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Abstract

Background: In recent years, new microscopic imaging techniques have evolved to allow us to visualize several different
proteins (or other biomolecules) in a visual field. Analysis of protein co-localization becomes viable because molecules can
interact only when they are located close to each other. We present a novel approach to align images in a multi-tag
fluorescence image stack. The proposed approach is applicable to multi-tag bioimaging systems which (a) acquire
fluorescence images by sequential staining and (b) simultaneously capture a phase contrast image corresponding to each of
the fluorescence images. To the best of our knowledge, there is no existing method in the literature, which addresses
simultaneous registration of multi-tag bioimages and selection of the reference image in order to maximize the overall
overlap between the images.

Methodology/Principal Findings: We employ a block-based method for registration, which yields a confidence measure to
indicate the accuracy of our registration results. We derive a shift metric in order to select the Reference Image with Maximal
Overlap (RIMO), in turn minimizing the total amount of non-overlapping signal for a given number of tags. Experimental
results show that the Robust Alignment of Multi-Tag Bioimages (RAMTaB) framework is robust to variations in contrast and
illumination, yields sub-pixel accuracy, and successfully selects the reference image resulting in maximum overlap. The
registration results are also shown to significantly improve any follow-up protein co-localization studies.

Conclusions: For the discovery of protein complexes and of functional protein networks within a cell, alignment of the tag
images in a multi-tag fluorescence image stack is a key pre-processing step. The proposed framework is shown to produce
accurate alignment results on both real and synthetic data. Our future work will use the aligned multi-channel fluorescence
image data for normal and diseased tissue specimens to analyze molecular co-expression patterns and functional protein
networks.
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Introduction

Bioimage informatics is a rapidly growing branch of computa-

tional biology that has emerged in response to two major

demands: increasing deployment of powerful new technologies

for measuring molecular components (including genomics, tran-

scriptomics, proteomics, metabolomics) and new biological

knowledge (from the human genome project amongst others).

Bioimage informatics is concerned with the processing, analysis,

and management of images recorded for biological specimens

mostly using microscopy techniques [1–3]. The ultimate objective

is to localize molecular components in biological samples (ranging

from cell cultures to tissue sections) in order to overcome one of

the most important limitations of most traditional destructive

‘omics’ technologies, in which molecular phenotype is acquired at

the expense of anatomical and cellular spatial information [4–6].

New techniques such as MALDI imaging [7] or Raman

microscopy [8] record high dimensional images, organized as

stacks of grey value images, encoding the co-location or interaction

of a large number of molecules. Another group of new bioimaging

approaches achieve this by using different fluorophores, multi-

spectral analysis, or bleaching with only one fluorophore [9–12].

The resultant image data consist of a stack of N grey value images

Ij (j = 1, …,N) where each image shows the spatial distribution of

one molecule. Due to these techniques becoming ubiquitous, new

computational approaches are needed to process and visualize

multivariate bioimages [13,14].

Since most analytical approaches are based on processing N

grey values fI1,:::,INg(x,y) associated to a pixel (x, y) and

searching the images for interesting patterns of co-location, for

instance using clustering and dimension reduction [15], it is vital

that all N images in a stack are aligned. Growth in molecular

dimension is often accompanied with a growth in runtime of the

imaging experiment. As a consequence, serious shifts can be

observed between pairs of images in one stack, recorded for one

field of view, making a direct analysis of the co-location signals
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meaningless. In experiments lasting for several hours, shifts can be

caused by various external influences (mechanical perturbations,

temperature changes, shift movements by the specimen due to

repeated washes etc.)

In this work, we propose an efficient framework to align all

images in an N-dimensional fluorescence image stack. For each

biomolecular tag, our data is acquired as a pair of fluorescence and

phase contrast images. The fluorescence images provide informa-

tion about the relative expression level of respective tags in

subcellular compartments and the phase contrast images are used

for the purpose of alignment. Each fluorescence/phase contrast

pair is assumed to be correctly aligned. The key idea is to

determine the transformations necessary to align the phase

contrast images and then apply these transformations to register

the fluorescence images.

We use the toponome imaging system (TIS) [11,12] which is an

automated robotic microscopy system. It uses fluorescence

imaging to locate tens to hundreds of different proteins or other

biomolecules (in a cell or a tissue) by using fluorescence labelled

antibodies, lectins or other specific ligands (referred to as tags, in

general). One data set, a stack of grey value images, is recorded by

performing N sequential cycles of fluorescent tagging, labeling and

bleaching in situ. In each iterative step j, a fluorescence or tag

image Fj and a corresponding phase contrast image Ij is recorded.

So for each tag, e.g., an antibody against a specific protein or a dye

such as DAPI that stains nuclei, we obtain fluorescence and phase

contrast images. The aligned fluorescence images can then be

further analyzed to determine biological properties.

We did not observe any significant misalignment between

fluorescence and corresponding phase contrast images. However,

we observed misalignment between phase contrast images for

different antibody tags. The misalignment is manifested in terms of

translational shifts. Other forms of misalignment, such as rotation,

do not appear in our context, and we assume that all alignment

transformations are translations. Figure 1 shows a misaligned

composite RGB color image made up of CD57, CD166 and DAPI

(DAPI binds to nuclei, while CD57 and CD166 are protein

markers) tags displayed in red, green, and blue channels

respectively.

