
Deciphering the Preference and Predicting the Viability
of Circular Permutations in Proteins
Wei-Cheng Lo1,2., Tian Dai1,3., Yen-Yi Liu2, Li-Fen Wang2, Jenn-Kang Hwang2*, Ping-Chiang Lyu1,4*

1 Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, People’s Republic of China, 2 Institute of Bioinformatics and Systems

Biology, National Chiao Tung University, Hsinchu, Taiwan, People’s Republic of China, 3 Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia,

United States of America, 4 Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan, People’s Republic of China

Abstract

Circular permutation (CP) refers to situations in which the termini of a protein are relocated to other positions in the
structure. CP occurs naturally and has been artificially created to study protein function, stability and folding. Recently CP is
increasingly applied to engineer enzyme structure and function, and to create bifunctional fusion proteins unachievable by
tandem fusion. CP is a complicated and expensive technique. An intrinsic difficulty in its application lies in the fact that not
every position in a protein is amenable for creating a viable permutant. To examine the preferences of CP and develop CP
viability prediction methods, we carried out comprehensive analyses of the sequence, structural, and dynamical properties
of known CP sites using a variety of statistics and simulation methods, such as the bootstrap aggregating, permutation test
and molecular dynamics simulations. CP particularly favors Gly, Pro, Asp and Asn. Positions preferred by CP lie within coils,
loops, turns, and at residues that are exposed to solvent, weakly hydrogen-bonded, environmentally unpacked, or flexible.
Disfavored positions include Cys, bulky hydrophobic residues, and residues located within helices or near the protein’s core.
These results fostered the development of an effective viable CP site prediction system, which combined four machine
learning methods, e.g., artificial neural networks, the support vector machine, a random forest, and a hierarchical feature
integration procedure developed in this work. As assessed by using the hydrofolate reductase dataset as the independent
evaluation dataset, this prediction system achieved an AUC of 0.9. Large-scale predictions have been performed for nine
thousand representative protein structures; several new potential applications of CP were thus identified. Many unreported
preferences of CP are revealed in this study. The developed system is the best CP viability prediction method currently
available. This work will facilitate the application of CP in research and biotechnology.
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Introduction

Circular permutation of a protein is a structural rearrangement

whereby the N- and C-termini of structural homologs are located

at different positions. The mechanisms underlying natural CP are

not fully understood. Although posttranslational modification may

promote CP [1,2], the majority of CPs result from complex genetic

events, such as the proposed duplication/deletion [3,4], fusion/

fission [5,6] and other models [7,8,9]. Since the first observation of

CP in plant lectins [1], many naturally occurring CP cases have

been documented in well-known protein families (see [10] for a

summary). These natural cases led to the conclusion that circular

permutants (CPMs) usually retain their native function(s) [4,11],

sometimes with increased functional diversity and/or enzymatic

activity [12,13,14]. To reveal the effects of CP, many artificial

CPMs have been generated. As long as a CP site, i.e., the position

for creating the new termini, is not a residue essential for protein

folding or function, the artificial CPM generally has native

function(s) [4,15,16], although its folding pathways and/or the

structural stability might be changed [17,18,19]. Owning to these

discoveries, CP has become a new method beyond traditional

mutagenesis for studying proteins [20,21,22]. It has also been

increasingly applied as a bioengineering technique to modify the

stability, solubility and activities of proteins [12,23,24,25].

Particularly, CP allows the covalent linkage of two proteins at

positions other than their native termini and has thus made

possible the creation of several useful protein switches, molecular

biosensors, and novel fusion proteins [26,27,28].

Although CP is a powerful technique, its implementation poses

a challenge. First, introducing a CP is much more difficult,

expensive, and time-consuming than carrying out traditional

mutagenesis. Second, not every position in a protein structure can

be used to generate a viable (i.e., correctly folded, stable) CPM

[25]. Thus, successful application of CP requires selection of an

appropriate CP site — a process that is yet ill defined. Currently,

researchers who want to engineer protein by CP may have to rely

on uneconomic trial-and-error. There has been a general

observation that CPs tend to occur at positions with low sequence
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conservation, high solvent accessibility, and that contribute little to

protein folding [29,30]. A structure-derived residue measure

known as ‘‘closeness’’ was applied to predict CP viabilities by

Paszkiewicz et al. [30]. Indeed, closeness yielded better results than

sequence conservation and solvent accessibility with respect to

receiver operating characteristic (ROC) curve analyses. Neverthe-

less, the area under the ROC curve (AUC) value was only 0.7

[30]. Moreover, because the amount of publicly available data on

CP was insufficient at that time, their experimental dataset

contained only one protein, dihydrofolate reductase (DHFR), for

which the entire polypeptide had been subjected to systematic CP

tests [29]. Thus, it was uncertain whether closeness was adequate

to predict viable CP sites for other proteins, and to date a practical

CP site determination method is still unavailable.

Since the identification of CP and structural comparisons

between CPMs are computationally costly [6,10,31,32], CP-

related bioinformatics resources were not readily available until

2008 — when the first CP alignment search method, namely

CPSARST, was developed [10]. The first semi-manually curated

database for CP, namely the CPDB [33], was subsequently

established by database searches against the Protein Data Bank

(PDB). Later, GANGSTA+, a non-sequential protein structural

comparison method, was also applied to large-scale identification

of CPs. The present database of GANGSTA+ Internet Services

(GIS), a machine-curated database for protein structural homo-

logs, also contains many CPM homologs [34,35]. The amount of

non-redundant CPs recorded in CPDB and GIS nowadays should

be sufficient for deciphering the natural preferences of CP in

detail. The knowledge of the preferences of CP can help

researchers/bioengineers select suitable positions for creating

CPMs; it may also help us elucidate the mechanisms of CP and

understand how CP sites are selected by nature to enhance protein

evolutionary and functional diversity. In order to facilitate

fundamental researches and biotech applications of CP, we aim

to extensively determine the sequence and structural preferences of

CPs and develop an effective viable CP site prediction system in

this study.

A major problem in deciphering the preferences of CP and

developing CP viability predictors is the lack of information on

inviable CP sites (i.e., negative cases). Most wet-lab work only

reported viable CPMs. Bioinformatics methods for detecting CP

could only identify CPMs that fold into a stable structure. The

above-mentioned DHFR dataset contained only 73 negative cases.

In our present work, we first established a literature-derived

Dataset L consisting of seven proteins with both known viable and

inviable CP sites and increased the number of negative cases by

2.4 fold. A 40% sequence identity non-redundant subset of CPDB

(nrCPDB-40; containing 1,059 proteins) was also established.

Dataset L and nrCPDB-40 were subjected to statistical and ROC

curve analyses, seeking to identify sequence, structure and

dynamics characters that would discriminate between viable and

inviable CP sites. The identified characters and preferences of CP

were utilized to develop an elaborate system to predict viable CP

sites. Finally, the DHFR dataset and a 40% sequence identity non-

redundant subset of GIS (nrGIS-40; 2,814 domains) were used as

independent datasets for evaluating the developed prediction

system, which achieved an AUC of 0.91 for the DHFR dataset

and a large-scale prediction sensitivity of $0.72 for either

nrCPDB-40 or nrGIS-40. To promote applications of CP, we

have applied this system to predict viable CP sites for ,9,000

representative protein structures and the detailed results are

available with the online version of this article.

Our characterization of CP sites was consistent with previous

studies and revealed many unreported discriminative properties

between viable and inviable CP sites. The CP viability prediction

system developed based on these discriminative properties is

currently the best among related methods. This work has well

achieved its aims to decipher the preference and predict the

viability of circular permutations.

Results and Discussion

Definition of a CP Site and Determination of a Suitable
Representative Segment Size for CP Sites

As illustrated in the Figure S1, a CP site was defined in this

study as a position at which two natural structural homologs are

related by a CP or a position where an artificial CP was

introduced into a protein. If CP was applied to protein P with

amino acid sequence A1A2A3A4A5A6A7 to produce protein P9 with

sequence A5A6A7L0A1A2A3A4, then the CP site of P is referred to

as position 5. Meanwhile, the cleavage point for the CP site will

be referred to the peptide bond connecting A4 and A5. The L0 in

protein P9 joining the native N-terminus (A1) and C-terminus (A7)

is a polypeptide linker, which may or may not be required in an

artificial CP. Note that what Figure S1 illustrates and what we

describe here is simply a ‘‘working definition’’ of a CP site, rather

than the evolutionary mechanism of CP or an actual artificial

procedure for creating a circular permutant. Most naturally

occurring CP cases are the result of complex genetic events, such

as those mentioned in Introduction or summarized in [33].

Similarly, most artificial CPs are created by using delicate

genetic-based techniques (see Materials and Methods for

references and [24] for a review of current protocols) instead of

such a simple polypeptide-based manipulation. We defined a

viable CP site as one that led to a foldable and adequately stable

CPM, whereas an inviable site led to a CPM that was not

foldable or could not be purified. Dataset S1 and the Materials

and Methods provide information about how we retrieved known

viable and inviable CP sites from literature and established

Dataset L (see Dataset S1).

In order to examine the local sequence and conformational

propensities of CP sites, in this work CP sites were not studied as

individual residues but as polypeptide segments. The nrCPDB-40

dataset with 2,072 viable CP sites was utilized here. Each CP site

was temporarily represented by a 20-residue segment (i.e., 610

residues) surrounding the cleavage point (pcut). For unbiased

analyses, the representative segments were clustered and reduced

to a non-redundant subset (nrCPsitecpdb-40, consisting of 1,087 CP

sites) in which the sequence identity of any two polypeptide was

,40% (Materials and Methods). As a preliminary test, bootstrap

aggregating analyses were carried out to determine the average

occurrence of the 20 amino acids in all proteins in nrCPDB-40

(the comparison/background group) and all pcut6k segments in

nrCPsitecpdb-40 (k = 1, 2, 3 …, 10; the experimental groups).

Figure S2 shows that CP has preference for certain amino acid

residues. The amino acid occurrence frequencies in the experi-

mental groups increasingly differed from those of the background

group as the length of the representative segments was narrowed

down to the pcut. Another preliminary test was done to observe the

coverage of occurrence of a variety of sequence and secondary

structural element (SSE) patterns for the pcut6k segments. For all

patterns a longer segment had a higher occurrence coverage

(Table S1); notably, some of the oligo-residue patterns and residue

coupling patterns [36] had very low coverage of occurrence or

could not even form when k,3. Based on these results, we chose

pcut63 (i.e., 6-residue segment surrounding the cleavage point) to

represent a CP site. See Materials and Methods for details.

