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Abstract

Double minute chromosomes or double minutes (DMs) are cytogenetic hallmarks of extrachromosomal genomic
amplification and play a critical role in tumorigenesis. Amplified copies of oncogenes in DMs have been associated with
increased growth and survival of cancer cells but DNA sequences in DMs which are mostly non-coding remain to be
characterized. Following sequencing and bioinformatics analyses, we have found 5 novel matrix attachment regions (MARs)
in a 682 kb DM in the human ovarian cancer cell line, UACC-1598. By electrophoretic mobility shift assay (EMSA), we
determined that all 5 MARs interact with the nuclear matrix in vitro. Furthermore, qPCR analysis revealed that these MARs
associate with the nuclear matrix in vivo, indicating that they are functional. Transfection of MARs constructs into human
embryonic kidney 293T cells showed significant enhancement of gene expression as measured by luciferase assay,
suggesting that the identified MARS, particularly MARs 1 to 4, regulate their target genes in vivo and are potentially
involved in DM-mediated oncogene activation.
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Introduction

Double minute chromosomes, also known as double minutes

(DMs) are extrachromosomal elements (EEs) that are considered

cytogenetic hallmarks of gene amplification [1–3]. The existence

of DMs was initially observed in human colon carcinoma cells [4]

but have now been shown in a variety of human tumors, including

breast, lung, ovary, colon, and neuroblastoma [5]. DMs are small,

generally acentric, atelomeric and autonomously replicating

chromatin bodies. They are considered to be one of the principal

genetic structures on which specific oncogenes are located [6]. It is

believed that DM-mediated oncogene amplification or overex-

pression contributes to their oncogenic role [7–9]. Amplified DM

sequences range in size from a few hundred kilobases to

megabases. It is recognized that most of the amplified DM

sequences are non-coding, but why cancer cells possess consider-

able amounts of extrachromosomal DNA requires further

investigation.

Non-coding DNA is DNA sequence that does not encode a

protein. More than 98% of the human genome is non-coding

DNA, including most sequences within introns and intergenic

DNA [10]. Although the sequence of the human genome has

now been completed, the organization and function of non-

coding DNA remains to be characterized. In the nucleus, high

order chromatin structure is maintained by DNA-nuclear

matrix interactions. DNA sequences that bind preferentially

to the nuclear matrix are designated as matrix attachment

regions (MARs) or scaffold associated regions (SARs). MARs/

SARs, which are more often located in non-coding regions of

DNA, are about 200 bp in length, AT-rich, and contain

topoisomerase II consensus sequences and other AT-rich

sequence motifs [11,12]. They can activate gene expression,

determine which class of genes to transcribe and have a strong

effect on the level of transgene expression [13,14]. Of the MAR

elements reported, many do not display extensive sequence

homology, but they appear to be functionally conserved, since

animal MARs can bind to plant nuclear scaffolds and vice versa

[15].

The human ovarian cancer cells, UACC-1598, stably harbors

DMs. One of the DMs that we recently identified and sequenced

was a 682 kb DM (NCBI Sequence Read Archive (SRA),

Accession ID:SRA037306.1). Interestingly, this DM contains the

oncogenes, MYCN and EIF5A2 [16]. Amplified copies of

oncogenes in DMs have been associated with increased growth

and survival of cancer cells but DNA sequences in DMs which are

mostly non-coding remain to be characterized. It would be

interesting to know whether certain MAR elements play a role in

DM-mediated oncogene activation. In this report, bioinformatics
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analysis showed that the 682 kb DM harbors 5 matrix attachment

regions (MARs). These MARs bind to the nuclear matrix of

human ovarian cancer cells in vitro and in vivo, indicating that they

are functional. They also enhance gene expression when inserted

into the luciferase promoter region and transfected into 293T

embryonic kidney cells. Together, our results suggest that the

682 kb DM MARs may play important roles in oncogene

activation.

Materials and Methods

Cells and Cell Culture
The human ovarian cancer cell line UACC-1598, which

spontaneously forms DMs, was kindly provided by Dr. XY Guan

(The University of Hong Kong). The UACC-1598 cells were

maintained in RPMI-1640 medium supplemented with 10% fetal

bovine serum (GIBCO, Carlsbad, CA). HEK 293T cell line was

purchased from the American Type Culture Collection (Mana-

ssas,VA) and was cultured in DMEM medium supplemented with

10% fetal bovine serum (GIBCO, Carlsbad, CA). Normal ovarian

tissues were obtained from uterine cervix cancer patients at the

Third Affiliated Hospitals of Harbin Medical University (Harbin,

China).