If our work is adapted to fit other experimental situations, then

it may become advisable to widen the class of alignment

transformations, for example to include small rotations, but it

appears extremely unlikely that we will ever need to do so in our

situation.

The overall aim of this work is to compute transformation(in

terms of translational shift) parameters for each tag image in a

stack, such that a) the images are well aligned and b) the total

number of non-overlapping pixels Q is minimized. This loss of

information or total number of missing pixels Q may vary from one

reference image to another. Suppose we have a stack of N images

I1, …, IN , all of the same scene, though possibly not perfectly

aligned with each other. We choose a reference image Ir, and then

for each target image Ij we find transformation trj so that each

point on Trj~trj(Ij) for all j = 1,2, …, N corresponds to one and

the same point in the tissue specimen being imaged. We will

assume that the alignment transformations trj are always

translations, which is a reasonable assumption in the situation to

which we will apply our theory. The aligned images can be

mosaiced and arranged in a larger frame of reference as shown by

the green dashed line in Figure 2.

We address one of the several different ways (please see

Appendix S1 for other possible options) in which registration

results can be used for follow-up analysis. Let us fix r with 1#r#N,

and let us restrict our analysis to the region Cr. The signal from the

ith image comes only from the region Cr\Ci. Then

yr~
X

i

Area(Cr\Ci) ð1Þ

represents the sum of the areas overlapped by Cr that provide

meaningful signal. We find Cr corresponding to Ir with 1#r#N

such that yr is maximal. Since the process of aligning images is

usually referred to as registration in the domain of biomedical

imaging, we will use this term in the remainder of this paper.

In this paper, we present a framework for robust registration of

multi-tag fluorescence microscopy images. The method is based

on three ideas. First, we use the phase contrast images Ii, Ij of two

images i and j to compute the shift parameters for their

corresponding fluorescence images Fi and Fj. Second, we propose

a method that computes a confidence value for how well the

registration algorithm performs on this particular pair of images

(Ii,Ij ). Third, we propose an efficient method for selecting the

Reference Image with Maximal Overlap (RIMO) in order to

maximize the total amount of data recordable within the co-

ordinates of a single image. To the best of our knowledge, this

problem has not been addressed in the microscopy imaging

literature. A side benefit of automated RIMO selection is that the

user (often a biologist) does not need to eyeball all images in a stack

to select a reference image. The proposed RAMTaB framework

for registration and selection of RIMO is not restricted to TIS

image data and can also be applied to image stacks generated by

other multi-tag bioimaging systems where both phase contrast and

fluorescence images are acquired for every biomolecular tag.

Related Work
There is a vast amount of literature on image registration; see

for instance [16–19] for excellent surveys on registration of images.

A large body of literature can also be found on multimodal image

registration [20–23] in the domain of medical imaging. The

problem of multi-channel image registration has also been

associated in the literature with the inter-subject registration of

3D diffusion tensor magnetic resonance images; see for example

[24–26].

In the case of multi-tag fluorescence microscopy, there is a

dearth of literature on registration algorithms for such image data,

primarily because imaging systems for such type of data have

emerged only recently, although several researchers have proposed

techniques for solving the somewhat related problem of automatic

tracking of live cells by registering time consecutive frames; see for

instance [27–29]. Wang et al. [30] proposed the M-FISH

(Multiplex fluorescence in situ hybridization) algorithm for

registration of multi-channel images in the context of cancer

diagnosis and research on genetic disorders. Their algorithm

searches for a transformation T9 using mutual information to

register the misaligned multi-channel FISH images. The authors

selected DAPI as a reference image and did not address the

problem of choosing the reference image to minimize Q. Kim et al.

[31] have proposed registering multi-channel images using a three

step procedure: 1) Gaussian filtering, 2) rigid registration and 3)

non-rigid registration. For rigid registration, the authors mini-

mized the mean-squared intensity error and for non-rigid

registration, a variant of the Demons’ algorithm [32] was used.

They also presented two approaches for selecting the reference

image. The first approach uses the first image in time as the

reference image and all the images are registered to this reference

frame. The second approach uses information from previous time

steps in an incremental scheme. Can et al. [9] have used a mutual

information based measure to register images from different
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histological imaging modalities. They mapped the multi-modal

fluorescence images of same tissue stained with molecular

biomarkers to the co-ordinate system of Hematoxylin and Eosin

(H&E).

In this work, we specifically address the problem of multi-tag

fluorescence microscopy image registration where multiple phase-

and-fluorescence images of the same sample stained by different

biological tags are obtained.

