
Altered Neural and Behavioral Dynamics in Huntington’s
Disease: An Entropy Conservation Approach
S. Lee Hong1, Scott J. Barton2, George V. Rebec2*

1 Department of Kinesiology, Indiana University, Bloomington, Indiana, United States of America, 2 Department of Psychological and Brain Sciences, Indiana University,

Bloomington, Indiana, United States of America

Abstract

Background: Huntington’s disease (HD) is an inherited condition that results in neurodegeneration of the striatum, the
forebrain structure that processes cortical information for behavioral output. In the R6/2 transgenic mouse model of HD,
striatal neurons exhibit aberrant firing patterns that are coupled with reduced flexibility in the motor system. The aim of this
study was to test the patterns of unpredictability in brain and behavior in wild-type (WT) and R6/2 mice.

Methodology/Principal Findings: Striatal local field potentials (LFP) were recorded from 18 WT and 17 R6/2 mice (aged 8–
11 weeks) while the mice were exploring a plus-shaped maze. We targeted LFP activity for up to 2 s before and 2 s after
each choice-point entry. Approximate Entropy (ApEn) was calculated for LFPs and Shannon Entropy was used to measure
the probability of arm choice, as well as the likelihood of making consecutive 90-degree turns in the maze. We found that
although the total number of choice-point crossings and entropy of arm-choice probability was similar in both groups, R6/2
mice had more predictable behavioral responses (i.e., were less likely to make 90-degree turns and perform them in
alternation with running straight down the same arm), while exhibiting more unpredictable striatal activity, as indicated by
higher ApEn values. In both WT and R6/2 mice, however, behavioral unpredictability was negatively correlated with LFP
ApEn.

Conclusions/Significance: HD results in a perseverative exploration of the environment, occurring in concert with more
unpredictable brain activity. Our results support the entropy conservation hypothesis in which unpredictable behavioral
patterns are coupled with more predictable brain activation patterns, suggesting that this may be a fundamental process
unaffected by HD.
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Introduction

Huntington’s disease (HD) is a fatal inherited condition

characterized by severe cognitive, emotional, and motor symp-

toms. The striatum, a forebrain structure that processes cortical

information for behavioral output, is a key HD target that

undergoes pronounced neurodegeneration. Long before striatal

neurons die, however, they become dysfunctional, as seen in

symptomatic R6/2 mice, a widely used transgenic model of HD.

R6/2 striatal neurons show altered firing patterns, including a

decrease in burst activity and a loss of correlated firing between

simultaneously recorded neuron pairs relative to wild-type (WT)

mice [1]. Behaviorally, R6/2 mice are less likely than WT to turn

right or left in a plus maze, an indication of motor inflexibility [2].

An important question that this study seeks to address is how

brain and behavior interactions are altered in R6/2 mice. This is a

particularly important issue for developing drugs or other

treatment options in HD aimed at reversing or attenuating

abnormal neural firing patterns. Here, we examined patterns of

brain activation in behaving R6/2 and WT mice, with emphasis

on the dynamics of local field potentials (LFPs) in the striatum

before, during, and after the animal chooses to enter an arm

within the plus maze. We also quantified the pattern of arm-choice

selections.

Measures that quantify the probability of different events can

provide a common metric for the quantification of patterns of both

brain and behavior, using the framework of entropy and

uncertainty. Such an approach detects the likelihood of the

occurrence of specific behavioral events and the probability that

sequences recur within brain activation signals over a given period

of time. This allows us to examine the hypothesis of entropy

conservation in brain-behavior relationships [3–6]. The idea of

entropy conservation is essentially a single resource model across

the brain, whereby only a limited number of configurations are

possible [3,6]. As a result, as these ‘‘degrees of freedom’’ within the

brain are being diverted to perform a task, the remaining resources

to engage in other functions are reduced. The inherent bridge

between degrees of freedom, probability, and uncertainty allow

entropy to be used as a measure of the amount of information

required to describe the behavior of the system, while also

providing an indirect measure of the number of different

configurations taken on by the system over a given period of time.
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Effectively, our goal was to ask the following questions: (1) are the

behaviors of R6/2 mice less unpredictable than the WT; (2) will the brain

activation patterns in R6/2 mice be more unpredictable than those in WT;

and (3) does the unpredictability of behavior increase when brain activation

patterns are more predictable (and vice versa)? We also assess whether the

brain-behavior unpredictability issue holds across both types of

mice or just one type. Brain activity was assessed using dynamical

patterns of striatal local field potentials (LFPs), the collective

activity of large neuronal populations, measured with emphasis on

the choices made by the mice as they navigated a plus maze.