Circular Permutations in Proteins
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Amino Acid Propensities and Physiochemical Preferences
of CP

The amino acid preferences of CP have not been characterized

previously. This work examined such preferences by utilizing the

nrCPDB-40 (background group) and nrCPsitecpdb-40 (the CP site

group) datasets. Because of the non-normal distribution of the

occurrence frequency of many amino acids or sequence patterns in

these datasets, Student’s t-test was not suitable for the statistical

analysis of these data (see Figure S3 for diagrams of the

distribution of each amino acid). To analyze whether the average

frequency of a sequence pattern around CP sites differed

significantly from background, the permutation test — a statistical

significance test capable of dealing with non-normally distributed

data [37] — was performed to calculate the p-value.

As shown in Figure 1, for nrCPsitecpdb-40, there was a

significant preference for Pro (occurrence ,32% higher than

background) or Gly (,16% higher) at viable CP sites (p,0.001).

Hydrophilic residues, especially Asp and Asn (p,0.05), were also

preferred whereas bulky hydrophobic residues such as Met

(p,0.01), Leu, and Ile (p,0.001) were disfavored (occurrence

,20% lower than background; Figure 1A). According to [38], we

classified amino acids into three groups: hydrophobic, hydrophilic,

and neutral. Permutation tests confirmed that hydrophilic and

neutral residues had higher occurrence at CP sites whereas

hydrophobic residues had lower occurrence (below background)

(all p-values,0.001; see Figure 1B). We also classified amino acids

into five different physiochemical types based on their side chains

[39]: nonpolar aliphatic, polar uncharged, aromatic, positively

charged, and negatively charged. Viable CP sites preferred

negatively charged and polar uncharged residues (12% and 7%

above background, respectively; p-values,0.01; Figure 1C) and

disfavored nonpolar aliphatic residues (8% lower than back-

ground; p,0.001). Cys and residues with aromatic rings also

tended to be disfavored, but the statistical significance for these

residue types was low (p.0.1) for nrCPsitecpdb-40.

GIS [35] includes domain-based ‘‘partial’’ CPs [10], an aspect

that differs from CPDB, which strictly considers the entire

polypeptide chain as the unit of CP [33]. As a result,

nrCPsitegis-40 — a non-redundant CP site dataset of GIS (see

Materials and Methods) — contained 2.5 times as many CP sites

as nrCPsitecpdb-40. A repetition of the above experiments with

nrCPsitegis-40 yielded similar tendencies as for nrCPsitecpdb-40

(refer to Figure S4). Based on nrCPsitegis-40, we confirmed that

Cys and aromatic residues were relatively disfavored for CP (11%

and 10% lower occurrence than background, respectively;

p,0.05; Figure S4A and S4C). Further, analyses with both

datasets confirmed that CP had little or no preference for

positively charged residues (Figure 1C and S4C). Permutation

test-based compositional analyses of di-residue, oligo-residue, and

coupling-residue [36] patterns were also performed. See Figure S5

for details.

CP prefers Pro, Gly, and hydrophilic residues and disfavors

bulky hydrophobic residues. These results can be explained by

earlier findings. The fact that viable CPs prefer positions with

relatively low sequence conservation and high solvent accessibility

[29,30] implies they favor loop conformations, which are usually

less conserved in protein families [40] and are generally exposed to

the solvent [41]. Indeed, Pro and Gly are frequently found in loops

[42]. Besides, hydrophilic residues are more solvent exposed than

hydrophobic residues, among which the bulky ones are more

frequently buried in proteins (see the second table of [43]).

Moreover, Cys residues, particularly those involved in disulfide

bridges, are important for protein folding/stability [44,45].

Occurrence of a CP at a disulfide-bridged Cys prevents formation

of the disulfide bond, and thus it would be expected that viable

CPs would seldom occur at disulfide bond-forming Cys residues.

The negatively charged Asp and hydrophilic Asn were much

more favored at CP sites than residues with similar physiochemical

properties, i.e., Glu and Gln. They were also preferred over the

positively charged (and hydrophilic) residues Arg and Lys. These

seemingly obscure results might have biological significance

because they were independently observed in CPDB and GIS.

Although at present these differences in propensity cannot be

easily rationalized with our limited knowledge of sequence-

structure relationships in proteins, the observed CP preference

for Asp and Asn over Glu, Gln, Arg, and Lys is just the reverse of

the preference of these residues in helices [46,47,48]. Taken

together, our sequence-based statistics suggest that natural CPs

prefer positions in loops whereas positions in helices are

disfavored.

Secondary Structure Preferences for CP
The putative secondary structure preferences for CP deduced

above were supported by secondary structural propensity

analyses. In this work, polypeptide secondary structure was

determined by the program DSSP, which categorized secondary

structure into eight types [49]. Figure 1D shows that residues

within turns, bends or loops/coils were greatly preferred over

those within a- or p-helices or b-bridges. Extended b-strands and

3/10 helices showed no preference for CP over background.

Several structural alphabets have been developed to describe

local backbone conformation in polypeptides, among which the

Ramachandran codes developed by Lo et al. [50] and the kappa-

alpha codes of Yang et al. [51] correlate backbone conformations

with two-dimensional Ramachandran and kappa-alpha plots and

are thus easy to visualize. Using the Ramachandran codes to

describe protein backbone conformations (see Figure 1E), we

found that CP particularly favored the codes that corresponded

to the Ramachandran plot regions with high populations of

isolated b-strands, random coils, turns, and Pro residues (refer to

Figure S6 and [52]), the last of which was consistent with our

sequence-based results. CP sites occurred infrequently at residues

located in Ramachandran code regions A–C (35–46% lower

occurrence than background), which are exclusively occupied by

a-helices [50,52]. The Ramachandran code only describes a 3-

residue backbone conformation. To convey longer backbone

conformations, we utilized the kappa-alpha code, which encodes

5-residue backbone conformations [51]. Similarly, CPs occurred

rarely at residues located in the kappa-alpha code regions of

helical conformations (Figure 1F; see also Figure S6 and [51]).

We also analyzed several di-residue, oligo-residue, and coupling-

residue secondary structural patterns; CP occurred frequently at

the terminal residues of regular SSEs, i.e., helices and strands.

The occurrence of CP at transitional regions between a bend and

a b-strand, between a turn and a b-strand, between an a-helix

and a coil, etc., were much higher than the background

occurrence of these di-residue SSE patterns (summarized in

Figure S5).

CP highly favors coils, loops, and turns, and highly disfavors

helices and b-bridges. Again, the conformations preferred by CP

are evolutionarily less conserved and/or are generally located at

positions with higher solvent accessibility than the non-preferred

conformations. Inferring from these preferences, viable CP sites

are more likely to be: (1) located closer to the protein surface, (2)

less intra-molecularly hydrogen-bonded, because coils and loops

have less-well-defined hydrogen-bonding patterns than regular

SSEs, and (3) more flexible than inviable CP sites.

Circular Permutations in Proteins
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Definition of the Propensity Score and the Distribution of
Propensity Scores Based on Sequence and Secondary
Structural Information

So far our sequence and secondary structure statistical results

agreed well with each other and were biologically relevant. Before

further investigating the preferences of CP, we tested whether the

current information was sufficient to distinguish viable from

inviable CPs. A new propensity scoring system was defined as

follows,

Sp(i)~W (i)|
fe(i)z�ff min(i)

fc(i)z�ff min(i)
{1

� �
ð1:1Þ

�ffmin(i)~
1=nez1=nc

2
ð1:2Þ

W (i)~1{p(i) ð1:3Þ

where Sp is the propensity score, i is the sequence/SSE pattern

under analysis, fe(i) and fc(i) are the frequencies of occurrence of

pattern i in the experimental and comparison groups, respectively,

ne and nc represent the amounts of pattern i in the two groups, and

p(i) is the p-value of i obtained by the permutation test. The �ffmin(i)
is defined as the average of the minimum frequency of occurrence

Figure 1. Sequence and Secondary Structural Propensities of Viable CP Sites. In these charts, each bar shows the relative occurrence of a
pattern, e.g., an amino acid, a physiochemical type of residue, or an SSE, for the background polypeptides (in dataset nrCPDB-40) and viable CP sites
(in dataset nrCPsitecpdb-40). The background value was considered as the zero point in each experiment; thus, a positive or a negative value means
that the frequency of the pattern at CP sites was higher or lower than its frequency in the background. As shown in chart (a), dark blue- to light blue-
colored bars represent smaller p-values (,0.05) for the difference between the background and CP site groups. The yellow- and red-colored bars
represent p-values$0.05. Patterns examined in this experiment include: (a) amino acids, (b) residue physiochemical types classified according to [38],
(c) side-chain physiochemical types classified according to [39], (d) SSE determined by DSSP [49], (e) Ramachandran code, the backbone
conformational alphabet defined by SARST [50], and (f) kappa-alpha code, the backbone conformational alphabet defined by 3D-BLAST [51].
doi:10.1371/journal.pone.0031791.g001
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of i in both groups. The fundamental purpose of using �ffmin(i) in

Formula 1.1 is to prevent dividing by 0. W(i) is a weighting

function, which reduces the value of a score if the statistical

significance of the data is low. A positive or negative Sp score

indicates that i has a higher or lower occurrence, respectively, in

the experimental group than in the comparison group. A zero Sp

means that either i has an equivalent frequency in both groups or

the results have extremely low statistical significance.

The feature of this scoring system is that it takes statistical

significance into consideration to ensure the reliability of the

scores. After applying this system to nrCPDB-40, we obtained the

propensity scores of many sequence/SSE patterns. To evaluate

these scores, t-tests and ROC curve analyses were performed on

Dataset L. The distributions of most propensity scores differed

significantly between viable and inviable CP sites (Figure 2). For

instance, the p-values of the amino acids and SSE propensity

scores were 1.1|1026 and ,2.2|10216, respectively. The

sequence-based propensity scores achieved a binary classification

power (AUC = ,0.60) similar to the solvent accessibility measure

used by Paszkiewicz et al. (AUC = 0.58) [30]. Notably, the

secondary structure-based propensity scores registered an average

AUC of 0.73, comparable to the classification performance of

closeness (AUC = 0.7) [30]. The source dataset (nrCPDB-40) of

the statistics used to calculate propensity scores and the evaluation

dataset (Dataset L) shared ,40% sequence identities. In addition

to demonstrating that the proposed propensity scoring system is

feasible to develop a CP site prediction procedure, these results

suggested that our sequence and secondary structural statistical

results properly reflected the natural preferences of CP.