Results

Experiments on Synthetic Data
Synthetic data was generated by selecting a phase contrast

image Isel from one of the TIS image stacks. Two random vectors

x9 and y9 of length 500 were drawn from a uniform distribution of

real-valued numbers in the range [2xmin, +xmax] and [2ymin, +ymax]

with xmin = xmax = ymin = ymax. = 10. Let (xcenter, ycenter) denote coordi-

nates of the center of the selected image Isel and let I0
syn denote a

cropped section of Isel with (xcenter, ycenter) as its center. A new set of

center coordinates for the synthetic tag images is then calculated

by adding x0 and y0 to (xcenter, ycenter) as follows,

x~x0zxcenter ð2Þ

y~y0zycenter ð3Þ

A synthetic stack of TIS images Isyn = {I j
syn}, where j = 1,2, …,500,

is generated by taking cropped sections of Isel with (xj, yj) as their

centers and having the same pixel resolution as I0
syn. The amount

of actual shift for the synthetic tag image I j
syn, for all j from the

Figure 1. The RGB composite image before and after applying the RAMTaB: R,G and B channels belong to CD57, CD166 and DAPI
tags respectively. (a) and (b) respectively show composite image formed by using phase images Ij and fluorescence images Fj, before alignment, (c)
and (d) show the RGB composite images after the images were aligned using the proposed framework. The red color fringes in (a) show the degree of
misalignment among the three tags. These color fringes have been replaced by white and grey regions in (c) after alignment.
doi:10.1371/journal.pone.0030894.g001

Figure 2. An illustration of mosaiced image containing all the
aligned images.
doi:10.1371/journal.pone.0030894.g002
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original reference image I0
syn is given by the corresponding values

(i.e., the jth elements) in x and y. Nearly a quarter of the synthetic

tag images were randomly picked and a contrast change using

gamma correction [33] with c in the range 0.5 to 2 was applied to

them. Another quarter of the synthetic images were randomly

picked and Gaussian blurring with kernel bandwidth s = 1 and a

filter size of 565 pixels was applied to them. The remaining 50%

of the images did not go through any intensity transformation, and

were only translated by random shifts. So, a dataset consisting of

randomly shifted images was generated, with contrast and

smoothing artifacts added to half of them randomly. Figure 3

shows an illustration of how the synthetic data set is generated

using a single phase contrast image from a TIS image stack as Isel.

An image was randomly selected from our artificial data set and

shifts xcal and ycal were calculated using our registration

algorithm. The mean difference between the actual and estimated

shifts was calculated to be (0.1128, 0.1165) in the x and y-directions

respectively. We can achieve more accurate results by using

different values of K, S and hDt as shown in Table 1, but there is

always a trade-off between time and accuracy. Using xcal and ycal

the RIMO was calculated by using our algorithm. The RAMTaB

successfully found the image which had minimum shift with

respect to all of the other images of the stack, therefore providing

experimental verification that the algorithm is capable of finding

RIMO.

Experimental Results on Real Data
We have run the proposed registration framework and the

algorithm for selection of RIMO on a large number of TIS stacks.

Here we report results of a TIS run on a cancerous colon tissue

captured by the biologists S. Abouna and M. Khan in October

2010. The antibody tag library for the experiment consisted of

tumor markers, stem cell markers, and proliferation markers.

More details about this can be found in an earlier study [34]. First,

we choose any arbitrary tag image (eg, DAPI) as a reference image

Ir and calculate the transformations trj~Drj~(Dxrj,Dyrj) re-

quired to align all the images Ij , for j = 1,2,…,N with Ir. Using the

results of registration, the RAMTaB gave Ki67 tag image as the

RIMO. Registration results were also generated by arbitrarily

choosing the Bax tag as reference. The results of registration using

3 reference images (DAPI and Bax selected arbitrarily, and Ki67

as RIMO) are shown in Figure 4 in the form of a plot of

magnitude of shift required to register a tag image to the

corresponding reference image. The plots clearly show that by

using Ki67 as reference tag, the total amount of shift required to

register the images is much smaller than by using the other two

reference images. When Ki67 was used as reference image, there

was only one tag for which magnitude of shift was found to be

greater than 10, whereas, when DAPI1 or Bax were used as

reference images, there were more than 8 images for which the

magnitude of shift calculated was greater than 10. Since our goal is

to minimize Qr, it is clear from Figure 4 that the RAMTaB

framework has been successful in minimizing the magnitude of

shifts.

Figure 5 shows the upper-left part of the phase contrast image

for CK20 tag from the same image stack, after it has been aligned

to the phase contrast images corresponding to DAPI1, Bax, and

Ki67. The blank rows and columns (having zero intensity values)

near the top-left corner of the image are due to the amount of shift

which was required to align the image to the respective reference

image. The number of blank pixels near the top left corner in this

image is equal to the number of pixels lost at the bottom left corner

Figure 3. Construction of a synthetic data set Isyn using a single tag image Isel with center coordinates (xcenter, ycenter) and uniformly
distributed random shifts xnM[2xmin,+xmax] and ynM[2ymin,+ymax] in both directions. Intensity variations such as contrast stretching and
Gaussian blurring are also introduced randomly in 50% of the images to mimick the random perturbations in pixel intensities during the image
acquisition process (The image here has been inverted for visibility purpose.)
doi:10.1371/journal.pone.0030894.g003
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of the image. It can be observed from this Figure that when the

Ki67 image is used as a reference, Qr is minimized, once again

showing in empirical terms that the proposed RAMTaB

framework selects RIMO as reference for registration. Figure 6

shows the percentage loss of information when Ki67, DAPI and

Bax were used as reference. Figure 7 shows the amount of

translational shift calculated using the proposed RAMTaB

framework for images acquired during a single TIS run plotted

against time. In this particular instance, the amount of shift

decreased as the TIS run progressed but in other cases, the trend

may be different. This indicates that the TIS machine settles down

to a stable state as the run continues.