Results

We collected LFPs from 18 WT and 17 R6/2 mice as they

navigated the plus maze for periods of 30 min (data from one R6/

2 mouse was not analyzed as the mouse did not have any choice

point crossings throughout the 30-min trial). Patterns of behavior

were obtained by tracking the movements of the mouse within the

maze and marking when the mouse crossed the choice point lines

in the center (both entry into and exit out of a given arm).

Behavioral Measures
Arm choice entropy was slightly, but not significantly higher in

WT in comparison to R6/2 mice. Exemplar probability distribu-

tions in the plus maze from a single mouse from each group are

presented in Figure 1. R6/2 mice were nearly twice as likely to run

straight along the same arm, while the WT mice were more likely to

make 90-degree turns and alternate locomotor behaviors on

consecutive choices, as evidenced by the higher lag-1 autocorrela-

tion values. The number of choice point crossings and arm choice

entropy were not significantly different between groups. Results

from the behavioral measures are summarized in Table 1.

Brain Activity Patterns
Micro-electrodes were chronically implanted in striatum in

order to obtain local field potential (LFP) signals, which were

extracted at critical points surrounding each choice-point crossing:

A) 2 s to 1 s prior; B) 1 s to 0 s prior; C) 0 s to 1 s after; and D) 1 s

to 2 s after crossing the choice point. We analyzed the patterns of

LFP activity by dividing them into two different components: 1)

amplitude, measured using RMS; and 2) dynamics, measured

using Approximate Entropy (ApEn). Exemplar LFP dynamics

obtained from a single mouse during a choice-point crossing is

presented in Figure 2.

LFP Signal Amplitude
A significant effect of Time (F(1.5,49.6) = 74.92; p,0.001;

gp
2 = .694) was found for the RMS values of the LFPs. Bonferroni

corrected post-hoc examination of the main effect of Time

revealed that the differences for all of the pairwise comparisons

were significant (p,0.01), with the exception of the comparison

between 2 s–1 s prior and 1 s–2 s after the choice. RMS values

were observed to increase up until the choice point, and

then decline (see Figure 3). The Time6Group interaction

(F(1.5,49.6) = 0.12; p = .828; gp
2 = .004) and Group effect

(F(1,33) = 0.57; p = .455; gp
2 = .017) were not significant.

LFP Dynamics
A significant Time6Group interaction was observed

(F(1.6,53.7) = 7.61; p = .009; gp
2 = .187) for the ApEn of the LFP

signal. Bonferroni corrected post-hoc analyses of the interaction

revealed significant differences across all pairwise comparisons

(p,.01), with the exception of the ApEn during 1-0 s prior and 0-

1 s after the choice point crossing for WT mice. The interaction is

illustrated in Figure 4. We also observed a significant Group effect

(F(1,33) = 7.68; p = 0.002; gp
2 = .189) on ApEn values of the LFPs,

where there was significantly more unpredictability in the

dynamics of R6/2 (M6SE = 0.2160.014) compared to WT mice

(M6SE = 0.1660.014).

A significant effect of Time on the ApEn of the LFP signal

(F(1.6,53.7) = 99.13; p,.0001; gp
2 = .750) was found, and post-hoc

tests revealed significant differences across all pairwise compari-

sons (p,.01). Here, the LFP ApEn values were highest during the

period from 2-1 s prior to the choice-point crossing. These values

continued to decline up until 1 s after the choice-point crossing,

and then increased in the ensuing 1–2 s.