Solvent Accessibility and Depth of CP Sites
The relative side-chain area defined as the molecular surface

area inaccessible to solvent molecules is a measure complementary

to solvent accessible surface area [30]. This measure has been

applied to predict viable CP sites (AUC for DHFR = 0.58 [30]).

Here we utilized the standard solvent accessibility measure RSA

(relative solvent accessibility) [53,54,55], to study CP. As shown in

Figure 3A and Table 1, CP significantly prefers residues with high

solvent accessibility (p-value = 2.5|1029), and RSA is feasible to

distinguish viable from inviable CP sites (AUC = 0.69).

The relatively higher RSA values of viable CP sites indicate that

they are located closer to the surface of protein. We used two

measures, residue depth and centroid distance measure (CM), to

verify this inference. The residue depth was the depth of a residue

measured from the solvent-accessible surface [56]. In this study,

the location of a residue was represented by its alpha carbon atom

(Ca), unless otherwise specified. The CM value of a residue was

defined as the distance of its Ca from the protein’s center of mass

[57,58].

Indeed, the distributions of residue depth and CM values

confirmed that viable CP sites were, on average, closer to the

solvent-accessible surface and farther away from the center of mass

(Figure 3B and 3C). The performance of using residue depth to

distinguish viable from inviable CP sites was lower than that of

RSA, whereas CM was better than RSA in this regard; the AUCs

for residue depth and CM were 0.63 and 0.74, respectively.

Because residue depth and CM measure different attributes of a

residue, the observed difference of their binary classification

performance implied that the actual cause of the preference of CP

for positions close to the solvent-accessible surface might be a

lower viability of a CP occurring at a position close to the central

buried region of the protein. See Subsection ‘‘Farness of CP sites

from the buried core of the protein’’ for further discussion of this

matter.

Number of Hydrogen Bonds and Local Packing Density
of CP Sites

Hydrophilic residues (preferred by CP) have higher chances to

form intra-molecular hydrogen bonds compared with hydropho-

bic residues. However, loops and coils (also preferred by CP) are

less hydrogen-bonded than regular SSEs. We supposed that the

secondary structural property of a residue may play a more

dominant role than its hydrophilicity for determining its viability

for CP, and thus hypothesized that viable CP sites might be less

intra-molecularly hydrogen-bonded. Indeed, 61% of viable CP-

site residues formed one or no intra-molecular hydrogen bond

whereas 71% of the inviable CP sites had two or more (Figure 3D).

We next hypothesized that, in addition to hydrogen bonds, CP

viability could be affected by other intra-molecular interactions

such as disulfide bonds, electrostatic forces, and hydrophobic

effect. We also presumed that a residue subjected to relatively

more attractive intra-molecular interactions would have a more

packed (crowded) neighborhood. Generalizing from the fact that

viable CP sites make fewer hydrogen bonds, they may also prefer a

less packed local environment and/or have fewer (attractive)

interactions with its neighboring residues. Several structurally

derived residue properties have been applied to describe the local

packing density of a residue and/or the density of possible

interactions associated with it, including closeness, contact number

(CN), and weighted contact number (WCN). If we consider a

protein structure as a graph consisting of nodes and edges in which

a node represents a residue and an edge represents any possible

interactions between two residues that can happen within a

specific distance cutoff, then closeness measures the proportion of

nodes that can be traversed through an edge from a specific node

[30,59]. Hence, a residue with a higher closeness value has more

neighboring residues with which it can interact directly or

indirectly [59]. The general definition of CN is the number of

atoms surrounding a residue within a sphere of specified radius

from its Ca. Previous studies applied various radii (from 6 to 20 Å)

in different circumstances [60,61,62,63]. Regardless, a larger CN

implies that a residue has more surrounding atoms. For WCN, a

weight inversely proportional to the square of distance was given

to a surrounding atom j of the residue of interest i as j was counted

into the CN of i [64]. Residues having many close neighboring

residues would thus have a large WCN.

Viable CP sites significantly have smaller closeness, CN and

WCN values when compared with inviable sites (p-

values,2.0|10214). The AUC of closeness was 0.73 as assessed

with Dataset L (Figure 3E), consistent with [30]. For CN, the best

discriminating capacity was achieved with a radius of 6.4 Å

(AUC = 0.78; Figure 3F). WCN could easily distinguish between

viable and inviable CP sites (AUC = 0.79; Figure 3G). These

results suggested that CP favors positions with a less packed

environment. Further, since CN and WCN have been shown to be

well correlated to the B-factors [63,64], our results indicated that

CP appears to prefer flexible residues.

Flexibility of CP Sites
Our data thus far indicated that WCN, CN, and CM were the

best structural descriptors for identifying viable CP sites. Notably,

all three of them had previously been correlated with residue

flexibility; residues with high B-factor values, i.e., highly flexible,

usually had small WCN and CN values (unpacked environment)

[63,64] and high CM values (close to the protein surface) [57,65].

This is reasonable because a residue located in a highly packed

region was unlikely to move or rotate freely without affecting its

neighboring residues. Combined with our findings that CP favors

residues with high RSA values and loop/coil conformations, it

Circular Permutations in Proteins
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seemed reasonable to assume that residues amenable to CP would

be those having relatively high flexibility because RSA has also

been correlated with residue flexibility [66], and loops/coils are

generally flexible.

All protein structures in Dataset L were determined by x-ray

crystallography, and hence their B-factors are available. As

revealed by Figure 3H, the distribution of B-factors differed

significantly (p = 1.5610210) between viable and inviable CP sites,

the former having higher values. ROC curve analysis also

confirmed that B-factors could reasonably discriminate viable

from inviable CP sites (AUC = 0.69). A practical problem of using

B-factors is that they are only available for x-ray crystal structures.

To make residue flexibility widely accessible, we performed

molecular dynamics (MD) simulations on each protein in Dataset

L for 100 ps and calculated the root mean square fluctuation

(RMSF) for each residue. Residues with high RMSF are more

flexible [67]. The distribution of RMSF showed that viable CP site

residues had higher RMSF than inviable ones (p = 1.8610214;

Figure 3I). The AUC obtained by RMSF was 0.76, clearly better

than that by B-factor. However, computing RMSF via MD

simulations has an extremely high computational cost, thus

limiting the practical application of this approach. A more CPU-

efficient Gaussian Network Model (GNM), which is based on a

coarse-grained elastic network model, has often been used to

probe structure dynamics [68,69,70]. As revealed by Figure 3J, the

GNM-derived mean-square fluctuation (GNM-F) had a more

significant distributional difference (p = 9.1610216) and better

discriminating power than RMSF (AUC = 0.77); this AUC was

comparable to that of CN or WCN.

With these results coming from crystallographic data, MD

simulations, or the theoretical model, we have shown that CP

prefers positions with higher flexibility. The high statistical

significance and binary classification quality achieved by the

residue flexibility measures utilized here and the packing density

Figure 2. Distributions and ROC Curves of Propensity Scores. Here, a propensity score was calculated as the relative propensity of a pattern
between the background and viable CP sites weighted by 1 – p-value (see Formula 1). A high relative propensity and a small p-value resulted in a
high score. A zero score means that there was no obvious difference between the frequencies of the pattern in the background and viable CP sites, or
the difference was statistically insignificant. These plots show distributions of several propensity scores for the viable (red bars) and inviable (blue
bars) CP sites of Dataset L and their ROC curves. Plots (a)–(c) and (d)–(f) respectively exhibit the results of sequence-based and secondary structure-
based propensity scores. The distributions of the sequence-based propensity scores are not very different between the viable and inviable CP sites,
and their AUCs are only ,0.6. The distributions of secondary structure-based propensity scores were rather different between viable and inviable CP
sites, and thus the AUCs were higher than those of sequence-based scores. The lower x axis in each plot indicates the propensity score. The left y axis
indicates the frequency, i.e., the proportion of residues falling into each score group. The upper x axis and right y axis represent the false positive rate
and true positive rate, respectively, for the ROC curve.
doi:10.1371/journal.pone.0031791.g002
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Figure 3. Distribution and ROC Curves of Various Tertiary Structure-derived Residue Measures. In general, the differences in the
distributions of tertiary structure-derived residue measures in viable (red bars) and inviable (blue bars) CP sites of Dataset L were larger and statistically
more significant than those of the sequence and secondary structural propensity scores. Their AUC values were also larger in most cases. See Figure 2 for
descriptions of the four axes. The abbreviations shown on top of each plot stand for: (a) relative solvent accessibility, (b) residue depth, (c) centroid
distance measure, (d) number of hydrogen bonds, (e) closeness, (f) contact number, (g) weighted contact number, (h) atomic mean-square
displacement, (i) root-mean-square fluctuation of the Ca atom, (j) Gaussian network model-derived mean-square fluctuation, (k) average distance to the
residues located in the buried core, (l) average distance to hydrophobic residues, (m) ‘‘farness’’ (see the main text for definition) from the buried core, (n)
farness from hydrophobic residues, (o) farness from the union set of residues in the buried core and hydrophobic residues, and (p) farness from the
hydrophobic residues located in the buried core. A plus (+) after an abbreviation for certain measures indicates that hydrogen atoms were restored/
added before those measures were calculated. If the definition or algorithm of a measure did not consider hydrogen atoms, or if it made no difference to
the results whether hydrogen atoms were present, that measure was computed without adding hydrogen atoms.
doi:10.1371/journal.pone.0031791.g003
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measures discussed above suggested that flexibility and packing

play important roles in determining CP viability. The fact that

these measures performed similarly is consistent with the results of

previous studies that flexibility can be inferred from local packing

density [63,64].

Definition of the Farness, a New Residue Measure
Experimental results related to the structure-derived properties

examined above emphasized that CP favors residues in a less

packed environment and positions farther from a protein’s center

of mass. For a globular protein, the center of mass is most often

located at the very interior (i.e., the core) of the structure, which

generally is quite hydrophobic and solvent inaccessible. These

attributes of interior residues correlate with the non-preferences of

CP as determined by our study. For a highly globular protein, CM

alone should be sufficient to distinguish viable from inviable CPs.