As can be observed in Figure 7, the amount of misalignment

varies from one tag image in the TIS image stack to another.

Figure 1 show composite images formed by using CD57, CD166

and DAPI as R, G and B channels of a color image. The

misaligned composite RGB color image using phase and

fluorescence images are shown in part (a) and (b) respectively.

The color fringes show the degree of misalignment between the tag

images before registration. The aligned images are shown in part

(c) and (d) of Figure 1.

Table 1 shows time consumed using different number K of the

subimages and for different threshold specified for hDt for a stack

of 26 images with two visual fields on a 2.66 GHz Quad Core

CPU. It was found empirically that K~9, S~100, and hDt~0:01
gave us a good compromise between the algorithm’s runtime and

the accuracy of registration. Using these parameters, our approach

takes about 22 minutes and 15 seconds to register a stack of 26 tag

images with two visual fields on a 2.66 GHz Quad-core CPU

using non-optimized MATLABH code running on a Linux

platform. The MATLAB source code, 32-bit Windows executable,

and a sample TIS stack can be downloaded from the project

website. http://www2.warwick.ac.uk/fac/sci/dcs/research/combi/

projects/bic/ramtab/.

Table 1. Time required to register a stack of 26 images with two visual fields for different values of K, S, and hDt where K is the
number of subimages used while calculating the translations, S is size of the subimages, and hDt is the threshold for |Dt| between
two consecutive iterations of the pattern search algorithm.

K S hDt

Time taken to register
real data containing
26 tag images with
two visual fields Approximate error to register 500 images of synthetic data

Normal Corrupted Mean Standard Deviation

9 1006100 0.01 9 min 48 sec 0.4229, 0.3230 0.4228, 0.3556 0.4229, 0.3393 1.7801, 1.3568

0.001 20 min 55 sec 0.3101, 0.2225 0.3294, 0.2638 0.3198, 0.2432 1.7731, 1.3647

0.0001 30 min 25 sec 0.3010, 0.2133 0.3233, 0.2585 0.3122, 0.2359 1.7744, 1.3667

9 2006200 0.01 22 min 15 sec 0.1107, 0.1161 0.1149, 0.1169 0.1128, 0.1165 0.0662, 0.0652

0.001 51 min 38 sec 0.0135, 0.0142 0.0166, 0.0153 0.0151, 0.0148 0.0121, 0.0120

0.0001 81 min 27 sec 0.0020, 0.0023 0.0072, 0.0067 0.0046, 0.0045 0.0095, 0.0099

6 3006300 0.01 42 min 54 sec 0.0779, 0.0789 0.0760, 0.0698 0.0770, 0.0744 0.0580, 0.0560

0.001 81 min 41 sec 0.0088, 0.0095 0.0127, 0.0113 0.0107, 0.0104 0.0118, 0.0115

0.0001 113 min 41 sec 0.0021, 0.0025 0.0078, 0.0070 0.0050, 0.0047 0.0105, 0.0097

doi:10.1371/journal.pone.0030894.t001

Figure 4. Magnitude of shift required to register different tag images to the corresponding reference image (tags along x-axis are
arranged in increasing order of magnitude of shifts, Q calculated with respect to Ki67 as the RIMO image.)
doi:10.1371/journal.pone.0030894.g004
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Discussion

A cell can be considered as an assembly of different molecules

and proteins which interact together to define all cell functions.

Most flourescence microscopy techniques are limited to up to ten

fluorescent tags which can point to simultaneous localization of the

corresponding biomolecules inside the cells of a tissue specimen

[35]. The TIS system provides us with a platform to decode and

locate hundreds of protein combinations at a given point in a cell.

The TIS method uses a library of fluorescent tags to obtain phase-

fluorescence pair images corresponding to each tag. Accurate

alignment of tag images in a multi-tag fluorescence microscopy

image stack is an essential pre-processing step prior to any analysis

of protein co-expression. Unless this can be achieved, many

important biological questions, such as cell classification and

discovery of functional protein networks within a cell at different

points in time, cannot be addressed. Here, we have presented an

approach to select a reference image with maximal overlap. To the

best of our knowledge, this problem has not been addressed in the

literature before. The proposed framework determines sub-pixel

shifts between phase contrast images in a multi-tag fluorescence

image stack. Subsequently, these shifts can be used to register the

fluorescence images to co-localize signals from different protein

molecules or find molecular co-expression patterns for different

biomolecules. Importantly, our system is highly effective on real as

well as on synthetic data. It has been shown to be robust to

luminance and contrast variations, yields a confidence value in the

quality of alignment results, and removes the need for a biologist to

eyeball all phase contrast images in the stacks to select an

appropriate reference image. Our block-based registration algo-

rithm ensures that the alignment is robust to any damage caused

during sequential bleaching or washing to a small part of the

tissue. On the synthetic data, the proposed framework gives almost

perfect alignment, up to two decimal places sub-pixel accuracy for

a selected set of parameters (see Table 1). The alignment accuracy

can be increased using different set of values for K, S, and hDt, but

the time required to register the stack also increases. On the real

data, the selection of arbitrary image at the first step is very

important. The image must be of a good enough quality or it may

give misleading results.