Brain-Behavior Relationships
Partial and zero-order correlations were used to test for

significant relationships between brain (LFP ApEn and RMS

Figure 1. Exemplar probability distribution of arm choices. Data presented are obtained from a single trial, with one animal from each group.
The arm choice entropy values (calculated using Equation 1) are also provided.
doi:10.1371/journal.pone.0030879.g001
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1-0s prior) and behavioral variables (Arm Choice Entropy,

Probability of Remaining in the Same Arm, and Lag-1

Autocorrelation of Arm Choice). All the partial correlations

controlling for mouse type were not significant (p.0.05; largest r-

value = 2.276; smallest p = 0.114, between ApEn and the number

of choice point crossings). All the zero order correlations between

ApEn and the behavioral variables were significant (see Figure 5),

but, not for RMS (p.0.05; largest r-value = 2.232; smallest

p = 0.179, between RMS and probability of running straight and

remaining in the same arm).

Discussion

Behaviorally, we found two key differences between the HD and

WT groups. First, the sequence of choice point crossings was

significantly different between groups (answering ‘‘yes’’ to question

1). This was evident in the lower likelihood that a WT mouse

would remain within the same arm and by the higher lag-1

autocorrelation of choices in the WT. Both of these findings are

consistent with the existing findings that HD mice are less likely to

make 90 degree turns within a plus maze. In addition to the

existing research, our data show that WT mice are more likely to

alternate between running straight and making 90-degree turns.

These findings support the hypothesis that HD results in decreased

flexibility in the motor system [2].

Our LFP data revealed a universal difference between the two

groups. We found greater unpredictability in striatal LFP activity

in the HD mice (answering ‘‘yes’’ to question 2), a difference that

was maintained across all time points around the choice events.

One explanation for this finding is that the loss of correlated firing

between neurons in R6/2 mice [1] would lead to greater

independence across the neuronal population that generates the

Table 1. Summary of statistical results for the behavioral measures.

Variable WT (M±SE) HD (M±SE) F (1,33) p gp
2

Number of Choice Point Crossings 112612 90612 1.84 .184 .053

Arm Choice Entropy 1.5360.02 1.4760.03 2.55 .120 .072

Probability of Remaining in the Same Arm 0.4760.04 0.7460.04 19.44 ,.001 .371

Lag-1 Autocorrelation 0.5160.05 0.3360.05 7.43 .010 .184

doi:10.1371/journal.pone.0030879.t001

Figure 2. Exemplar LFP dynamics around the choice point.
These are data obtained from a single, choice-point crossing during a
trial for a single animal within each group. Both choices represent the
animal crossing the choice point and remaining in the same arm. The
ApEn values within the time windows of A) 2 s to 1 s prior; B) 1 s to 0 s
prior; C) 0 s to 1 s after; and D) 1 s to 2 s after crossing the choice point
are also illustrated. Note that the data have been normalized to fall
between 21 and 1, so as to highlight the differences in dynamics
(hence, the scale on the y-axis is in arbitrary units, a.u.).
doi:10.1371/journal.pone.0030879.g002

Figure 3. LFP signal amplitude around the choice points. Only a
significant time effect was observed. Post-hoc analysis of the main
effect of time revealed that all of the Bonferroni-corrected pairwise
comparisons for the RMS values at the different time points were
significant, with the exception of the comparison between 2-1s prior
and 1-2s after the choice point, marked ns for not significant. Data are
averaged across all choice point crossings and animals within each
group; error bars reflect one standard error of the mean.
doi:10.1371/journal.pone.0030879.g003
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LFPs. This reduced correlation or ‘‘synchrony’’ in the firing of

individual neurons would unfold in time as a more unpredictable

sequence at the population level, hence, the higher ApEn values

indicating greater unpredictability in the signal.