Nonetheless, most proteins are not totally globular, and in some

cases the center of mass may even be outside the protein structure

(as a fact in physics, the center of mass of an object may not

correspond to any position within the object). We speculated that

it is actually the residues close to the hydrophobic/buried core that

constituted the sites disfavored for CP. Thus, compared with CM,

a measure that could more precisely describe the distance from a

given residue to the hydrophobic/buried core might be more

feasible to determine the CP viability of the residue.

The hydrophobic/buried core is not a single point but a

region. To measure how distant a residue is from the core, we

calculated the distance between the residue and the average

position of Ca of the residues in the core (see Table 1 and

Figure 3K for evaluations). However, we presumed that a core

residue j located closer to the residue of interest i would exert a

larger influence. In this case, the harmonic mean of the distances

would apply, that is,

Hd (i)~
nPn

j~1

d{1
ij

ð2Þ

where dij is the distance between i and j; n denotes the number of

residues contained in the hydrophobic/buried core. If we only

considered the relative values among residues, the constant n

could be omitted. Finally, we added some weight to each distance

and generalized the idea into a new ‘‘farness’’ measure (F), which

described the distance between any residue i and a specific group

of residues G:

FG(i)~
1P

j[G

W (j)|dij

� �{1
ð3Þ

Table 1. Binary Classification Performance of Several Propensity Scores and Tertiary Structure-derived Residue Measures.

Score/
Measurea Viable CP sitesa Inviable CP sitesa p-value AUC Decision thresholdb Sensitivity Specificity MCC

R_aa 0.06260.155 20.01660.129 1.09|1026 0.639 0.000 0.574 0.618 0.193

R_aat3 0.02360.091 20.01160.100 1.62|1023 0.579 0.075 0.716 0.462 0.184

R_aat5 0.01560.081 20.01360.076 1.15|1023 0.608 0.023 0.586 0.590 0.176

R_sse 0.16260.257 20.11460.263 ,2.20|10216 0.786 0.087 0.728 0.769 0.498

R_rm 0.12660.270 20.05960.319 2.20|1028 0.679 0.062 0.623 0.676 0.300

R_ka 0.16560.292 20.07760.319 3.06|10212 0.718 0.037 0.698 0.653 0.351

RSA+ 46.602629.258 27.698626.846 2.53|1029 0.694 26.000 0.710 0.572 0.284

DPX+ 20.48760.628 0.11661.053 6.65|10210 0.631 20.766 0.667 0.595 0.262

CM+ 0.58660.914 20.23860.945 1.12|10214 0.739 20.112 0.778 0.642 0.422

H-bonds+ 1.28461.141 2.06461.184 2.64|1029 0.663 22.000 0.648 0.688 0.336

Closeness+ 20.55160.832 0.24760.983 2.02|10214 0.726 20.155 0.716 0.665 0.381

CN 20.64360.901 0.35960.938 ,2.20|10216 0.778 20.050 0.759 0.723 0.482

WCN 20.70960.788 0.33760.998 ,2.20|10216 0.787 20.060 0.815 0.676 0.495

B-factor 0.41861.127 20.26760.674 1.48|10210 0.691 20.017 0.568 0.699 0.270

RMSF+ 0.54661.115 20.32460.817 1.76|10214 0.759 20.135 0.698 0.705 0.403

GNM-F 0.59461.026 20.30960.912 9.13|10216 0.769 20.127 0.772 0.705 0.477

DISb+ 0.61860.864 20.31760.948 ,2.20|10216 0.770 0.020 0.741 0.717 0.457

DIShpho 0.49960.808 20.30260.926 1.08|10215 0.754 0.000 0.821 0.671 0.496

Fb+ 0.64961.090 20.37860.774 ,2.20|10216 0.816 20.247 0.765 0.711 0.477

Fhpho 0.44360.871 20.31560.814 5.84|10215 0.766 20.077 0.778 0.682 0.461

Fb<hpho+ 0.50561.284 0.12960.889 3.78|1027 0.712 20.368 0.747 0.595 0.346

Fb>hpho+ 0.52061.222 20.21860.884 1.26|1029 0.746 20.436 0.759 0.636 0.397

aThe values of these measures are all presented here with the format: mean 6 standard deviation. A plus (+) after an abbreviation for certain measures indicates that
hydrogen atoms were restored/added before those measures were calculated. See Figures 2 and 3 for the meaning of abbreviations used for these measures.

bFor convenience, the optimal decision threshold of a score was determined as the score value corresponding to the point nearest to point (0,1) on the ROC curve [98].
The sensitivity, specificity and MCC were obtained at the listed decision thresholds.

doi:10.1371/journal.pone.0031791.t001
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where W(j) denotes the weight function for each residue j

belonging to G. By referring to the design of WCN, we inferred

that a suitable weight function for this farness measure could be

W (j)~d2
ij . In the general case, G can be any target group with a

specific property. In this work, G represented the buried and/or

hydrophobic core (see below for the determination of W and

working definitions of G).

Farness of CP Sites from the Buried Core of the Protein
Before the ‘‘farness’’ measure could be applied, we needed to

identify the group of residues (G) constituting the buried and/or

hydrophobic core. We supposed that the region defined by all

hydrophobic residues in the protein would include the hydropho-

bic core, and that the core of a protein structure should be

composed of residues essentially solvent inaccessible. These two

suppositions led to four working definitions of G, e.g., (1) set B:

buried residues (each with RSA,10%); (2) set H: hydrophobic

residues [38], (3) B|H, and (4) B\H. Among these sets, farness

from B achieved the best binary classification quality (Table 1;

Figure 3M–P). Set B actually represented the buried core of the

protein, but it was not yet clear whether it was the buried core or

hydrophobic core that was less preferred by CP because the

residues comprising the hydrophobic core are not as definable as

those in the buried core and we presumed that none of the other

three sets could perfectly define them.

We assigned Fb to represent the ‘‘farness’’ measured from the

buried core. After many tests, the working weight function for

Formula 3 was actually determined as W (j)~dij
2 for Fb. The

distribution of Fb between viable (higher Fb) and inviable CP

(lower Fb) sites was very significant (p,2.2610216; Figure 3M).

Impressively, the binary classification performance of Fb

(AUC = 0.82) was clearly better than any other measure we

assessed.

The high discriminating power of Fb supported our latest

hypothesis that residues in the buried core are far less likely to

undergo CP. This phenomenon may be explained based on

energetics. It seems energetically disfavored to introduce a CP into

the core of a protein structure because by doing so the new

terminal residues, which were originally buried in a very

hydrophobic environment, would probably be exposed to the

hydrophilic solvent, not to mention that the dramatic conforma-

tional difference between the native structure and the partially

‘‘inside-out’’ permuted structure might require completely differ-

ent folding pathways. Because Fb is a simple measure of distance

and cannot be directly applied to describe energetics, we thus

proposed that if some thermodynamic measure(s), such as DDG,

related to the expected conformational difference between the

native and a permuted structure could be properly determined or

simulated, the viability of CPs might be more precisely predicted.

We also expected that, a cleavage site resulting in a higher DDG

would be a less preferred CP site. Clearly, this hypothesis must be

tested.

Predicting CP Viability by Integrating Primary and
Secondary Structural Propensity Scores with Tertiary
Structural Property Measures

Usages of Various Datasets. To prevent dataset overfitting

and biased prediction, during the development of prediction

procedures discussed in the following text, several datasets were

carefully used. Dataset L was divided into two subsets, Dataset T

and the DHFR dataset (see Dataset S1), which shared ,9%

sequence identities (calculated by FASTA [71]). Dataset T and

nrCPDB-40 were employed to train/test a predictor. The DHFR

dataset and nrGIS-40 were utilized as independent datasets for

evaluating the generated predictors. Any two of these training/

testing and independent datasets shared ,40% sequence

identities.

Preliminary Feature Adjustments and Selections. There

were 48 primary structural propensities, 19 secondary structural

propensities, and 36 tertiary structural properties examined in this

study, inclusive of a negative control tester for the prediction

methods (e.g., random values). These features had various ranges of

values. To ensure that viable CP sites had uniformly higher scores

in our prediction system, as indicated in Table S2 any feature M

with lower values among the viable CP sites compared with the

inviable sites was either inversed (1/M) or multiplied by minus one

(2M). Next, all features were standardized by the following

standard score function,

zi~
xi{m

s
ð4Þ

where i is the residue of interest, z denotes the standard score, x is

the raw score, and m and s are the mean and standard deviation of

scores for all residues in the protein.

From these 103 features, 46 were chosen for the feature set for

developing prediction procedures. The choices were made based

on the statistical significance, binary classification qualities,

redundancy, and ease of implementation of all features (see Table

S2 for details). The dataset independence of each selected feature

was ensured by establishing a single-feature predictor that was

trained and tested with very different datasets — Dataset T and

nrCPDB-40. Detailed procedures for assessing the dataset

independence of various features are described in Materials and

Methods. The prediction performances of single-feature predictors

are summarized in Table S3.

Hierarchical Integration (HI) of Features. Forty-six

selected features were quite many. An HI procedure was thus

designed to incorporate the binary classification power of various

features into a single score (see Materials and Methods and

Figure 4). Features were hierarchically classified into a tree-like

structure. The feature scores of the branches were averaged with

weights into the integrated feature (IF) score of their common

node. Finally, a root IF score was produced. This HI procedure

was easy to implement, and the root IF could effectively separate

the viable and inviable CP site groups of Dataset T by ,1.2

standard deviations (p,2.2610216). The 10-fold averaged AUC

and MCC of this final IF for Dataset T were 0.83 and 0.49.

Applying the HI model trained with Dataset T to predict viable

CP sites in proteins of nrCPDB-40, the sensitivity was 0.73

(Table 2).

To this point, we had used Dataset T and nrCPDB-40 in the

feature selection step and utilized them again to train and evaluate

the prediction method. To avoid biased evaluations, independent

datasets were used to ultimately assess the performance of the HI

procedure. The AUC and MCC for the DHFR dataset were

respectively 0.84 and 0.55 and the sensitivity for nrGIS-40 was

0.70. Hence, the HI procedure was appropriate for predicting the

viability of CP sites.

Prediction of CP Viability Using Machine Learning
Techniques

In additional to the HI procedure, three well-developed

machine learning techniques, ANN (artificial neural networks),

SVM (support vector machine), and RF (random forest), were also

applied. In every method, the output for each residue was designed

to be a probability score for its being a viable CP site (Materials
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and Methods). Trained with the same 46 features and training

datasets utilized in the previous subsection, each of these

techniques performed well. As shown in Table 2, all of them

achieved high AUC (.0.82) and MCC (.0.46) values on the

independent dataset DHFR. The large-scale prediction perfor-

mances of these methods on the independent dataset nrGIS-40

were also acceptable (all sensitivity values were .0.68).