Figure 1 shows composite RGB images obtained by using three

different phase contrast and fluorescence images for CD57,

CD166 and DAPI as red, green and blue channels, respectively.

In Figure 1(a,b), phase contrast and fluorescence images from the

original data set obtained after a TIS run are used as red, green

and blue channels. The color fringes in Figure 1(a) show the

Figure 5. Phase contrast image for the CK20 tag registered to (a) DAPI1, (b) Bax and (c) Ki67 tag image; the black region on the top
and the left of the image shows the amount of shift required to register the image to respective reference.
doi:10.1371/journal.pone.0030894.g005

Figure 6. Percentage loss of information when registering using different channels as reference.
doi:10.1371/journal.pone.0030894.g006
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degree of misalignment present between these three phase contrast

images which should ideally be aligned to each other. We have

aligned the images using the proposed algorithm and formed the

composite as shown in Figure 1(c,d). If pixel intensities from all

three phase contrast images are in agreement with each other, we

should only see shades of grey in the composite RGB image. It can

be seen in the alignment results of both the algorithms that the

color fringes have been removed in Figure 1(c). We have

calculated the root mean squared (RMS) difference between the

red, green and blue channels, for the phase contrast images shown

in Figure 1 to numerically illustrate the misalignment, using the

equation below,

RMS~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
((IR{IG)2z(IR{IB)2z(IG{IB)2)=3B

q
ð4Þ

where IR, IG, and IB denote the red, green, and blue channel

images, respectively, and B denotes the number of pixels in each of

the channel images. For the images shown in Figure 1(a,c), the

RMS difference was found to be 7.14 for the misaligned images

(Figure 1(a)) and 2.98 for the registered images (Figure 1(c)). After

registration, selection of the RIMO image is the next step. We

have shown that we can collect maximum amount of data from

the image stack after registration using the RIMO image. All the

images are registered to this reference image using a novel shift

metric. In a follow-up study [15], we have collected more TIS

stacks of both normal and cancerous colon tissue from different

patients. The RAMTaB framework has been successfully used to

register several stacks and has been shown to be robust to

brightness and contrast variations. However, there are some

alignment difficulties with poor quality phase contrast images

containing blur caused by changes in the plane at which camera

sets its focus while taking the images. These changes in the focal

plane are very rare. When they occur, they are probably due to

mechanical problems with the shutter, or to minute particles

contaminating the specimen, in which case the autofocus

mechanism may focus on a particle rather than on the specimen,

but there may be other factors of which we are not yet aware.

Future work will address the issue of non-uniform focus in the

image data.

Materials and Methods

Image Acquisition
The approval for this research has been granted by the

Warwickshire Local Research Ethics Committee, Warwickshire,

UK. The human tissue has been collected from operative samples

at the George Eliot Hospital, Nuneaton, UK. Written patient

consent was obtained to remove and use the tissue sections for

research purposes before removing the tissue from the patient.

After collection, tissues were immediately fixed in para-formalde-

hyde solution. After overnight cryo protection in sucrose solution,

tissues were embedded in OCT blocks and stored frozen. Tissue

sections were cut from each block and placed on coverslips. These

sections were air-dried after incubating in ice-cold acetone. For

TIS imaging, these tissues were incubated in sterile Phosphate

Buffered Saline (PBS), in PBS containing normal goat serum, and

then washed in PBS. See [34,36] for more details. The images

were acquired using the TIS machine installed at the University of

Warwick. TIS has four main components: an epifluorescence

microscope, a library of fluorescent tags (antibodies, lectins and

DAPI), a robotic arm to handle the pipette, and a cooled CCD

camera. More details about TIS can be found in [11,36,37]. We

employed a library of 26 tags [38] consisting of a variety of cell

specific markers, together with tumor and stem cell markers.

Additionally, the nuclear marker DAPI were used and four PBS

control tags. Tags were applied sequentially to the tissue section.

An image is acquired before and then again after incubation with

each fluorophore-conjugated antibody or other fluorescent dye,

and washes to remove unbound tag. Each image is captured at

636and has a spatial resolution of 105661027 pixels, where each

pixel has a resolution of approximately 200 nm. Non-destructive

photobleaching clears the fluorescence after each tag incubation

once the image has been acquired. During the bleaching

procedure, the sample is washed with PBS to minimize the

background signal. The cycle of incubation, wash, image

acquisition and photobleach is repeated then for another tag.