Figure 1. Sequencing of a 682 kb DM in UACC-1598 human
ovarian cells revealed 5 putative MARs. A. Metaphase spread of
UACC-1598 cells stained with DAPI (magnification, 2006). B. Magnified
view of the circled area in (A). Arrows are directed at DMs. C. A
schematic diagram of the 682 kb DM sequence in UACC-1598 cells
shows 5 putative MARs using the MARFinder. The predicted MARs at
3q26 are located at base pairs 170327921–170328321 (MAR1),
170513721–170514421 (MAR2), 170633821–170634121 (MAR3) and
170634321–170634821 (MAR4). Another MAR is located on 2p24 at
base pairs 15991750–15992550 (MAR5).
doi:10.1371/journal.pone.0030419.g001

Figure 2. All identified MARs interact with the nuclear matrix in vitro. A. SDS-PAGE of the nuclear matrix purified from UACC-1598 cells. B.
Western blot for nuclear matrix using histone H1 antibody. C. MARs 1 to 5 interact with the nuclear matrix in vitro. EMSA was performed as described
in Materials and Methods using 100 ng DNA and serially diluted nuclear matrix.
doi:10.1371/journal.pone.0030419.g002
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RT-PCR analysis
Total RNA was isolated using Trizol (Invitrogen), following

the manufacturer’s protocol. cDNA synthesis was performed

using the First-Strand cDNA Synthesis Kit (Promega). b-actin

was used as the internal PCR control. The PCR products were

subjected to electrophoresis on a 1.5% agarose gel, and the

bands were visualized using a gel documentation system (Alpha

Innotech.).

Western blot analysis
The cells and normal tissues were homogenized in RIPA

buffer. Samples were then sonicated, vortexed and centrifuged at

12,0006g for 10 min at 4uC. The supernatants were collected

and separated by SDS-polyacrylamide gels, blotted onto

membranes and incubated with the primary antibody (MYCN

from GeneTex, US; EIF5A2 from Protein Tech, Chicago;

Histone H1, Santa Cruz; GAPDH from Santa Cruz Biotech)

overnight at room temperature. Immunoreactive protein bands

were detected using the ECL detection system (New England

Biolab).

Identification of MARs
MARs were identified using MAR-Wiz and MARFinder

softwares (http://genomecluster.secs.oakland.edu) [17].

Nuclei preparation
Nuclei was prepared as described by Cockerill et al [18]. Briefly,

cells were harvested and washed once with phosphate-buffered

saline (PBS), resuspended in RSB (10 mM Tris-HCl, pH 7.4;

10 mM NaCl; 3 mM MgCl; 0.5 mM PMSF), placed on ice for

10 min, and homogenized using a KONTES homogenizer. Nuclei

were washed twice with RSB plus 0.25 M sucrose, resuspended in

RSB plus 2 M sucrose, and centrifuged through a cushion of RSB

plus 2 M sucrose at 14,000 rpm for 30 min. Isolated nuclei were

washed once in RSB plus 0.25 M sucrose by centrifugation at

7506g for 10 min. Nuclei were resuspended in RSB plus 0.25 M

Figure 3. MARs 1 to 5 interact with the nuclear matrix in vivo. A. Matrix-associated (P) and solubilized (S) DNAs, isolated as described in
Materials and Methods, were used as templates to amplify MARs 1 to 5 using primers listed in Table S1. Genomic DNA (1598) isolated from UACC
1598 cells was used as control. B. Densitometric analysis of qPCR band intensities is shown as column diagram. Asterisk indicates significance at
p,0.05.
doi:10.1371/journal.pone.0030419.g003
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sucrose, and after adding an equal volume of glycerol, were stored

at 220uC.

Isolation of nuclear matrix
Nuclei (,1 mg/ml) in RSB containing 0.25 M sucrose and 1 mM

CaCl2 were incubated with 100 mg/ml DNAase I (Fermentas, CA) for

2 hr at 23uC. After centrifugation at 7506g for 10 min at 4uC, pellets

were resuspended in RSB containing 0.25 M sucrose, and an equal

volume of cold 20 mM Tris buffer (pH 7.4) containing 4 M NaCl and

20 mM EDTA was added. After 10 min at 0uC, the suspension was

centrifuged at 1,5006g for 15 min at 4uC, and pellets were extracted

twice by resuspension in a cold solution of 10 mM Tris-HCl (pH 7.4)

containing 2 M NaCl, 10 mM EDTA, 0.5 mM PMSF and 0.25 mg/

ml BSA, and centrifugation at 45006g for 15 min at 4uC. The

resulting nuclear matrices were washed with cold RSB containing

0.25 M sucrose and 0.25 mg/ml BSA, resuspended in the same

buffer, added an equal volume of glycerol, and stored at 220uC.

