both training set and testing

subgroup.

Taken together, our study demonstrated that multibiomarkers

integrated SVM models led to more precise risk definition, offering

a promising and individualized selection for future therapeutic

regimen.

Methods

Patients
The 408 locally advanced NPC patients (Stage III and IVa)

were enrolled in a randomized controlled trial (RCT) designed for

therapeutic as well as SVM-biomarker study from August 2002 to

April 2005 [20]. In the therapeutic study, the therapeutic effect of

induction chemotherapy+radiotherapy (IC/RT) was compared to

induction chemotherapy+concurrent chemoradiotherapy (IC/

CRT). In this biomarker study, randomized 103 patients (50

IC/CRT+53 IC/RT) were selected for multi-biomarkers-SVM

prognosis analysis. Excluding 6 patients (4 IC/CRT+2 IC/RT)

lost to 5-year follow-up, 97 patients (46 IC/CRT+51 IC/RT) were

enrolled in this study. The baseline of patient clinicopathologic

features of these two cohorts were displayed in Table 1. Of these

97 patients, randomly selected 48 patients (25 IC/RT+23 IC/

CRT) were used as training set for SVM model education and the

rest of 49 patients (26 IC/RT+23 IC/CRT) served as testing set.

The cancer stage was defined according to the 1992 NPC staging

Figure 1. Immunohistochemical staining of tissue biomarkers in locally advanced NPC. The panel displayed the representative expression
of 37 molecular biomarkers in tumor zone for locally advanced NPC (original magnification, 6400).
doi:10.1371/journal.pone.0031989.g001
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Figure 2. ROC curves plotted for patient outcome, using 38 tissue molecule expression scores, 3 serological biomarkers levels and
SVM models, in training set (A), testing set (B) and overall patients (C). In training set (A), at each immunohistochemical staining score of 38
tissue molecules and 3 serological biomarkers, the sensitivity and specificity for the outcome being studied were plotted, thus generating a ROC
curve. The score, that closest to the point with both maximum sensitivity and specificity (0.0, 1.0), was selected as the cutoff point for further analysis.
doi:10.1371/journal.pone.0031989.g002
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system of China [21,22]. This study was approved by the Clinical

Ethics Review Board at Cancer Center of Sun Yat-sen University,

and written informed consent was obtained from all patients at

their recruitment.

Patient eligibility
In this RCT, strict eligibility criteria protocol was employed as

following: pathological confirmed as nonkeratinizing or undiffer-

entiated carcinoma of nasopharynx (World Health Organization

types of II or III); aged 18–65 years; performance status score: 0–2;

clinical stage: III-IVa; leukocyte count (WBC) $4.06109/L and

platelet $100.06109/L; total bilirubin (TBIL) and alanine

aminotransferase (ALT) ,26 the upper limit of normal value;

creatinine (Cr) ,1.56 the upper limit of normal value. Patients

were excluded from this RCT with the following exclusion criteria:

uncontrolled infection; previously received any anticancer therapy;

pregnancy and lactation; prior malignancy; unsuitable for

chemotherapy due to deficiency of liver, kidney, lung and heart.

The routine staging workup comprised of a detailed clinical

examination of the head and neck, fiberoptic nasopharyngoscopy,

magnetic resonance imaging (MRI) of the entire neck from the

base of the skull, chest radiography, abdominal sonography, a

complete blood count, and a biochemical profile. New Drug

Statistical Treatment 8.0 software was employed to generate a

random number table for further patient assignment.

Oncologic treatment
In IC/RT subset, patients received two cycle of floxuridine+-

carboplatin (floxuridine 750 mg/m2, d1–5; carboplatin AUC = 6)

chemotherapy and underwent radiotherapy thereafter at one week

interval. In IC/CRT subgroup, one week after completion of two

cycle floxuridine+carboplatin (floxuridine 750 mg/m2, d1–5;

carboplatin AUC = 6), patients received radiotherapy and con-

current carboplatin (AUC = 6) chemotherapy on day 7, 28 and 49,

respectively.