The four methods had different properties. We supposed that

combining the prediction power of them would improve the

performance and further decrease dataset overfitting. Thus, for

each residue subjected to our final prediction system, the

probability scores computed by the four methods were averaged

into a single score. If the input residue had a final probability score

$0.5, it was predicted as a viable CP site.

Before this work, the best CP viability prediction methods were

developed based on the closeness measure, which registered an

AUC of 0.7 on the DHFR dataset [30] and a sensitivity of 0.67 on

CPDB [33]. The performance of the prediction system developed

here was greatly improved. As shown in Table 2, the AUC

obtained by our combined machine learning system on the DHFR

dataset was 0.91, and the sensitivity on nrCPDB-40 was 0.75. In

addition, the sensitivity value of this system on the independent

dataset nrGIS-40 was 0.72, clearly higher than that of closeness

(0.61).

Performance of Predictions at Various Probability Score
Levels

In order to draw a clear map for bioengineers and experiment-

ers to apply the developed system, information retrieval experi-

ments were performed to examine the precisions of predictions at

various decision thresholds of the probability score. Table 3 and

Table 4 demonstrate that, a high threshold of probability score

would retrieve fewer residues but obtain a higher proportion of

correct predictions than a low threshold would. No matter in

Dataset T or the independent DHFR dataset, any residue with a

probability score $0.75 was an actual CP site (i.e., precision = 1);

besides, over 90% of the residues possessing probability scores

$0.6 were viable CP sites (precision $0.9). Since ,80% of the

residues predicted as viable CP sites (i.e., probability scores $0.5)

in these two datasets were actual CP sites, this system is quite

reliable. For those experimenters who expect a high certainty

about the viability of the permutants, residues with probability

scores $0.75 can be good choices for performing CP; at this

threshold, only 11%–15% of all residues in a protein will be

predicted as viable CP sites. See Figure 5 for a stereo display of the

prediction results of DHFR.

Large-scale Predictions of CP Viability for Known Protein
Structures

The amount of protein structural data is rapidly increasing. As

of the date of this article, there have been over 70 thousand

protein structures, which consist of 177 thousand polypeptide

chains, deposited in the PDB [72]. However, the number of

unique structures remains relatively stable. Currently the 40%

sequence identity non-redundant subset of PDB contains approx-

imately 9,000 polypeptides, as reported by the PDB-REPRDB

web server [73]. To stimulate the application of CP in research

and biotechnology, this work has performed large-scale predictions

for all these 9 thousand representative PDB structures. The results

are summarized in Text S1. For every residue in these proteins,

the probability score for its CP viability is provided along with its

amino acid and secondary structure information. If a residue is a

known CP site recorded in CPDB [33] or any of the datasets

utilized in this report, it is clearly annotated. Several interesting

Table 2. CP Viability Prediction Performance of Various Procedures.

Dataset Performance measure Closeness+a Farness: Fb+a HI ANN RF SVM Combinedb

Dataset Tc AUC 0.746 0.768 0.828 0.885 0.844 0.819 0.905

Sensitivity 0.577 0.761 0.771 0.852 0.775 0.647 0.857

Specificity 0.677 0.569 0.723 0.846 0.714 0.762 0.790

False positive rate 0.323 0.431 0.277 0.154 0.286 0.238 0.210

MCC 0.264 0.329 0.490 0.690 0.483 0.407 0.632

DHFR AUC 0.814 0.873 0.843 0.833 0.840 0.822 0.906

Sensitivity 0.465 0.849 0.616 0.593 0.733 0.605 0.709

Specificity 0.918 0.740 0.918 0.863 0.808 0.918 0.918

False positive rate 0.082 0.260 0.082 0.137 0.192 0.082 0.069

MCC 0.421 0.594 0.551 0.467 0.539 0.541 0.633

nrCPDB-40 Sensitivity 0.622 0.616 0.733 0.735 0.733 0.778 0.746

nrGIS-40 Sensitivity 0.614 0.590 0.700 0.682 0.698 0.715 0.715

aRandom forest was applied in this experiment to the assess the prediction power of closeness and farness.
bA combination of the four machine learning methods (HI, ANN, RF and SVM) by averaging their probability scores into a single score. See the main text for details.
cThese results were obtained with 10-fold cross-validation.
doi:10.1371/journal.pone.0031791.t002

Figure 4. Classification Tree of the 46 Selected Features. These features were selected based on their discriminatory performance for viable
and inviable CPs in Dataset T. Redundant features (correlation coefficient .0.7) were screened out. The classification was done manually according to
the similarities of biological meaning of these features. The purpose of this classification was to perform the hierarchical feature integration
procedure developed in this work. The number following each feature abbreviation was the weight of that feature used in the hierarchical integration
procedure. These weights were determined with the training Dataset T by exhaustive performance screening (Materials and Methods). Table S2
lists the complete meanings of the features abbreviated here.
doi:10.1371/journal.pone.0031791.g004
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observations have been made from these predicted and previously

identified data.

First, under appropriate conditions, CP can be introduced into

a protein at a position within a helix or a sheet-forming strand, or

even at a disulfide-bridged Cys. Although our statistics revealed

that the occurrence frequencies of CP in such locations are

significantly lower than those in the background, these locations

are not completely disallowed for CP. There were respectively

16% and 27% residues with a-helix or b-strand conformations in

the representative PDB structures predicted to be viable CP sites;

in addition, 22% of the disulfide-bridged Cys residues in those

protein structures were predicted permissible for CP. To our

knowledge, currently among all engineered CPMs, the CPM 293

and CPM 311 of lipase B from Candida antarctica (CALB) are the

only cases that were created at disulfide bond-forming Cys. These

Cys CPMs retained lipase activities [12]. The probability scores

calculated by the developed prediction system for these Cys

residues were 0.78 and 0.77, respectively (PDB entry: 1TCA;

sharing #7% sequence identities with the training Dataset T). In

addition to these two Cys, the CALB possesses other 61

experimentally-verified viable CP sites [12]. The developed system

correctly predicted 84% of these viable CP sites, 18 out of which

have helix or strand conformations (see Text S1).

Second, our viable CP site prediction system may also be

feasible to suggest functional CP sites. Out of the 13 engineered

and functional CPs summarized in the Table 1 of [10], 10 were

predicted as viable CPs; for the rest three CP sites, two actually

had probability scores close to 0.5 (.0.46; Test S1). Most of these

functional CPs were created with a polypeptide linker to connect

their native termini. After in silico adding the corresponding linkers

to the native proteins of these permutants and performing MD

simulations, 12 CP sites had probability scores .0.52. In the case

of CALB, since all the 63 experimentally-verified permutants were

functional [12], the high sensitivity (0.84) of our CP viability

prediction system also exemplifies the feasibility of this system for

predicting functional CPs.

Third, a viable CP site may also be a good protein splitting or

domain insertion site. Protein fragment complementation assays

(PCA) involve splitting a certain reporter protein (e.g., an enzyme

or a fluorescent protein) into two fragments that cannot function

along but are capable of re-assembling and restoring native

functions upon being brought close enough. PCA has been widely

applied in many protein-protein interaction studies. Among the

commonly-used reporter proteins, inteins are also capable of

protein trans-splicing and are thus utilized in many protein

engineering works [74,75,76]. Domain insertion splits a host

Table 3. Performance of Predictions for Dataset T at Various Decision Thresholds of the Probability Score.

Probability score PPF Recall Precision
Num of viable CP sites among the
retrieved residues

Num of retrieved
residues

$0.80 0.09 0.21 1.00 16 16

$0.75 0.15 0.34 1.00 26 26

$0.70 0.21 0.45 0.92 34 37

$0.60 0.35 0.71 0.89 54 61

$0.50 0.50 0.91 0.78 69 88

$0.40 0.57 0.97 0.73 74 101

$0.30 0.65 1.00 0.66 76 115

$0.20 0.76 1.00 0.57 76 133

$0.10 0.86 1.00 0.50 76 152

$0.00 1.00 1.00 0.43 76 176

doi:10.1371/journal.pone.0031791.t003

Table 4. Performance of Predictions for the DHFR dataset at Various Decision Thresholds of the Probability Score.

Probability score PPF Recall Precision
Num of viable CP sites
among the retrieved residues Num of retrieved residues

$0.80 0.06 0.10 1.00 9 9

$0.75 0.11 0.20 1.00 17 17

$0.70 0.19 0.35 0.97 30 31

$0.60 0.32 0.56 0.94 48 51

$0.50 0.42 0.71 0.91 61 67

$0.40 0.54 0.83 0.83 71 86

$0.30 0.62 0.90 0.78 77 99

$0.20 0.74 0.97 0.70 83 118

$0.10 0.96 1.00 0.56 86 153

$0.00 1.00 1.00 0.54 86 159

doi:10.1371/journal.pone.0031791.t004
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protein into two parts, between which a foreign domain/protein is

inserted [27,28]. Well-defined protein splitting sites for PCA (see

[77] for a summary), protein trans-splicing [75,76] and domain

insertion [28] include residue 35 of ubiquitin (PDB entry: 1UBQ),

197 and 198 of b-lactamase (PDB entry: 1TEM), 106 of DHFR,

102 and 123 and 131 of intein (PDB entry: 2KEQ), 438 of firefly

luciferase (PDB entry: 1BA3), 158 of green fluorescent protein

(GFP; PDB entry: 1GFL), and 145 of enhanced yellow fluorescent

protein (PDB entry: 1YFP). Except Asn 131 of intein (probability

score = 0.47), all these residues were predicted by our system as

viable CP sites (Test S1) with high probability scores

(mean = 0.70). Since viable CP sites are not critical to protein

folding [28], these results are reasonable and are helpful to expand

the application of the developed CP viability prediction system.

Relationships between CP sites and Active Sites
CP has been applied to determine the residues important to

protein folding or stability [17,19,23,25,29]. It may thus be

supposed that CP is also applicable to probe the active sites of a

protein. If this idea is true (i.e., creating CP at an active site residue

would inactivate the protein), a method developed for detecting

active sites could be reversely used to detect viable CP site.