EMSA analysis
DNA binding was analyzed by electrophoretic mobility shift

assay (EMSA). Full-length DNA fragments of MARs amplified by

PCR were incubated with isolated nuclear matrix at room

temperature for 20 min. MARs-nuclear matrix interaction was

analyzed by agarose gel electrophoresis and visualized under UV

illumination using the Alpha Inotech Imaging System (Alpha

Inotech Corporation, San Leandro, CA, USA).

Isolation of nuclear matrix-associated DNA
Nuclei isolation and extraction of histones using lithium

diiodosalicylate (LIS) were performed as described by Mirkovitch

[10]. Ten units of nuclei (OD at 260 nm) in 100 ml of isolation buffer

[5 mM Hepes pH 7.4, 0.25 mM spermidine, 2 mM KCl, 0.1%

digitonin, 25 mM 3–5-diiodosalicylic acid lithium salt (Sigma)] were

heated at 37uC for 20 min. Seven ml of low-salt extraction buffer

[3.75 mM Tris-HCl, 0.05 mM spermine, 0.125 mM spermidine,

20 mM KCl, 1% (v/v) thiodyglycol, 0.1% digitonin] was then slowly

added to the histone-free nuclei at room temperature. After 5 min,

the histone-depleted nuclei were recovered by centrifugation at

2,4006g for 20 min at room temperature. The pellet was washed

four times in 8 ml digestion buffer (20 mM Tris/HCl, pH 7.4,

0.05 mM spermine, 0.125 mM spermidine, 20 mM KCl, 70 mM

NaCl, 10 mM MgCl2, 0.1% digitonin, 100,000 IU/ml Trasylol, and

0.1 mM PMSF). Restriction enzymes (EcoR1, HindIII, Xba1; New

England Biolabs) were then added at 1000 U/ml and digestion was

allowed to proceed for 3 hr at 37uC in a shaking water bath. The

digested histone-depleted nuclei was centrifuged at 2,4006g for

10 min at 4uC to separate the solubilized DNA (S) from the nuclear

scaffold-bound DNA (P) which was recovered and purified using

QIAamp DNA Mini Kit-250 (QIAGEN) then resuspended in

deionized water. DNAs were then analyzed by qPCR. As templates,

P and S DNA were used. Genomic DNA (1598) isolated from

UACC 1598 cells was used as control. The primers used for qPCR

amplification are shown in Table S1.

Vector construction
The identified MARs were amplified by PCR using the primers

and annealing temperatures described in Table S2. Purified PCR

products were digested with Kpn 1, Mlu 1, and Bgl II, and cloned

into pGL3-promoter vector (Promega, Madison, WI).

Transfection and luciferase assay
293T cells were transiently transfected with the prepared

constructs (0.2 mg each) using the polyethylenimine (PEI) reagent

(Polysciences, USA) according to the manufacturer’s instructions.

Cells transfected with the vector itself (0.2 mg) served as control.

After 48 hours, cells were harvested and lysed with 16lysis buffer

(Promega, Madison, WI). Lysates were used to mesaure luciferase

activity using the Dual-Luciferase Assay Kit (Promega, Madison,

WI).

Results

The 682 kb DM sequence in UACC-1598 human ovarian cells

has 5 putative MARs. DMs are extrachromosomal elements that

play a pivotal role in tumorigenesis. Analyses of metaphase

spreads of UACC-1598 human ovarian cancer cells revealed

numerous DMs (Figure 1, A and B). Recently, we cloned and

sequenced a 682 kb DM from these cells and the data was

submited to NCBI Sequence Read Archive (Accession

ID:SRA037306.1), in collaboration with Ensembl, archives short

read data from next-generation sequencing technologies (e.g. 454

Life Sciences [Roche], Illumina, ABI SOLiD, Helicos). While

97% of the sequence is non-coding, we identified five putative

MAR elements in the sequence (Figure 1C) using the MAR-Wiz

and MARFinder softwares as indicated in the Materials and

Methods section.

MARs 1 to 5 interact with the nuclear matrix in vitro
To investigate whether the putative MARs 1 to 5 are

functional, we performed in vitro EMSA assay to examine their

ability to interact with the nuclear matrix. PCR amplified MARs

1 to 5 were incubated with nuclear matrix purified from UACC-

1598 cells (Figure 2, A and B) and interaction between DNA and

protein were assessed by mobility shift. As shown in Figure 2C,

MARs 1 to 5 all interacted with the nuclear matrix, and upon

dilution of the latter, a corresponding decrease in band shift

(indicated by arrow) and increase in free MARs were observed.