Prior to and after the carboplatin infusion, 1000–1500 ml

normal saline, 20 g (250 ml) and normal saline 2000–3000 ml

were respectively given to patients. Aheading of drug infusion, the

5-hydroxytryptamine-3 receptor antagonists and dexamethasone

(20 mg) were used to guard against vomiting. For patients with

serious myelosuppression, the chemotherapy schedule would be

delayed to the serological leukocyte counts $3.06109/L and

platelet count $100.06109/L. The carboplatin dose adjustment

was based on the level of posttreatment creatinine clearance.

When posttreatment serological creatinine clearance $60 mL/

min, the original regimen could be maintained at the next cycle of

chemotherapy. When the creatinine clearance decreased to 40–

59 mL/min, a reduction of 50% carboplatin dose was required for

the next cycle of chemotherapy. Once the serum creatinine

clearance was less than 40 mL/min, carboplatin should be

removed at the next cycle of chemotherapy.

The traditional Co60 c-ray or linear accelerator 6–8 MV photon

based two-dimensional technique was administered for radiother-

apy. The radiation fields were determined by the extension of the

tumor and local regional cervical lymph node invasiveness. The

target radiation fields, including the tumor and a 2-cm marginal

extension in all directions, obtained at least 90% of the mid-depth

central axis dose. During the first course, two lateral opposing

faciocervical portals were exposed to 36–40 Gy irradiation. At the

second course, facio-cervical splitting portals course was employed.

When the oropharynx was invaded, the facio-cervical portals

would be used in these 2 courses, followed by 8–12 Mev electric

beam irradiation at the posterocervical triangular regions. The

anterior nasal region (6–8 Gy) or the parapharyngeal region (6–

8 Gy) would be irradiated for subset with regional tumor invasion.

The accumulated radiation dose of 68–72 Gy, with 2 Gy daily

fractions and 5 days per week, was given to the primary tumor.

Additional boosted 8 to 12 Gy would be delivered to subgroup

with residual tumor and destructed skull base. The neck region

obtained 50 to 70 Gy radiation according to the extent of the

lymph node tumorigenic invasiveness. For lymph node negative

and positive invaded necks, 50 Gy and 60 to 70 Gy radiation

would respectively be given.

Immunohistochemical (IHC) staining and EBV-related
serological antibodies assay

Both tissue microassays and IHC were performed as previously

described [23,24]. The candidate biomarkers consisted of reported

prognostic markers with high predictive value and a number of key

tumorigenesis signaling pathways related molecules [12]. A total of

38 biomarkers (Figure 1) representing 6 pathological signaling

pathways related to NPC disease progression, consisting of cell

cycle: Cyclin D1 (Cell Signaling, #2978, 1:200 dilution), 14-3-3s
(Santa Cruz, SC-100638, 1:200 dilution), Aurora-A (Upstate,

1:200 dilution), CENP-H (Santa Cruz, SC-22792, 1:200 dilution),

Stathmin (Cell Signaling, #3352, 1:200 dilution), P21WAF1

(Santa Cruz, SC-817, 1:200 dilution), CDC2 (Santa Cruz, SC-53,

1:200 dilution), P27 (Millipore, clone Y236, 1:200 dilution), ERK

(Santa Cruz, SC-94, 1:200 dilution), p-ERK (Santa Cruz, SC-

7383, 1:100 dilution), Ki-67 (Santa Cruz, SC-23900, 1:50

dilution); migration & invasion: E-Cadherin (Cell Signaling,

#4065, 1:50 dilution), b-catenin (Millipore, MAB2081, 1:100

dilution), N-Cadherin (Upstate, clone 13A9, 1:200 dilution), Snail

(Abcam, ab70983, 1:50 dilution), Twist (Santa Cruz, SC-102032,

Table 1. Patient characteristics.

Variables Training set (n = 48) Testing set (n = 49)

Gender

Male 37 41

Female 11 8

Age (Year)

Mean $44.5 VS ,44.5
(Range)

23 VS 25 (24 to 64) 30 VS 19 (21 to 63)

T classification

T2 7 8

T3 22 24

T4 19 17

N classification

N0 4 3

N1 18 18

N2 21 19

N3 5 9

TNM stage

III 24 27

IV 24 22

Therapeutic regimen

IC/RT 25 26

IC/CRT 23 23

Abbreviation: IC/RT, Induction chemotherapy+radiotherapy; IC/CRT, Induction
chemotherapy+concurrent chemoradiotherapy.
doi:10.1371/journal.pone.0031989.t001
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Table 2. Univariate analysis of 38 tissue and 3 serological biomarkers in NPC.