A common scaling of brain-behavior relationships was ob-

served, as seen in the significant correlations between the

unpredictability of LFP dynamics and behavior (answering ‘‘yes’’

to question 3). Across all the dependent variables, LFP dynamics

were seen to be more unpredictable when behavior was more

predictable. This is evidenced by the increased ApEn values of the

striatal LFPs when Arm Choice entropy was lower. Similarly,

ApEn values were lower when: A) the animal had a high likelihood

of remaining in the same arm (and running straight); and B)

subsequent 90 degree turns were less likely. These findings are

consistent with the entropy conservation hypothesis [3–6],

showing that a conservation of entropy can be observed as a

complementary interaction across brain and behavior [7].

An explanation for this relationship is the idea of a limited level

of entropy across the entire brain, as presented in Smotherman et

al. [6]. Using cocaine-fed rat pups, these authors found that a

decreased behavioral response to environmental stimuli could be

explained by the redistribution of entropy across the brain, while

the total entropy of activity within the brain remained constant.

Our findings support this single-resource viewpoint of the brain,

albeit inferred, based on the patterns of brain and behavior. Our

results suggest, however, that behavioral patterns could serve as a

proxy measure for altered input-output relationships [8] that are

reflective of changes occurring across the entire brain with

constant entropy [5,6].

Interestingly, significant brain-behavior relationships were only

observed in the zero-order correlations, suggesting that similarities

in brain and behavior that were common across both types of

mice. This is perhaps an indication that the relationship between

the unpredictability of brain and behavior is an aspect of the

neurobehavioral system not significantly impacted by HD. First,

from the perspective of distributions of behavior, both groups

explored the maze similarly as indicated by the lack of statistically

significant differences in the number of choice-point crossings and

the entropy of arm-choice selections. Interestingly, behavioral

differences between HD and WT mice only become apparent

when the sequential properties of maze exploration are examined.

Second, the strength of the LFP signal from the striatum did not

differ and both types of mice exhibited increases in signal

amplitude whenever faced with a choice point. Much like the

behavioral measures, the higher amplitude-independent unpre-

dictability within the LFP sequence is what distinguishes HD from

WT mice.

Overall, the characteristic feature of plus-maze exploration in

R6/2 mice is a perseverative pattern of locomotion accompanied

by unpredictable dynamics in striatal LFPs. However, striatal LFP

dynamics do not directly reflect moment-to-moment choice

decisions, as we did not observe direct one-to-one brain-behavior

relationships at every choice-point crossing. Instead, the relation-

ship between unpredictability across brain and behavior only

emerges after a distribution of behaviors has been obtained. This

phenomenon parallels the work of Schultz [9] and Fiorillo et al.

[10], who found neural correlates of brain activity in response to

prediction of reward after a probability of reward has been defined

over numerous repeated trials.

Clinically, the finding that both WT and HD mice share a

similar brain-behavior relationship raises the possibility of

attenuating symptoms through new interventions. One possibility

is to alter brain activity dynamics pharmacologically, for example

by adjusting dopamine transmission through the administration of

L-DOPA, an approach that has short-term benefits, but

deleterious long-term effects [11]. A second possibility would be

to employ deep-brain stimulation methods that have been found to

be effective in the treatment of Parkinson’s disease symptoms [12].

Figure 4. ApEn values for the LFP dynamics around the choice
points, illustrating the significant Time6Group interaction. All
the Bonferroni-corrected pairwise comparisons were significant, with
the exception of the comparison marked ns for not significant. Both the
main effects of Group and Time were significant. Data are averaged
across all choice-point crossings and animals within each group; error
bars reflect one standard error of the mean.
doi:10.1371/journal.pone.0030879.g004

Figure 5. Significant relationships between the unpredictability in brain and behavior. The following panels represent correlations
between striatal LFP ApEn values and: A) Arm Choice Entropy; B) Probability of Remaining within the Same Arm; and C) Lag-1 Autocorrelation. The
solid black line represents the line of best fit while dashed gray lines reflect the 95% confidence interval.
doi:10.1371/journal.pone.0030879.g005
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Across both approaches, the goal would be to reduce the

unpredictability or ‘‘noise’’ within striatal circuit activity.