Figure 4. Differential enhancement of gene expression by
MARs 1 to 5. A. Schematic diagram of the pGL3-MAR-luciferase
reporter constructs in the 59 to 39 and 39 to 59 direction. B. Luciferase
activity of 293T cell lysates after transfection with the constructs for
48 hours. Data represent the mean 6 SD of three independent
experiments. *, P,0.05; **, P,0.01.
doi:10.1371/journal.pone.0030419.g004
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These results indicate that all five identified MARs bind to the

nuclear matrix in a dose-dependent manner.

MARs 1 to 5 interact with the nuclear matrix in vivo
Next, we investigated whether the identified MARs 1 to 5 bind

to the nuclear matrix in vivo. The matrix-associated DNA (P) was

separated from the soluble DNA (S) of UACC-1598 human

ovarian cells. The P and S fractions were used as templates to

amplify MARs 1 to 5 by qPCR using primers listed in Table S1.

As shown in Figure 3A and B, MARs 1 to 5 were clearly detectable

in the P fraction, indicating that these MARs are associated with

the nuclear matrix, and confirming that they are indeed functional

MARS in vivo.

MARs 1 to 5 differentially enhance gene expression
MARs in DMs play important roles in the regulation of target

genes. To test the possibility that our identified MARs can

stimulate gene expression, we generated pGL3-MAR-luciferase

reporter constructs (in both 59 to 39 and 39 to 59 direction) as

shown in Figure 4A. After transfection of the constructs into

293T cells for 48 hours, cell lysates were measured for luciferase

activity. As shown in Figure 4B, cells transfected with vector

containing MARs 1 to 4, in either direction, showed significantly

luciferase activity, with MARs 2 and 3 showing the highest

activity. On the other hand, the vector containing MAR5 showed

only modest luciferase activity. These data suggest that the

identified MARs 1 to 4 may regulate a target gene(s) in vivo.

Indeed, in UACC-1598 cells, we found upregulated expression of

the MYCN and EIF5A2 genes which are localized close to these

MARs (Figure 5).

Discussion

The existence of DMs in maliganancies have been correlated

with poor prognosis and outcome [5,17,19–21]. DMs have been

found in a broad spectrum of human neoplasias with the highest

frequency in neuroblastoma [5]. Several genes such as MYC,

MYCN, DHFR, MDM2 and EGFR have been determined to be

amplified on DMs [18,22–25] but little is known about the precise

structure and organization of DMs, and the mechanism by which

DM is formed. In UACC-1598 human ovarian cells, we have

identified a 682 kb DM with 97% non-coding DNA that consists

of 5 functional MARs.

MARs are DNA sequences that can bind to the nuclear matrix

in eukaryotes. They play critical roles in maintaining high order

chromatin structure, determining the origin of DNA replication,

and regulating gene expression. MARs have been shown to

augment gene expression to varying extents in different systems

through the modification of the chromatin structure [26,27]. The

different abilities of MARs in enhancing gene expression is due in

part to random integration sites of the newly introduced genes

and the influence of the chromatin structure and/or the

regulatory elements at the sites of integration in the host genome

[28]. One of the ways by which cancer cells facilitate gene

expression is by overcoming the inhibitory effect of neighboring

chromatin elements through interaction with MAR elements

[29–31].

In this study, 4 out of the 5 identified MARs in the 682 kb DM

in UACC-1598 cells caused a robust enhancement of gene

expression while one showed a modest effect. This data support

the notion that MARs can influence gene expression and that non-

coding DM regions may contain functional MAR elements.

Indeed, oncogene amplification alone may not be sufficient to

induce high oncogene expression but may be achieved through co-

amplification via functional MAR elements.

Recently, there have been reports indicating that MARs can

organize and govern the accessibility to local chromatin

structures and can indirectly influence transcription by insulating

nearby genes [32–34]. Furthermore, DM MARs may influence

the high order chromatin structure and can thus change the

global expression of genes. In this regard, our data further

suggest that the MAR elements in the 682 kb DM in UACC-

1598 cells may play critical roles in oncogene activation in these

cells.

Supporting Information

Table S1 Primers, annealing temperature, and size of
predicted PCR products for scaffold/matrix DNA. F and

R indicate forward and reverse primers, respectively.

(DOC)

Table S2 Primers, annealing temperature, and predict-
ed PCR products for the construction of pGL3-promoter
MARs vector. F and R indicate forward and reverse primers,

respectively.

(DOC)

Table S3 Primers, annealing temperature, and size of
PCR products for MYCN, EIF5A2 and beta-actin. Primers

MYCN-DNA, EIF5A2-DNA and Actin-DNA were for DNA

amplification detecting; Primers MYCN-RNA, EIF5A2-RNA and

Actin-RNA were for RNA transcription detecting. F and R

indicate forward and reverse primers, respectively.

(DOC)
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