The Proposed Framework
The proposed framework for multi-tag fluorescence image

registration has three sequentially connected components in the

Figure 7. Shift, as estimated by RAMTaB, in both x and y-directions during one TIS run versus time. This indicates the TIS machine
‘‘settling down’’ to an equilibrium state as time passes, probably due to the temperature reaching a stable value.
doi:10.1371/journal.pone.0030894.g007
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following order: registration of all tag images in a stack to an

arbitrarily chosen tag image as a reference image, selection of

RIMO, and re-alignment of all images in the stack to RIMO.

Below we describe the core registration algorithm based on mutual

information used by the first and the third components. A side

benefit of RAMTaB is that even if the arbitrarily chosen reference

image is different from the RIMO, the core registration algorithm

does not have to be executed again (See Section 5.3).

The Core Registration Algorithm. We employ a mutual

information based framework [17] for registering one phase

contrast image with another. Several other researchers have shown

mutual information to be a good similarity measure for

microscopic images [30,39,40]. Mutual information based on

Hartley’s entropy measure is defined as follows. Let H(IA) and

H(IB) denote the entropies of IA and IB, respectively, and let

H(IA,IB) be the joint entropy of IA and IB. Then M(IA,IB), the

mutual information between the two images IA and IB is defined

by the formula

M(IA,IB)~H(IA)zH(IB){H(IA,IB) ð5Þ

One approach to registering the two images is to maximize

M(IA,t(IB)), by varying t over some set of transformations. In our

case, we vary t only over translations. Maximizing mutual

information implies minimizing the joint entropy. Marginal and

joint entropy can be calculated from the joint histogram, which is

formed using the intensity values of the two images. When mutual

information is high, the joint histogram is sharp and closely

resembles a diagonal matrix. In a mutual information based

registration framework, we transform the target image IB to match

the reference image IA by searching for a transformation which

maximizes the mutual information between the reference image

and the transformed target image. Mathematically, this can be

written as,

t�AB~ arg max
t

M(IA,t(IB)) ð6Þ

where t denotes the transformation between source and target

images required to align them. The optimization is done using the

pattern search method [41,42]. At each step, the search algorithm

creates a set of points called a mesh around the optimal point of the

previous step. The pattern search finds a point that improves the

objective function. If the algorithm fails to find such a point, it

decreases the size of the mesh, otherwise it chooses the new point

which has improved the objective function as the new optimal

point and increases the size of the mesh in the next step. This

search continues until jDtj is less than a specified threshold hDt or

the number of iterations reaches the maximum allowed number of

iterations. In general, the transformation t could consist of affine

and perspective transformations. In our case, however, rotations

and non-rigid transformations are not required, and therefore we

are only concerned with horizontal and vertical movements

between the target and reference images. Sub-pixel accuracy is

achieved using bicubic interpolation [43] for sub-pixel shifts.

Measure of Confidence in the Registration Results. The

method of registration described above is prone to get stuck in

local maxima while optimizing for mutual information. There are

several other problems. In the formula for mutual information, we

need to get round the problem of the changing size of the

intersection as t changes. It is also possible that no meaningful

registration is possible. This would be the case if, for example,

repeated washes during a TIS run were to tear the specimen, or if

new extraneous material were to float into the visual field.

To obtain more reliable registration results capable of detecting

such failures, we select K disjoint square subimages from the

reference, and K somewhat larger disjoint square subimages from

the target image, as in Figure 8. Each such square in the target

image corresponds to exactly one square in the reference image,

and the corresponding squares have centers at the same positions

in target and reference images.

We register each of these square subimages of the reference image

within the corresponding larger square in the target image. More

precisely, we find K translations t1
rj,t

2
rj,:::,t

K
rj , where tk

rj is the optimal

translation registering the k-th smaller square in the reference image

within the kth larger square in the target image. Now tk
rj is the

translation by a certain 2-dimensional vector, which we denote by

Dk
rj~(Dxk

rj,Dyk
rj) ð7Þ

We then calculate the pairwise Euclidean distances dkl between tk
rj

and t1
rj, for k, l = 1,2,…,K. If, for fixed k and for all l, the value of dkl is

greater than v pixels (where v is some previously chosen number),

we mark k as an outlier and the user can be warned that this has

occurred, making visual inspection possible. If for fixed r and j, fewer

than k/2 translations tk
rj are marked as outliers, their k indices are

added to the outlier set g, to be excluded from any further

calculation. This ensures that if a small number of registrations

(fewer than k/2) disagree with the majority, they are safely removed

from the computation. We found v = 1 suited for our experiments.

A major benefit of registering with subimages is that one can

easily compute a measure of confidence in the registration results

in terms of the standard deviation of the shifts:

srj~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK

k~1
k=[g

(Dk
rj{

�DDrj)(D
k
rj{

�DDrj)
T

vuuut ð8Þ

where

�DDrj~
1

K

XK

k~1
k=[g

(Dxk
rj ,Dyk

rj) ð9Þ

The standard deviation srj can be used as a measure of confidence

in the registration results. If this value is larger than a specified

threshold, then the registration process is performed again using a

slightly different set of square subimages. If the confidence value is

again larger than the specified threshold, we flag the target image

as a potentially bad quality image or an image that cannot be

registered well. If the standard deviation is below the specified

threshold for satisfactory registration, the translation trj is

computed as the average of all non-outlier local transformations

between subimages as given in equation (9).