Variables (.cutoff point
VS #cutoff point) Training set Testing set Overall patients

P value HR 95% CI P value HR 95% CI P value HR 95% CI

Aurora-A, .8.5 VS #8.5 0.208 2.146 0.654 to 7.042 0.021 3.647 1.220 to 10.903 0.010 2.872 1.289 to
6.400

Beclin 1, .5.0 VS #5.0 0.097 3.074 0.815 to 11.590 0.516 1.415 0.496 to 4.037 0.110 1.919 0.862 to
4.273

HIF-1a, .7.0 VS #7.0 0.771 1.193 0.364 to 3.911 0.219 1.987 0.665 to 5.940 0.239 1.607 0.729 to
3.543

Bcl-2, .5.0 VS #5.0 0.734 0.808 0.236 to 2.760 0.052 4.423 0.989 to 19.770 0.139 1.853 0.819 to
4.195

Bax, .3.5 VS #3.5 0.407 1.682 0.492 to 5.754 0.490 1.471 0.492 to 4.397 0.214 1.645 0.750 to
3.610

Snail, .3.5 VS #3.5 0.374 1.745 0.511 to 5.963 0.273 0.556 0.195 to 1.589 0.910 0.956 0.434 to
2.106

CENP-H, .5.0 VS #5.0 0.023 4.698 1.243 to 17.761 0.905 1.066 0.374 to 3.042 0.084 2.025 0.909 to
4.510

COX-2, .7.0 VS #7.0 0.562 1.421 0.433 to 4.664 0.101 2.499 0.837 to 7.463 0.097 1.954 0.886 to
4.306

Cyclin D1, .3.5 VS #3.5 0.726 1.236 0.377 to 4.052 0.249 1.864 0.646 to 5.378 0.254 1.579 0.720 to
3.463

Ki-67, .5.0 VS #5.0 0.622 1.348 0.411 to 4.417 0.671 0.795 0.276 to 2.292 0.995 1.003 0.457 to
2.197

C-Met, .3.5 VS #3.5 0.245 2.074 0.607 to 7.087 0.514 1.439 0.482 to 4.296 0.188 1.731 0.765 to
3.919

MMP 2, .8.5 VS #8.5 0.039 3.489 1.063 to 11.452 0.140 2.394 0.750 to 7.636 0.010 2.942 1.299 to
6.663

nm23-H1, .5.0 VS #5.0 0.653 1.313 0.401 to 4.307 0.665 1.260 0.442 to 3.595 0.560 1.263 0.576 to
2.768

P21WAF1, .3.5 VS #3.5 0.530 1.464 0.446 to 4.797 0.841 1.113 0.390 to 3.174 0.520 1.294 0.590 to
2.836

Stathmin, .7.0 VS #7.0 0.568 0.699 0.205 to 2.388 0.368 1.653 0.554 to 4.936 0.714 1.158 0.528 to
2.538

Survivin, .2.5 VS #2.5 0.599 1.375 0.419 to 4.509 0.884 0.925 0.324 to 2.638 0.757 1.132 0.516 to
2.481

TIMP 2, .8.5 VS #8.5 0.446 1.587 0.484 to 5.202 0.133 2.254 0.781 to 6.504 0.091 1.969 0.898 to
4.318

Twist, .2.5 VS #2.5 0.209 2.344 0.621 to 8.840 0.572 0.739 0.259 to 2.110 0.658 1.198 0.538 to
2.668

E-cadherin, .3.5 VS #3.5 0.616 1.355 0.413 to 4.442 0.525 0.709 0.246 to 2.045 0.894 0.948 0.433 to
2.079

N-cadherin, .3.5 VS #3.5 0.379 1.737 0.508 to 5.941 0.283 1.820 0.610 to 5.431 0.172 1.768 0.781 to
4.002

b-catenin, .5.0 VS #5.0 0.357 0.536 0.142 to 2.022 0.514 1.423 0.493 to 4.104 0.961 0.981 0.445 to
2.161