Conclusions
This study tested the effects of HD on patterns of brain and

behavior, answering the following research questions:

1. Are the behaviors of R6/2 mice less unpredictable than WT?

Yes. These HD mice are less likely to make 90 degree turns in

the plus maze and are also less likely to make consecutive turns

in the exploration sequence. But, the number of choice point

crossings and the entropy of the distribution of arm choices

were not different between the groups. This suggests that HD mice

exhibit perseverative exploration, an effect that is revealed in the sequence of

choices, rather than the absolute count of exploration events.

2. Will the brain activation patterns in R6/2 mice be more

unpredictable that the WT? Yes. Striatal LFP activity patterns

were more unpredictable across all time points around the

choice event. But the pattern of change in LFP dynamics in

response to the choice were relatively similar with the

exception of the lack of change in the one second immediately

prior to and after the choice-point crossing. This supports the idea

that HD mice have less correlated neuronal firing that leads to more

unpredictable, noisier brain activity.

3. Does the unpredictability of behavior increase when brain

activation patterns are more predictable (and vice versa)? Does

the pattern hold across both types of mice or just one type? Yes.

Significant correlations were found between brain-activity

entropy and arm-choice entropy, the probability of the mouse

remaining in the same arm, and lag-1 autocorrelation of arm

transitions. These correlations were not significant when

separated by group, but when both groups were entered into

the analysis, the correlations were significant. This finding

supports the hypothesis of entropy conservation across brain and behavior,

suggesting also that this is a fundamental relationship unaffected by HD.

Materials and Methods

The R6/2 mouse model of HD expresses exon 1 of the

huntingtin gene with an expanded region of ,140 CAG

(glutamine) repeats. This model exhibits behavioral signs of HD

as early as 6 to 7 weeks of age [13]. Seventeen R6/2 mice (age 8 to

14 weeks, mean age 10.561.9 wks) and 18 wildtype (WT)

littermate controls (age 8 to 13 weeks, mean age 10.061.9 wks)

underwent micro-electrode implantation surgery to measure

striatal local field potentials (LFPs).

Mice were anesthetized with an intraperitoneal injection of

chloropent (0.4 mL/100 g) and placed in a stereotaxic frame. An

incision exposed the skull, and a 1.0 mm diameter hole was drilled

unilaterally over striatum (0.5 mm anterior and 61.5 mm lateral

to bregma). The electrode assembly consisted of 8 microwires

(Formvar-coated, 25 mm diameter stainless steel) for recording and

2 non-insulated, 50 mm diameter stainless steel ground wires. Each

wire was friction-fitted with a gold-plated pin into a hole in a

polyphenylene sulfide insulator (Omnetics Connector Corpora-

tion, Minneapolis, MN). The 3.0 mm long bundle was slowly

lowered (2.5 mm ventral to brain surface) into striatum and

permanently attached to the skull using dental acrylic as described

with greater detail in Miller et al. [1].

After 10 days of recovery, the electrode assembly was connected

to a lightweight flexible wire harness equipped with field-effect

transistors that provided unity gain current amplification for each

wire, and the animal was placed in an enclosed, plus-shaped maze

of transparent Plexiglass (see Figure 6). The maze (arms 25 cm

long65 cm wide with side 30 cm high) was suspended 2 mm over

a force-plate actometer [14] that monitored the position of the

mouse as it freely explored the maze for 30 min. LFPs, routed

through preamplifiers with 10006 gain and 0.7–170 Hz filters,

were sampled at 1000 Hz and acquired by a multichannel

acquisition processor (Plexon, Dallas, TX, USA). All aspects of

animal use were in strict accordance with the National Institutes of

Health Guide for the Care and Use of Laboratory Animals and

were approved by the local Institutional Animal Care and Use

Committee. All efforts were made to minimize suffering and all

surgeries were conducted under chloropent anesthesia.