Note from Table 1 how the time taken by the pattern search

algorithm depends crucially on the accuracy hDt demanded.

Moreover, the accuracy of the final result cannot sensibly be better

than the size of the standard deviation, as the standard deviation is

a good estimate of the intrinsic error in the measurement. This

indicates a possible speed-up in our program by interleaving calls

to the pattern searches with computations of the standard

deviation, stopping when the standard deviation indicates that

one has reached the limits of what one can reasonably expect for

the precision of the registration translation required for that

particular image.
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Selection of Reference Image with Maximal Overlap
(RIMO)

In this section, we utilize these transformations between all

images Ij , for j = 1,2,…,N, and Ir in order to select the RIMO

maximizing the total overlap between the aligned images as shown

in Figure 2.

Registration Graphs. First, we choose any arbitrary image

Ir having good enough quality as a reference image and calculate

the transformations trj~Drj~(Dxrj ,Dyrj) required to align all the

images Ij , for j = 1,2,…,N with Ir. Once these shifts have been

calculated, we can compute the pairwise transformations Dij~

(Dxij ,Dyij) between any two images Ii and Ij in the dataset I, as

shown in Figure 9. The pairwise transformations can then be

arranged in the form of two inter-tag shift matrices as given below.

DX~

Dx11 Dx12 Dx1N

Dx21 Dx22 Dx2N

..

.
P

..

.

DxN1 DxN2 DxNN

2
66664

3
77775 ð10Þ

DY~

Dy11 Dy12 Dy1N

Dy21 Dy22 Dy2N

..

.
P

..

.

DyN1 DyN2 DyNN

2
66664

3
77775 ð11Þ

Dxij and Dxij represent shifts along x-direction and y-direction of

image Ij with Ii as the reference image. The above matrices can

also be represented in the form of a registration graph, as shown in

Figure 10. The registration graph can then be used to find shifts

between any pair of images in the set I, as shown in Figure 9. We

can now complete the matrices DX and DY with the help of the

equation obtained from the registration graph,

Dxij~{DxrizDxrj ð12Þ

Dyij~{DyrizDyrj ð13Þ

The above equations give shifts required by any image Ij

considering Ii as the reference image. Since the resultant matrix

is skew-symmetric, we can first compute the upper diagonal matrix

and then compute the lower diagonal by just flipping the matrix

about the diagonal with a negative sign, to reduce the amount of

computation. The total number of registrations performed for N

tag images is N21, producing
N

2

� �
shift values using equations

(12) and (13).
The Objective Function. We wish to compute the value of r

that maximizes yr, as defined in equation (1). This could be done

by direct computation. However, we will show that this expression

is also given in terms of a certain metric that we will define. The

metric will be a special case of a very general metric coming from a

measure in the sense of mathematical Measure Theory.
The Shift Metric. We now discuss the metric associated with

our objective function. For this discussion, we need a collection S

of subsets of a fixed set X and a function m : SR[0, ‘) satisfying

the conditions for S to be a semiring, and for m to be a measure.

The only examples that we will use in this paper are:

N S is the set of all finite subsets of the plane, and m(S) is equal to

the number of elements in S (counting measure). In fact, we

Figure 8. A total of K sub images are extracted from different locations in the reference image Ir (left) and optimal translations tk
rj

for k M {1,2, …,K} are calculated between the k-th subimage in Ir and its corresponding sub image in the target image Ij (right) using a
search neighbourhood. Based on these individual transformations, the overall rigid transformation trj required to register the images is calculated.
doi:10.1371/journal.pone.0030894.g008

Figure 9. Finding the shift Djk between the images Ij and Ik,
using the previously calculated shifts Drj and Drk with image Ir.
This is similar to vector diagrams where Djk is the resultant vector.
doi:10.1371/journal.pone.0030894.g009
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will restrict our attention to the situation where the plane is

divided into a fixed set of pixels, and each point of S is at the

center of some pixel. Then m(S) is just a count of pixels.

N S is the set of all rectangles in the plane, not necessarily with

vertices at integer points, and m(S) is the usual area of the

rectangle. We will assume that the plane is divided into square

pixels of height and width one, so that m(p) = 1 for any pixel p.

The symmetric difference of two subsets A,B5X is defined as,

ADB~(A|B)\(A\B)~(A\B)|(B\A) ð14Þ

Lemma 1. For any A,B,C5X ,

ADC5(ADB)|(BDC):

Proof
Suppose x[A\C. Then x[A and x=[C. If x[B, then

x[B\C5BDC. If x=[B, then x[A\B5ADB. This shows that

A\C5(ADB)|(BDC). Now suppose x[C\A. Then x[C and

x=[A. If x[B, then x[B\A5ADB. If x=[B, then x[C\B5BDC.

This shows that C\A5(ADB)|(BDC).

Thus ADC~(A\C)|(C\A)5(ADB)|(BDC).

Recall that a pseudometric d satisfies the same axioms as a metric,

except that d(x,y) = 0 does not necessarily imply x = y.