P27, .7.0 VS #7.0 0.277 1.977 0.578 to 6.754 0.159 2.196 0.735 to 6.557 0.073 2.109 0.932 to
4.773

CDC 2, .5.0 VS #5.0 0.297 1.880 0.573 to 6.166 0.662 0.792 0.278 to 2.259 0.637 1.208 0.551 to
2.648

EZH2, .10.5 VS #10.5 0.732 1.230 0.375 to 4.035 0.861 0.910 0.316 to 2.623 0.928 1.037 0.473 to
2.272

ERK, .5.0 VS #5.0 0.910 1.074 0.314 to 3.669 0.830 1.121 0.393 to 3.198 0.729 1.150 0.522 to
2.533

p-ERK, .2.5 VS #2.5 0.437 1.685 0.452 to 6.280 0.986 1.011 0.321 to 3.186 0.509 1.338 0.564 to
3.176

AKT1, .5.0 VS #5.0 0.314 0.491 0.123 to 1.964 0.820 0.881 0.296 to 2.622 0.467 0.732 0.316 to
1.695

Pontin, .3.5 VS #3.5 0.708 1.255 0.383 to 4.114 0.594 0.750 0.260 to 2.162 0.966 0.983 0.446 to
2.166
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1:50 dilution), c-Met (Santa Cruz, SC-161, 1:200 dilution), nm23-

H1 (Santa Cruz, SC-56928, 1:200 dilution); tumor microenviron-

ment: HIF-1a Millpore, MAB5382, 1:200 dilution), COX2 (Santa

Cruz, SC-58344, 1:200 dilution), MMP-2 (Santa Cruz, SC-53630,

1:200 dilution), MMP-9 (Santa Cruz, SC-6840, 1:200 dilution),

TIMP-2 (Santa Cruz, SC-21753, 1:200 dilution), VEGF (MaiXin,

1:200 dilution), CD31 (MaiXin, 1:200 dilution) microvessel density

(MVD), CD34 (MaiXin, 1:200 dilution) MVD, CD31+/CD342

MVD, CD8 (MaiXin, 1:200 dilution), CD45RO (MaiXin, 1:200

dilution) and D2–40 (MaiXin, 1:200 dilution); apoptosis &

autophagy: Bax (Santa Cruz, SC-7480, 1:200 dilution), Bcl-2

(Santa Cruz, SC-7382, 1:50 dilution), Survivin (Santa Cruz, SC-

47750, 1:100 dilution), AKT 1 (Cell Signaling, #4685, 1:100

dilution), Pontin (Cell Signaling, #8959, 1:100 dilution), Beclin 1

(Santa Cruz, SC-11427, 1:200 dilution); epigenetic related

molecule EZH2 (Cell Signaling, #4905, 1:200 dilution) and

EBV related molecule LMP 1 (Santa Cruz, SC-57721, 1:200

dilution), were tested in this study. A negative control was utilized

by changing the specific primary antibody with non-immune

serum immunoglobulins at the 1:200 dilutions. Serological EBV

related antibodies, EA-IgA, VCA-IgA and anti-enzyme rate

(AER) of EBV DNase-specific neutralizing antibody, were tested

prior to oncologic treatment by ELISA method [25,26]. Anti-

body testing of each used antibody was done prior to the IHC

staining.

Semi-quantitative assessment of IHC
The expression profile of each biomarker was evaluated by

combined assessment of staining intensity and extent as we

previously described [13,24]. Immunohistochemical (IHC) stain-

ing was evaluated and scored by two independent pathologists

(X.-J.F. & J.X.) blindly to clinical follow-up data. The third

pathologist will arbitrate the discrepancy arose between these two

pathologists. Totally, the ratio of complete agreement of the

overall score reached to 87%. The MVD were evaluated by

counting CD31+ capillaries, CD34+ capillaries, CD31+/CD342

capillaries and D2–40 (lymphangial specific marker) in the three

most vascularized areas (‘‘hotspots’’) [27,28]. The immune

microenvironment reactivity was assessed by counting positive

stained CD8 and CD45RO T cells in the three ‘‘hotspots’’ [29].

Table 2. Cont.