Perhaps this is the reason that the active site predicting measure

closeness [59] was eventually used to predict viable CP sites [30].

However, the equivalence between residues important to protein

function and residues important to folding has not been

established yet from the point of view of structural biology.

Comparing the catalytic and ligand binding residues with the CP

site residues of DHFR (see Table S1), we found that only 21 out of

the 33 active site residues were inviable CP sites, that is, important

residues to protein folding. This result demonstrates that

determining active sites and determining viable/inviable CP sites

can be very different topics, and it may explain why applying

closeness to the prediction of viable CP site only achieved an AUC

of 0.7 [30]. Therefore, the relationships between CP sites and

active sites may not be interpretable directly based on the results of

folding researches and are definitely worth further study.

Importance and Applications
Novel Bifunctional Proteins. An interesting application of

CP is to create fusion proteins in which the junction of proteins

differs from the native termini [26,27,28]. When designing fusion

proteins, the positions suitable for creating new termini to connect

two proteins can be quite limited owing to steric hindrance.

Moreover, in previous work CP has been almost exclusively

targeted in loops. This bias might considerably reduce the chances

of creating products with desired properties. The sequence and

structural preferences of CP reported here along with the

convenient probability score generated by our prediction system

can broaden the choices of CP sites and potentiate the production

of many novel fusion CPMs.

Protein Folding Studies. CP has long been applied to study

protein folding. In reality, the purpose of Iwakura’s systematic CP

experiments on DHFR was to determine its folding elements, in

which any introduced CP is inviable [29]. The ability of our

system to predict CP sites implies that it can be used in reverse to

predict folding elements. For example, 67 of the 73 residues (i.e.,

92%) in folding elements of DHFR were predicted to be inviable

CP sites. Iwakura et al. indicated that there are three residues

involved in early folding events of DHFR but not located in the

folding elements (Val 75, Leu 156, Glu 157 [29]; see also [78]).

These residues were viable CP sites but might be still be important

to the native folding process of DHFR. Interestingly, these residues

were predicted as inviable CP sites by our system (probability

scores #0.41). For the 10 early folding sites of DHFR that were

located within folding elements [29,78], their probability scores as

viable CP sites were even lower (mean = 0.19; maximum = 0.36).

Hence, we suggest that the prediction of CP viability by our system

may also be relevant to studies of protein folding.

Protein Engineering. Improving protein function is an

important application of CP. Because being viable are

prerequisites for protein function, our viable CP site prediction

system, in conjunction with established structural/biochemical

information for individual proteins, will help determine candidate

CP sites that may result in functionally improved CPMs. For

instance, in the case of lipases, which exhibit poor activity and

enantioselectivity toward bulky substrates, Qian and Lutz utilized

CP to improve the ability of CALB to act on bulky benzoate esters

based on the idea that relocation of the protein termini in or near

the active site pocket can increase local chain flexibility and thus

active site accessibility [12]. Indeed, CPMs created at Ser 150, Ala

283, Ala 284, and Pro 289 were found to have kcat/KM values

higher than the wild-type enzyme for certain bulky substrates;

these positions are all close to the active site pocket [12]. These

activity-improving CP sites are predicted viable by the developed

system (Test S1). Thus, our method holds promise for protein

engineering by identifying potentially functional CP sites as well as

screening out less-probable candidates.

Conclusions and Future Work
After examining numerous propensities and properties of

known CP sites, CP was found to prefer: (1) Gly, Pro, Asp, Asn,

and other hydrophilic/neutral residues, especially those with

negatively charged or polar uncharged side chains, (2) residues in

coils, loops, and turns, and (3) residues with large solvent-accessible

surface areas, short distances to the protein surface, few hydrogen

bonds, unpacked environments, and high flexibility. By contrast,

CP disfavors: (1) Cys, Met, Leu, Ile and other hydrophobic

residues, particularly those with bulky or aromatic side chains, (2)

residues in helices and b-bridges, and (3) residues in or close to a

protein’s buried core. An effective CP viability prediction system

has been developed based on these identified preferences and four

machine learning methods. Using this system, the predicted CP

viability of a residue is highly dependable as long as the probability

score of the residue is .0.75. Large-scale CP site predictions for

Figure 5. Probability Scores of DHFR. The structure of the
dihydrofolate reductase from Escherichia coli (PDB entry: 1RX4) is
shown as a cross-eye stereo image, in which the thickness of backbone
of a residue is in proportion to the probability score computed by our
prediction system for that residue. In addition, probability scores are
color-coded — a color closer to red represents a higher score. Gray- to
black-colored residues have scores increasingly lower than 0.5. Among
the 67 residues with probability scores $0.5, only 6 are inviable CP sites
(shown in blue). The other 61 residues are experimentally-verified viable
CP sites [29]. Thus, at a probability score threshold of 0.5, the precision
of the developed prediction system for this independent evaluation
dataset is 90% (61/67).
doi:10.1371/journal.pone.0031791.g005
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representative protein structures were performed, and several

additional applications of the developed CP viability prediction

system were thus identified. The statistical data, the developed

prediction system, and the large-scale prediction results provided

in this study will facilitate the application of CP to fundamental

research and biotechnology.

The probability score designed in this work was to judge the

feasibility for creating viable CPMs. In the future, functional assay

data about known CPs will be collected to develop a new score

that will describe the probability of creating a functionally

improved CPM. As for the current system, because we utilized

many published programs that were composed using various

computer languages, it is impractical to combine and release them

as a single standalone package. Instead, a web server would be an

easier way for users to access it. To cope with the heavy

computational loads caused by several structural measures and the

time-consuming data flow through numerous prediction models, a

parallel computing environment is now being constructed for

implementing our system into a quick-response web server.

Materials and Methods

Experiments were performed using 10 Linux computers each

with two 2.27-GHz Intel processors and 32 GB of RAM. The

sources of protein structure files were snapshots of the PDB and

the SCOP from August 2010. In-house programs were written in

the C++, PHP, Perl, Python, and R languages. All the published

algorithms or publicly available software were applied with default

parameters and settings unless otherwise specified.

Preparation of Experimental Datasets
Dataset L, a Literature-derived Dataset. Seven proteins

with both experimentally verified viable and inviable CP sites were

retrieved from the CP-related literature database provided by CPDB

[33]. They were DHFR (PDB entry: 1RX4), disulfide oxidoreductase

DsbA (PDB entry: 1A2J), wild-type GFP (PDB entry: 1GFL), GFP

superfolder (PDB entry: 2B3P), GFP folding reporter (PDB entry:

2B3Q), myoglobin (PDB entry: 5MBN) and phosphoribo-

sylanthranilate isomerase domain (ePRAI; PDB entry: 1PII,

residue: 256–452). Circular permutants of these proteins were

generated by using genetic techniques involving duplicated protein

genes, circularized DNAs, etc (see references provided below). For

DHFR, myoglobin, and ePRAI, permutation sites leading to foldable

variants were considered as viable CP sites [15,29,79]. Regarding

DsbA, viable CPMs referred to those functional CP variants without

extensions or deletions [80]. As for the GFPs, CPMs with soluble

fraction .5% and relative fluorescence strength .5% of the control

set were considered to be viable [81,82,83], because the authors of

[83] noted that the uncertainty of their experimental data was ,5%.

The CP sites of these proteins that resulted in non-foldable, barely

soluble, non-functional, or non-expressible variants were treated as

inviable CP sites. These proteins and their 335 viable/inviable CP

sites constituted Dataset L (see Supporting Information files). This

dataset contained similar amounts of positive and negative data, i.e.,

162 viable and 173 inviable CP sites.

Dataset T and the DHFR Dataset. For unbiased

evaluations of the developed prediction system, before carrying

out machine learning procedures Dataset L was divided into two

subsets, i.e., Dataset T and the DHFR dataset. This DHFR dataset

(86 viable and 73 inviable CP sites) was actually the same as the

DHFR dataset established by Iwakura et al. [29,30]. Dataset T (76

viable and 100 inviable CP sites) was composed of the other 6

proteins from Dataset L. Dataset T and the DHFR dataset shared

very low (,9%) sequence identities; the former was used to train

and test our prediction methods and the latter was utilized as an

independent evaluation dataset.

nrCPDB-40 and nrGIS-40: Non-redundant Subsets of the

CPDB and GIS. CPDB [33] is a database of proteins with

machine-retrieved and manually-verified circular permutants, the

majority of which are naturally occurring CP cases. All protein

sequences recorded in CPDB were reduced to a 40% sequence

identity non-redundant subset by using CD-HIT 4.0 [84].

Afterward, sequences sharing .40% identity with any protein in

Dataset L were removed from the reduced dataset by cdhit-2d

[84], a dataset comparing program. The remaining 1,059

sequences then formed nrCPDB-40 (see Dataset S2 for a full

list). Since all CP pairs remaining in the nrCPDB-40 have low

sequence identities, they are thus improbable to be engineered or

post-translationally modified CPs but supposed to be the results of

complicated evolutionary processes, e.g., duplication/deletion [3,4]

or fusion/fission [5,6] events. Similar procedures were performed

on GIS [35], generating a 40% identity non-redundant subset that

also shared ,40% sequence identities with Dataset L. This non-

redundant GIS subset was then processed with cdhit-2d to filter

out any sequences sharing .40% identity with nrCPDB-40. The

remaining 2,814 sequences were collected into nrGIS-40 (listed in

Dataset S3). Finally, any two datasets among nrCPDB-40, nrGIS-

40, Dataset T and the DHFR dataset shared ,40% sequence

identities.

Note that GIS is a database of structurally similar domains with

either co-linear or non-sequential SSE equivalences rather than a

specific database of CP-related homologous proteins. Therefore,

before utilizing GIS, protein homologs without CP relationships

should be eliminated. We downloaded the whole GIS (release

v3.04; 24.7 million pairs of structurally similar domains) and

screened out homologs without CP relationships according to the

GIS annotations. The remaining 3.8 million pairs of CP-related

homologous domains were then subjected to structural alignment

by GANGSTA+, i.e., the alignment engine of GIS [34,35], to

calculate their structural similarities, inclusive of the alignment size

and the RMSD (root-mean-square distance) of structural super-

imposition.