Theorem 1. Let m be a measure on X, and let % be the set of

subsets of finite measure. Then we obtain a pseudometric d on %

by defining d(A,B)~m(ADB). This is a metric if m has the

property that m(A) = 0 implies A = , the empty set.

Proof
For all A,B[F , we have d(A,B)~m(ADB)$0. Since

ADB~BDA, we see that d(A,B)~d(B,A). For any X1,X2[F ,

we know that m(X1|X2)ƒm(X1)zm(X2), with equality when X1

and X2 are disjoint. (This is true for any measure, and can be

directly checked for our two examples of counting measure and

area.) It follows from Lemma 1 and this inequality that

d(A,C)~m(ADC)

ƒm((ADB)|(BDC))

ƒm(ADB)zm(BDC)

~d(A,B)zd(B,C)

ð15Þ

This shows that d is a pseudometric. If, in addition,

m(F )~0[F~1, then

d(A,B)~0uADB~1[A~B ð16Þ

which is the final axiom needed in order to show that d is a metric.

Let us apply this result to the example of Figure 11. We fix a

reference image Ir, and target image Ij. Let trj~z(Dxrj ,Dyrj), for

1ƒjƒN. Then tij~z(Dxij ,Dyij)~({DxrizDxrj ,{Dyrizyrj)
as shown by the registration graphs in Figure 9 and Figure 10.

Using the above metric d on subsets of the plane, we define

ItijId = d(Ci, Cj), though we caution that it is not a norm on the set

of translations.

Lemma 2. Let d be the metric that arises from Theorem 1,

applied to one of our two examples. Recall that each Ij has height h

and width w for all j = 1,2, …, N. Then, for 1#i, j#N, we have

jjtij jjd~2(jDxij j:hzjDyij j:w{jDxij jjDyij j) ð17Þ

provided that jDxij jƒw and jDyij jƒh. If jDxij j§w or jDyij j§h

then jjtij jjd~2hw. This is the area lost by aligning Ij with Ii.

Proof
If jDxij j§w or jDyij j§h then Ci and Cj do not intersect, and so

CiDCj is the disjoint union of Ci and Cj , and this has area 2hw.

Otherwise, the situation will be similar to that shown in Figure 11.

From this figure, we see that the area of CiDCj , which is the area

lost, is given by

jjtij jjd~d(Ci,Cj)~m(CiDCj) ð18Þ

The region CiDCj consists of two congruent components, each

comprising three sub-rectangles S1, S2 and S3, meeting only along

their edges, with S3 occupying the corner position. We calculate

m(CiDCj) as follows:

m(CiDCj)~2(m(S1|S2|S3))~2(m(S1)zm(S2)zm(S3)) ð19Þ

From Figure 11,

m(S1)zm(S2)~m(S1|S2)~jDxij j:h

m(S2)zm(S3)~m(S2|S3)~jDyij j:w

m(S3)~jDxij j:jDyij j

ð20Þ

It follows that

Figure 10. Registration graph showing shifts calculated
between Ir and all the other tag images in the dataset I = {Ij},
j = 1,2,…,N. Nodes in the graph represent multi-tag images in an image
stack I, solid edges represent transformations with respect to Ir as
described in Section 5.2.1, and dashed edges represent transformations
that can be determined using this graph as shown and described in
Figure 9.
doi:10.1371/journal.pone.0030894.g010
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m(CiDCj)~2(jDxij j:hzjDyij j:w{jDxij jjDyij j) ð21Þ

In practice though, jDxij j is typically much smaller than w and

jDyij j is much smaller than h. Moreover, the value at which the

objective function is optimized is unchanged if the objective

function is multiplied by a constant. As a result, the third term in

the sum can be ignored, and a good approximation to the exact

answer is a scaled version of the l1-metric, given by

d(Ci,Cj)~jDxij j:hzjDyij j:w ð22Þ

and this value can be used to specify the objective function. We

can now revisit the objective function

yr~
X

i

Area(Cr\Ci)~
X

i

m(Cr\Ci) ð23Þ

Note thatm(Ci)zm(Cj)~2m(Ci\Cj)zm(CiDCj). If Ci and Cj

move, while keeping each of m(Ci) and m(Cj) constant, then

m(Ci\Cj) increases as m(CiDCj)~d(Ci,Cj) decreases. That is, the

larger the area in common between two images, the smaller will be

the distance between them. It follows that maximizing yr is

equivalent to minimizing,

Qr~
X

i

m(CrDCi)~
X

i

d(Cr,Cj) ð24Þ

as r varies. Minimizing the above objective function gives r* the

index of the RIMO image.

Using the RIMO. Once we have computed all the shifts,

found the RIMO and its distance to each of the after tag images,

we realign all the tag images with reference to the RIMO.

Furthermore, we can also identify which of the fluorescence

protein images it might be best to ignore, if for some reason it is

advisable to ignore one or more images. Of course, one will often

want to ignore fluorescence images of poor quality. But it may also

be advisable to eliminate, at least temporarily, images that are

distant from the RIMO (using the distance function defined

above).

Supporting Information

Appendix S1 Various different ways in which the
alignment results can be used for a follow-up analysis.
(DOC)
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