Variables (.cutoff point
VS #cutoff point) Training set Testing set Overall patients

P value HR 95% CI P value HR 95% CI P value HR 95% CI

MMP 9, .1.5 VS #1.5 0.707 0.777 0.209 to 2.896 0.201 0.482 0.157 to 1.475 0.248 0.606 0.259 to
1.418

14-3-3s, .7.0 VS #7.0 0.431 0.610 0.179 to 2.086 0.063 0.365 0.126 to 1.054 0.075 0.484 0.217 to
1.077

LMP 1, .5.0 VS #5.0 0.633 1.336 0.407 to 4.380 0.423 0.648 0.225 to 1.871 0.856 0.929 0.422 to
2.048

CD31MVD, .12249.6 VS
#12249.6

0.528 0.682 0.208 to 2.238 0.517 1.419 0.492 to 4.090 0.970 1.015 0.463 to
2.225

CD34MVD, .8803.7 VS
#8803.7

0.623 1.347 0.411 to 4.416 0.581 1.347 0.467 to 3.883 0.431 1.374 0.624 to
3.026

CD31+/342MVD, .3155.9 VS
#3155.9

0.332 1.837 0.537 to 6.279 0.404 1.562 0.547 to 4.460 0.340 1.469 0.667 to
3.238

CD8, .62.5 VS #62.5 0.767 0.819 0.220 to 3.052 0.265 0.537 0.180 to 1.601 0.347 0.668 0.289 to
1.548

CD45RO, .82.5 VS #82.5 0.398 1.038 0.952 to 1.133 0.097 0.368 0.113 to 1.196 0.941 1.002 0.941 to
1.068

D 2–40, .95.1 VS #95.1 0.418 0.611 0.186 to 2.009 0.140 0.439 0.147 to 1.312 0.094 0.505 0.227 to
1.125

VEGF, .3.5 VS #3.5 0.129 0.281 0.054 to 1.450 0.554 1.432 0.437 to 4.693 0.469 0.709 0.280 to
1.797

EA-IgA, .1:40 VS #1:40 0.439 1.597 0.487 to 5.236 0.106 2.377 0.832 to 6.786 0.087 1.987 0.906 to
4.356

VCA-IgA, .1:320 VS #1:320 0.369 1.724 0.525 to 5.653 0.017 3.787 1.266 to 11.328 0.014 2.688 1.219 to
5.927

AER, .55.0% VS #55.0% 0.687 1.314 0.348 to 4.953 0.151 2/341 0.733 to 7.476 0.203 1.764 0.737 to
4.226

SVM1, 1VS 0 0.000 – – 0.001 8.593 2.388 to 30.923 0.000 27.969 8.313 to
94.098

SVM2, 1VS 0 0.000 – – 0.000 8.391 2.608 to 26.993 0.000 25.704 8.693 to
76.000

SVM3, 1VS 0 0.000 – – 0.001 6.566 2.187 to 19.719 0.000 20.187 7.473 to
54.531

Abbreviation: NPC, nasopharyngeal carcinoma; MMP, matrix metalloproteinase; TIMP, tissue inhibitors of metalloproteinases; LMP, latent membrane protein; MVD,
intratumoral microvessel density; VEGF, vascular endothelial growth factor; AER, anti-enzyme rate of EBV DNase-specific neutralizing antibody; SVM, support vector
machines.
doi:10.1371/journal.pone.0031989.t002
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Figure 3. Kaplan-Meier estimated of overall survival (OS) for SVM1, SVM2 and SVM3 models identified high and low risk to death
subgroups in both testing set and overall patients. For SVM1 model (A), a significant survival disadvange was observed for the high risk to
death subgroup, which was identified by SVM1 model, in testing set (left panel) and overall patients (right panel). For SVM2 (B) and SVM3 model (C), a
statistically OS difference was shown between high and low risk to death subgroups, which was indentified respectively by SVM2 and SVM3 model, in
testing set (left panel) and overall patients (right panel).
doi:10.1371/journal.pone.0031989.g003
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Selection of cutoff score for each biomarker ‘‘positive’’
expression

The receiver operating characteristic (ROC) curve analysis was

subjected to the selection of cutoff score in the training set as we

previously reported [24]. Briefly, the sensitivity and specificity for

patient outcome being studied at each score were plotted to

generate a ROC curve. The score localized closest to the point at

both maximum sensitivity and specificity, the point (0.0, 1.0) on

the curve, was selected as the cutoff score that might be correctly

classified patient outcome as death or alive.