GANGSTA+ was not capable of distinguishing global CP (the

unit undergoing CP is the whole protein) and partial CP (the CP is

within a region of the protein); however, the distinction between

them can be very critical to CP researches. It has been argued that

a partial CP should be considered as a structural ‘‘swap’’ rather

than a ‘‘circular permutation’’ [5]. Topologically, a partial CP (e.g.,

A1A2A3A4A5A6A7 versus A1A2A5A3A4A6A7, involving at least three

‘‘cut-and-paste’’ steps) is a much more complicated rearrangement

than a global CP (e.g., A1A2A3A4A5A6A7 versus A5A6A7A1A2A3A4,

involving just one ‘‘cut-and-paste’’ step). Therefore, partial CP

would be more appropriately considered a type of ‘‘scrambled

permutation’’ [85]. Because here we focused on the type of viable

CP that can be artificially created by just a few DNA-leveled ‘‘cut-

and-paste’’ engineering steps (see [12,23,29,80] for such genetic

engineering protocols), most partial CPs were also filtered out in

this study. First, following the settings of several previous CP-

related studies [10,32], CP pairs with size difference $50% were

excluded from the remaining 3.8 million pairs. Second, homol-

ogous pairs with GANGSTA+ alignment size ,75% were

excluded. Although these two steps did not guarantee the complete

clearance of partial CPs, they efficiently removed most of them

and reduced the number of homologous pairs to 1.6 millions,

which involved 144.9 thousand domains. After further eliminating

domains with chain breaks or missing residues and running CD-

HIT and cdhit-2d to remove redundant sequences as stated above,

the nrGIS-40 was established.
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nrCPsitecpdb-40 and nrCPsitegis-40: Non-redundant

Datasets of CP Sites. In CPDB, every CP site of a protein pair

was preliminarily identified by CPSARST [10] and then refined by the

theoretically most accurate CP site identification algorithm, i.e., shifting

the permutation site residue by residue around the preliminary site to

determine the best alignment for the two proteins [6,32]. The

structural alignment engine FAST [86] was used to refine the location

of CP sites in CPDB [33]. Differently, GIS neither provided

information nor performed any refinement on the CP sites. Hence,

in this study, each CP site in GIS was parsed from the alignment output

of GANGSTA+ and then refined by the same theoretically most

accurate algorithm. To prevent introducing possible bias by the

alignment engine, instead of FAST we used TM-align [87] as the

alignment engine when refining the locations of CP sites in GIS.

Next, each CP site of nrCPDB-40 was represented by a 20-

residue segment that included 10 upstream (toward the N-

terminus) and 10 downstream residues relative to the cleavage

point. The nrCPsitecpdb-40 was then established by applying CD-

HIT to reduce the representative segments into a 40% sequence

identity non-redundant subset. The same procedure was used to

extract the nrCPsitegis-40 dataset from nrGIS-40. Detailed lists of

nrCPsitecpdb-40 (1,087 CP sites) and nrCPsitegis-40 (2,718 CP sites)

sequences can be found in Datasets S4 and S5.

Bootstrap Aggregating Analyses of the Occurrence
Frequencies of Various Amino Acids in CP Site
Representative Segments

To select a suitable length of polypeptide segment to represent a

CP site, bootstrap aggregating experiments were performed to

preliminarily analyze the amino acid compositional preferences of

the CP site representative segments of various lengths. Boot-

strapping, a general approach to statistical inference, is a modern

random sampling method that helps to estimate the properties, e.g.,

the standard deviation and the distribution, of a statistic by allowing

one to calculate many alternative versions of the statistic that would

ordinarily be computed from only one sample [37]. The purpose of

utilizing bootstrapping in this experiment was to observe the

standard deviation of the average occurrence of each amino acid in

the background protein sequences (comparison group) and the CP

site representative segments (experimental group). The core

algorithm of bootstrap aggregating, given an original dataset D of

size n, is to generate m subsets Di of size n9#n by sampling examples

from D uniformly and with replacement. In our implementation, m

was set to 5,000. Detailed steps are listed below,

1. Let D be the comparison group, e.g., nrCPDB-40, which

contains n proteins.

2. For each protein x in D, compute the proportion of each of 20

amino acids.

3. Generate m bootstrap samples, each possessing n9 proteins

randomly selected from D with replacement, where n9 = n.

4. For each bootstrap sample Di, the average occurrence of each

amino acid is given by,

�ffa,i~
1

n0

Xn0

x~1

fa(x) ð5Þ

where a represents one of the 20 amino acids, fa(x) is the

occurrence of a in protein x, and �ffa,i denotes the average

occurrence of a in Di.

1. Calculate the standard deviation of the statistic �ffa,i for each

amino acid.

2. Then, let D be the experimental group, e.g., nrCPsitecpdb-40,

which contains n CP site representative segments each having

2k residues. Repeat steps 1–5.

By decreasingly setting k from 10 to 1, the average occurrence of

the 20 amino acids in CP sites was monitored. As shown in Figure

S2, the standard deviations of the frequencies of average amino

acid occurrence of the background were all quite small. The

difference in amino acid occurrences between the background and

CP sites became more obvious as k decreased, although the

standard deviation of the average amino acid frequencies of the

CP sites increased as well. Considering simultaneously the results

of these bootstrap aggregating experiments and the coverage

analyses of various sequence or secondary structural patterns

(Table S1), the segment length of 6 residues (k = 3) was determined

to represent a CP site in this study.

Propensity Analyses of CPs by Permutation Tests
A permutation test is a statistical significance test based on

random resampling. It has many advantages over a t test. For

example, it works with the statistic directly and does not require

standardization of the statistic [37]. Particularly, even without a

normal distribution of the statistic, permutation tests give accurate

p-values [37]. Here we used permutation tests to examine the

significance of differences in primary and secondary structural

compositions between the background (whole proteins) and CP

sites. Taking the example of the di-residue SSE pattern HH, i.e.,

two consecutive residues with helical conformation, the frequency

of HH in each polypeptide x (either a protein or a CP site

representative segment) was calculated and denoted as fHH(x). The

null hypothesis H0 was that the propensities of HH in the

background and CP site groups were not different. To apply

resampling, the difference between the sample means was used as

a measure of the difference in propensity of HH, that is,

statistic~�ffHH,background{�ffHH,CPsites ð6:1Þ

�ffHH,background~
Xnbg

x~1

fHH(x)

,
nbg; �ffHH,CPsites~

Xncp

x~1

fHH(x)

,
ncp ð6:2Þ

where nbg and ncp were the respective amounts of polypeptides in

the background and CP site groups. The procedure of the

permutation test is outlined as follows.

1. Let N = nbg+ncp.

2. Choose ncp of the N polypeptides at random without

replacement to be the new CP site group; the other nbg

polypeptides form the new background group. Calculate the

mean frequency of HH in each group and the difference

between these means — that is, our statistic.

3. Repeat the above resampling step T times to obtain a

permutation distribution of the statistic, which estimates the

sampling distribution when H0 is true.

4. Let D�ffo represent the value of the statistic actually observed in

the original background and CP site groups. Locate the +D�ffo

values on the permutation distribution, and determine the

number of resampling rounds that yield values equal to or

between +D�ffo. Let t denote this number.

5. The permutation test estimate of the p-value is given by,
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p~
tz1

Tz1
ð7Þ

In this study, the resampling step was repeated T = 99,999 times

in each permutation test.

Calculation of Structure-derived Measures
The teLeap program of the AmberTools package [88] was used

to add/restore hydrogen atoms to the PDB structure files as

necessary. For some special cases to which teLeap failed to add

hydrogen atoms, the reduce program [89] was utilized instead.

RSA, residue depth, number of hydrogen bonds, and GNM-F

were calculated by naccess [90], DPX [56], LIGPLOT [91], and

pygnm [92], respectively. GROMACS [93] was used for MD

simulations and to obtain the RMSF values. Certain measures

were computed following previous studies: closeness [30,59], CM

[57], CN [61], and WCN [64]. The parameter settings for

GROMACS in this work is provided in Text S2.

Assessment of the Dataset Independence of Features
Primary and Secondary Structural Features. The

primary and secondary structural propensity scores were

previously obtained from nrCPDB-40 and assessed here by

performing 10-fold cross-validated ROC curve analyses on

Dataset T. In each ROC analysis, the stringent binary

classification quality measure Matthews correlation coefficient

(MCC), which ranges from +1/21 (perfect/inverse prediction) to

0 (random prediction), was calculated. As listed in Table S3, the

binary classification performances of the secondary structural

propensity scores (average MCC = 0.49) were generally higher

than those of the primary structural propensity scores, whose

average MCC (0.27) was still clearly better than that of a random

prediction.

Tertiary Structural Features. For each tertiary structural

feature, the decision threshold between viable and inviable CP

populations was determined by ROC analysis based on Dataset T;

large-scale predictions were then made for all proteins in nrCPDB-

40 to compute the sensitivity, i.e., the true positive rate. Although a

high sensitivity meant many known viable CP sites were correctly

predicted, it did not necessarily mean a good prediction

performance if the true negative rate could not be computed.

Unfortunately, true negative rate was inaccessible here because

nrCPDB-40 did not possess any negative data. Therefore, the

predicted positive fraction (PPF) was calculated. The PPF was

defined in this work as the number of residues predicted as viable

CP sites divided by the total number of residues contained in the

testing dataset. For instance, nrCPDB-40 totally had 212,710

residues; when there were 21,271 residues of nrCPDB-40

predicted to be viable CP sites, the PPF would be 0.1, or 10%

(21,271/212,710). For every feature, we adjusted the decision

threshold such that the PPF was fixed to 0.5. This PPF level, at

which 50% of all residues were predicted as viable CP sites, served

as a fair foundation for accessing various features under this no-

negative-data scenario. This fixed value of PPF (i.e., 0.5 or 50%),

was chosen because a random prediction at 0.5 PPF would

theoretically result in a sensitivity of 0.5 in our experiments, as

shown by the results of the Rand feature in Table S2. Therefore, if

a feature achieved a sensitivity value higher than 0.5 at this PPF,

the prediction performance of the feature is better than a random

prediction. In this report, wherever a large-scale prediction

sensitivity for nrCPDB-40 or nrGIS-40 is mentioned, it means

the sensitivity obtained at 0.5 PPF.

As listed in Table S3, the sensitivities for all selected tertiary

structural features were $0.53. Now that all selected features were

trained and tested with very different datasets and the binary

classification qualities were acceptable, they were feasible to

predict CP sites without a substantial dependence of the

performance on the dataset.

Hierarchical Integration Procedure
To combine the binary classification power of various features,

we developed an HI procedure:

1. Hierarchically classify features into a rooted tree according to

their characteristics and biological meanings.