Data Analysis
The actometer indicated whenever the mouse crossed over the

choice point in the maze, whether into or out of the center by

placing a timestamp on the LFP data. We isolated crossing

conditions in which the mouse had remained in the previous arm for

at least 2 s prior to entering the choice point and stayed in the

subsequent arm for at least 2 s afterwards. This allowed for the

normalization of crossing conditions, while also removing condi-

Figure 6. Schematic illustration of experimental setup. Left panel shows the positioning of the mouse in the maze on top of the actometer.
Dimensions of the maze are provided in the right panel.
doi:10.1371/journal.pone.0030879.g006
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tions in which the mouse was simply lingering at the choice-point

line and creating spurious choice-crossing timestamps. LFP data

were then extracted from: A) 2 s to 1 s prior; B) 1 s to 0 s prior; C)

0 s to 1 s after; and D) 1 s to 2 s after crossing the choice point.
Dependent Variables - Behavioral Measures. There were

4 behavioral measures obtained: 1) number of choice point

crossings; 2) arm choice entropy; 3) probability of staying in the

same arm; and 4) lag-1 autocorrelation of same vs. different arm

choices. The first behavioral measure was the number of times a

given mouse crossed any choice point (both in and out from the

center). The second measure, Arm Choice Entropy was calculated

based on the probability distribution that a mouse crossed a

particular choice point, using the Shannon [15] equation:

Harm~{
X

pi log pi ð1Þ

The third behavioral measure was the probability that the

mouse remained in the same arm by running straight after making

a choice-point crossing. A shift into a perpendicular arm

represented a 90-degree turning movement. The fourth measure

of behavior, a lag-1 autocorrelation, was obtained from a time

evolution profile of these choice events, where 90-degree changes

in running direction were marked differently from events where

the mouse ran straight along the same arm. An autocorrelation

value of one would mean that the mouse alternated running

straight with 90-degree turns from one choice to the next, while an

autocorrelation of zero would mean repetitively making 90-degree

turns or running straight up-and-down the same arm.
Dependent Variables – Brain Measures. Because LFP

data were collected from 8 different electrodes, Principal

Component Analysis was used to extract a single collective

signal. We obtained the data from the 8 electrodes that projected

onto the first principal component (i.e., largest eigenvector) that

accounted for the most variance in the data set. This approach was

used instead of obtaining an ensemble mean across electrodes, as

the process of extracting data using Principal Component Analysis

simultaneously serves as a noise filter (see Daffertshofer et al. [16]).

The amplitude of the signal within each time window was

measured by root mean square (RMS):

RMS~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1 x2

i

n

s
ð2Þ

Unpredictability or irregularity within the dynamics of the unit

variance normalized LFP time-series (mean subtracted, divided by

standard deviation) was measured by Approximate Entropy

(Pincus [17]) summarized as follows:

ApEn~ log
cm(r)

cmz1(r)
ð3Þ

This approach approximates the entropy of a sequence by

obtaining the logarithm of the ratio of recurrence counts, C, of

sequences of lengths m and m+1, within the data, within the

toleration range, r. Per the recommendations of Pincus [17], we

use the parameters m = 2 and r = 0.2. If the time-series is

predictable, the recurrence count of sequences of length 2 will

be close to the recurrence count of sequences of 3 data points,

thus, leading to lower ApEn values. An unpredictable time-series

will have a much higher rate of recurrence of the shorter

sequences in comparison to the longer ones, resulting in higher

ApEn values.

Statistical Analysis
Univariate ANOVA tests for group effects were conducted on

the number of choice crossings, arm choice entropy, probability of

remaining in the same arm, and lag-1 autocorrelation of arm

choices. A mixed-model (462) ANOVA was used to measure the

event-related LFP signal amplitude and dynamics, with repeated

measures on the effect of Time and mouse type as the group effect.

Effect sizes were determined using partial eta-squared (gp
2) values.

Based on Cohen [18], effects with gp
2 values of .01, .09, and .025

are small, medium, and large effects, respectively. Whenever

violations of the sphericity assumption were encountered, a

Huynh-Feldt correction for the statistical degrees of freedom was

applied. Multiple comparisons were corrected for in post hoc

analyses using a Bonferroni correction. To test the relationship

between variables, we employed zero-order correlations and

partial correlations, controlling for mouse type.
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