Clinical outcome assessment
The patients in this RCT were all followed up with strict

protocol. After the completion of therapy, patients were observed

at 3-month intervals during the first 3 years and at 6-month

intervals thereafter. The latest date of each patient being followed

up was May 15 2010, ensuring the accurate 5-year survival

condition of each patient was obtained and readily for further

SVM analysis. The 5-year survival condition was defined as death

or alive at the appointed date of 5 years post-diagnosis. Overall

survival (OS) was defined as the time from diagnosis to the date of

death or censored at the latest date.

Sample size estimation
Given the robust capacity of SVM prognostication model in

optimally separating the data into two categories, a relative small

sample size might be enough to achieve the goal of powerful

prognosis prediction. In this study, the STATA COX regression

was used to estimate the sample size based on 38 biomarkers

expression level. In light of the 24.2% OS events probability in

therapeutic regimen RCT, a total of 95 cases were required to

achieve 90% power for a 5% significance level assuming the OS

HR increased .ten-fold for SVMs model. When considering the

subgroup that might loss to follow-up, the cases size was further

enlarged to 103.

Support vector machines (SVM) model construction
In this study, we considered the patient prognosis as a two-class

pattern classification (death VS alive). We employed a vector

X~ X1,X2, � � �Xnf g to denote the pattern of n components for a

patient. In our binary classification, patient who survived for more

than 5 years was denoted by {1f g whereas z1f g represented the

patient survived less than 5 years. The overall patients were

randomly divided into two subgroups: training set that was

employed to construct decision function D (N), and testing set was

used to test the predictive accuracy of decision function.

The main procedure for SVM classification involved two steps.

Firstly, the input feature vector X is mapped into a higher

dimensional space H through an underling nonlinear mapping

Q xð Þ. Secondly, the linear classification is applied in this mapping

space. A SVM decision function D xð Þ can be rewritten as

D(x)~vT Q(x)+b, where parameter v~ v1,v2, � � �vngf
denotes the support vector. The unknown parameter v could

be obtained through minimization of the following structural

risk function: J(v,x)~ 1
2

vT vzC
Pn
i~0

ji (1),

diD(xi)§1{ji,ji§0,i~1,2, . . . ,n. The value of Cis a user-

specified positive parameter, and ji are slack variables. Given the

two classes are separable, minimizing the structural risk in (1)

contributes to the maximal separating margin between these two

classes.

In this study, the performance of classification was calculated

using the following loss function: Loss1 S1,S2ð Þ~
P S1ð Þ{P S2ð Þj jz2 Q S1ð Þ{Q S2ð Þj j, whereP Sð Þ and Q Sð Þ de-

noted the overall accuracy and sensitivity for set S, respectively.

The definition of P Sð Þ and Q Sð Þ was

P Sð Þ~ number of correctly predicted samples in S=number of

�

total sample in SÞ (2), Q Sð Þ~ number of True Positive
�

in S=number of TruePositiveznumber of FalseNegative in SÞ.
To maximize the area under ROC curve, we also defined

another loss function based on ROC parameter as following:

Loss2 S1,S2ð Þ~ A S1ð Þ{A S2ð Þj j (3), where A Sð Þ indicated the

area under ROC curve for the testing set S.

The classical RBF kernel function k x,yð Þ~exp { x{yj j2=sð Þ was

used in SVM model construction. To find optimal parameters of

SVM model, including kernel size s and regularization parameter

C, standard Leave-one-out cross-validation was employed to

search over a grid {10vlog2sv10,{10vlog2v10ð Þ.

Statistical analysis
The multivariate Cox proportional hazards model was utilized

to estimate the hazard ratio (HR) and 95% confidence interval

(CI). The survival probabilities difference between patients subsets

in OS were determined by Kaplan-Meier analysis and log-rank

tests. A two-tailed P,0.05 was considered statistically significant.

Statistical analysis was performed using SPSS v. 17.0 (SPSS, Inc.,

Chicago, IL).
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