2. Starting from the most distant nodes, i.e., branch points, from

the root, features sharing a common node are integrated using

the following formula,

IF~
X

f

wf f ;
X

f

wf wf [(0,1�
�� ~1 ð8Þ

where IF stands for the integrated feature, f denotes a component

feature of IF, and wf is the weight given to f. Before the integration,

each component feature should be standardized using Formula 4.

1. For each node, generate all possible combinations of wf values

for IF. In this work, each wf value had two decimal places.

2. Determine the optimal weights for all component features of IF

based on the binary classification quality and statistical

significance of IF. In this work, the order of the considered

quality measures was the 10-fold averaged MCC, 10-fold

averaged AUC, and p-value obtained with Dataset T.

3. Repeat steps 2–4 until the root IF is optimized.

In this procedure, the first step should be performed manually

based on sufficient background knowledge about the features.

Steps 3 and 4 are actually an exhaustive search for optimal

weights. Because each node in our feature classification tree (see

Figure 4) had only a small number of branches, it was not very

time-consuming to perform this exhaustive search.

Application of Conventional Machine Learning Methods
ANN. We utilized a three-layered ANN (input, hidden, and

output layer) with a sigmoid activation function and the back-

propagation learning algorithm [94,95]. The C++ code of ANN

written by Paras Chopra and the Python code of the back-

propagation algorithm written by Neil Schemenauer were

integrated and rewritten into an object-oriented PHP program.

The number of hidden neurons Nh was given by

Round(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni|No

p
), where Ni and No are the number of input

neurons and the number of output neurons, respectively. The

initial weights for dendrites were random values with the range 22

to +2. The learning rate and momentum were respectively set to

0.5 and 0.1. The number of iterations was 5,000. In each iteration,

a known case was randomly selected from Dataset T to train the

network.

SVM. SVM prediction models in this work were established

by the LIBSVM package [96] using the regularized support vector

classification algorithm (parameter setting: -s 0) and a radial basis

kernel function (parameter setting: -t 2). The optimal setting of the

penalty cost (parameter -c) and the gamma value (parameter -g)
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for the kernel function was determined by the program grid.py

(with default settings) included in LIBSVM.

Decision Tree and RF. An RF consists of many decision

trees, each of which is grown using a randomly selected subset of

available features and trained with a bootstrap sample of the

training dataset. The final output of an RF is determined by a

majority vote of individual trees. In this work, each tree was

generated using a reprogrammed C4.5 package [97], and the RFs

were established using the following algorithm.

1. Let nt and nf denote the number of training cases and the

number of available features, respectively (nt.0; nf.0).

2. Randomly choose nf9 features to grow a tree. If nf$2, then

nf9#0.5|nf; or nf9 = nf.

3. Take a bootstrap sample of nt9 cases from the training set,

where nt9 = nt, to train this tree. Theoretically, the expected

number of unique cases taken from the training set would be

approximately 63%|n. The rest of the unique cases of the

training set (37%|n cases) were used to evaluate this tree by

predicting their classes, i.e., viable or inviable CP sites, and

calculating the MCC.

4. This tree is fully grown and not pruned.

5. Repeat steps 2–4 until 1,000 trees are grown.

6. Sort the trees in descending order according to MCC values.

7. The RF is formed with the 500 trees having the highest MCC

values.

Probability Scores
The purpose of the probability scores designed in this work was

not to precisely determine the ‘‘probability’’ of a residue being a

viable CP site but rather to provide an easily understandable

‘‘score’’, which has the range from 0 to 1 and is conceptually in

direct proportion to the chance that a residue is permissible for

CP.

The output of our ANN predictor was a real number between 0

and 1. It was directly used as a probability score. LIBSVM

provides a sophisticated method for calculating the probability

estimate [96], which was taken to be the probability score of our

SVM model. Because an RF was composed of 500 decision trees,

the probability score of an RF model was calculated as the

proportion of trees that predicted the residue of interest as a viable

CP site. As in the HI models, we used the score distributions of the

positive and negative cases of Dataset T as the standard. After

obtaining the IF value of the residue of interest (IFi), the number of

residues with IF values $IFi in the standard distribution of positive

cases (Np) and the number of residues with IF values #IFi in the

standard distribution of negative cases (Nn) were counted. Then the

probability score was calculated as Nn/(Np+Nn). This procedure is

equivalent to considering IFi as the decision threshold between

positive and negative predictions and calculating the proportion of

true negatives to true negatives plus true positives, i.e., TN/

(TN+TP). Since this proportion ranged from 0 to 1 and increased

as the IF value increased, it served as a convenient probability

score. Because the output probability score of any predictor in our

system is a real number between 0 and 1, the probability scores

obtained from various predictors could be simply averaged into a

single final score, which also ranges between 0 and 1. To consider

the effects of neighboring residues, after computing the raw

probability scores a 3-residue weighted window was then applied

to smooth the scores. Let ps and ps9 denote the raw probability

score and the smoothed probability score, respectively. The final

probability score for residue i was given by,

ps0i~
Xiz1

r~i{1

(wr|psr); wr~f1:5, if r~i

1, otherwise
: ð9Þ

Nomenclatural Acts
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was produced by a method that assures numerous identical and

durable copies, and those copies were simultaneously obtainable

(from the publication date noted on the first page of this article) for

the purpose of providing a public and permanent scientific record,

in accordance with Article 8.1 of the Code. The separate print-only

edition is available on request from PLoS by sending a request to

PLoS ONE, Public Library of Science, 1160 Battery Street, Suite

100, San Francisco, CA 94111, USA along with a check for $10 (to

cover printing and postage) payable to ‘‘Public Library of Science’’.

In addition, this published work and the nomenclatural acts it

contains have been registered in ZooBank, the proposed online

registration system for the ICZN. The ZooBank LSIDs (Life

Science Identifiers) can be resolved and the associated information

viewed through any standard web browser by appending the LSID

to the prefix ‘‘http://zoobank.org/’’. The LSID for this

publication is: (to be determined by PLoS ONE).

Supporting Information

Dataset S1 Dataset L. This file provides information about how

viable and inviable CPs were determined in the Dataset L, which is

composed of two subsets: Dataset T and the DHFR dataset.

(XLS)

Dataset S2 nrCPDB-40. This file lists the PDB entries for

nrCPDB-40.

(XLS)

Dataset S3 nrGIS-40. This file lists the SCOP entries for

nrGIS-40.

(XLS)

Dataset S4 nrCPsitecpdb-40. This file provides detailed

position and sequence data for nrCPsitecpdb-40.

(XLS)

Dataset S5 nrCPsitegis-40. This file provides detailed position

and sequence data for nrCPsitegis-40.

(XLS)

Figure S1 Definition of a CP Site. This figure is a simple

illustration of the working definition of a CP site.

(PDF)

Figure S2 Amino Acid Compositions of Viable CP Sites
and Background Protein Sequences. (a) Absolute occurrence

frequency values for 20 amino acids. (b) Relative frequency values

with respect to the background for 20 amino acids. In this

experiment, protein sequences of nrCPDB-40 were utilized as the

‘‘background group’’. CP site representative sequences of nrCPsi-

tecpdb-40 with lengths varied from 20 (610) to 2 (61) residues were

the ‘‘CP site groups’’. These results indicate that certain amino acids

have increasingly different occurrence frequencies from the

background at positions increasingly close to the CP site.

(PDF)
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Figure S3 Distribution of Occurrence Frequencies for
20 Amino Acids. This figure demonstrates the non-normal

distribution of occurrence frequencies of each amino acid. To

determine the significance of difference between samples with non-

normal distributions, the traditional t-test is inadequate; instead,

the permutation test [37] was utilized in this study.

(PDF)

Figure S4 Sequence and Secondary Structural Propen-
sities of Viable CP Sites in the nrGIS-40 Dataset. Similar

to those in Figure 1, in these charts, each bar shows the relative

occurrence of a pattern for the background polypeptides and viable

CP sites; but, the background and CP site groups utilized here are

nrGIS-40 and nrCPsitegis-40, respectively. Patterns examined in this

experiment are the same as those shown in Figure 1.

(PDF)

Figure S5 Propensities of viable CP sites for di-residue,
oligo-residue, and residue coupling patterns. The back-

ground and CP site groups of these experiments are nrCPDB-40

and nrCPsitecpdb-40, respectively. In each chart, the label for the x

axis indicates the type of pattern under analysis. Compared with

single-residue patterns (Figure 1 and S4), the occurrence

frequencies of these di/oligo-residue and residue coupling patterns

show larger differences from the background.

(PDF)

Figure S6 Ramachandran Map and Kappa-alpha Map.
(a) The Ramachandran map of SARST [50]. (b) The traditional

Ramachandran plot. (c) The kappa-alpha map of 3D-BLAST

[51]. (d) The traditional kappa-alpha plot.

(PDF)

Table S1 Occurrence Coverage of Various Sequence
and Secondary Structural Patterns. A pattern means a

specific way of combination of elements. The occurrence coverage

of a pattern is defined as the observed number of combinations

divided by the theoretical maximum number of combinations. For

instance, the di-residue amino acid pattern has 400 (20 elements

|20 elements) possible combinations. If there were only 300

combinations observed in the CP site representative fragments, the

occurrence coverage of this pattern was thus 75%.

(XLS)

Table S2 All Features Examined in This Work. This table

summarizes the binary classification performances of all examined

sequence, structure and dynamics property measures and the

reasons that some of them were excluded from the final feature set.

(XLS)

Table S3 CP Viability Prediction Performance of the 46
Selected Features. Each selected feature was subjected to 10-

fold cross-validated ROC curve analysis, and was applied to

generate a single-feature SVM, ANN and RF predictors. Each

predictor was evaluated by 10-fold cross-validation. Dataset T and

nrCPDB-40 were utilized in these experiments; in order to assess

the dataset independence of each feature, they were applied either

to train or test a predictor but not at the same time.

(XLS)

Text S1 Results of Viable CP Site Predictions for 8,859
Representative Protein Structures. The developed CP

viability prediction system has been applied to predict viable CP

sites for a 40% sequence identity non-redundant subset of the

PDB. Detailed results are provided in this parser-friendly plain text

file.

(TXT)

Text S2 Parameter settings for the MD simulation
package GROMACS. Parameter settings for the two steps for

running simulation with GROMACS, i.e., energy minimization

and molecular dynamics simulation, are provided in this plain text

file.

(TXT)
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