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Abstract

In a previous study we demonstrated that intranasal (i.n.) vaccination promotes a Th17 biased immune response. Here, we
show that co-administration of a pegylated derivative of a-galactosylceramide (aGCPEG) with an antigen, even in the
presence of Th17-polarizing compounds, results in a strong blocking of Th17 differentiation. Additional studies
demonstrated that this phenomenon is specifically dependent on soluble factors, like IL-4 and IFNc, which are produced
by NKT cells. Even NK1.1 negative NKT cells, which by themselves produce IL-17A, are able to block Th17 differentiation. It
follows that the use of aGCPEG as adjuvant would enable to tailor Th17 responses, according to the specific clinical needs.
This knowledge expands our understanding of the role played by NKT cells in overall control of the cytokine
microenvironment, as well as in the overall shaping of adaptive immune responses.
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Introduction

Natural Killer T (NKT) cells are a unique cell population,

which shares the features of cells from the adaptive and innate

immune systems [1,2]. Like T cells, they express on their surface a

T cell receptor (TCR). However, the restriction of antigenic

specificity by this TCR makes them more similar to cells belonging

to the innate immune system. The most studied NKT cell

subpopulation in mice, invariant NKT (iNKT) cells, express an

invariant TCR encoded by Va14 rearranged to Ja18, paired with

b chains with limited heterogeneity [1,2]. These cells recognize

exogenous and endogenous lipids presented on the CD1d

molecule. After recognition of an antigen, NKT cells rapidly

produce different cytokines (e.g. IL-4 and IFNc), thereby

becoming potent regulators of the immune response [1,2]. It was

shown that activation of this cell subset leads to Th2 biased

immune response [3]. This Th2 bias was demonstrated to play a

role in the protection from experimental autoimmune encepha-

lomyelitis (EAE) conferred by NKT cells [4,5]. This autoimmune

disease was considered until recently to be mediated by Th1 cells.

However, the discovery of a new Th lineage, the Th17, brought

new light on our understanding of the underlying mechanisms for

this pathological condition. Currently, it is broadly accepted that

Th17 cells, characterized by expression of IL-17A, are responsible

for the development of EAE and there are numerous studies

showing that blockage of the Th17 immune response leads to

prevention of EAE development [6]. These results provided

indirect evidence suggesting that NKT cells may be responsible for

blockage of Th17 immune responses, as recent studies seems to

further support [7]. NKT cells were also shown to regulate

experimental autoimmune uveitis, through inhibition of Th17

differentiation [8].

However, it remains to be established if these properties of

NKT cells can be exploited for medical applications and to which

extent. On the other hand, the fact that NKT cells contribute to

block Th17 differentiation seems especially intriguing, particularly

taking under account that a NK1.1 negative subpopulation of

NKT cells has been described, which secrete IL-17A upon

stimulation [9,10,11]. One of the territories in which these cells are

well-represented is the respiratory track, where the produced IL-

17A is involved in airway neutrophilia.

One of the antigens recognized by iNKT cells is a-galacto-

sylceramide. This glycolipid exhibits potent adjuvant properties by

inducing full maturation of dendritic cells (DC) in vivo in a NKT

cell dependent way [12]. This molecule can be also exploited as

mucosal adjuvant, leading to potent cellular and humoral immune

responses when administered by intranasal (i.n.) route [13].

Previous work from our group led to the development of a

pegylated derivative of a-galactosylceramide (aGCPEG), which

shows improved physicochemical and biological properties [14].

In a previous study we showed that i.n. immunization leads to the

specific stimulation of Th17 immune responses, and that this is an
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intrinsic feature of this route of immunization independently of the

adjuvant used [15]. Here, we demonstrate that co-administration of

aGCPEG with an antigen results in a blockage of Th17

differentiation after i.n. immunization, and that this phenomenon

is dependent on NKT cells. Interestingly, also NK1.1 negative NKT

cells, which by themselves produce IL-17A, can block Th17

differentiation. This inhibition is mediated by soluble factors,

playing IL-4 and IFNc an important role in this process. Thus, our

results provide the proof of concept for the usefulness of aGCPEG

to specifically prevent or block Th17 cells stimulation when

administered as stand-by-itself vaccine adjuvant or in combination

with other compounds, when dictated by the specific medical needs.

Materials and Methods

Mice
C57BL/6 mice were purchased from Harlan (Borchen,

Germany) and were used at the age 8 to 16 weeks. The OT-II

(expressing the OVA323–339/Ab-specific TCR) and Ja281 knock

out (KO) animals on C57BL/6 background were breed under

specific pathogen free conditions at the Helmholtz Centre for

Infection Research and the Max Planck Institute for Infection

Biology animal facilities, respectively.

Ethics Statement
This manuscript has not include any data generated using

samples derived from humans or non-human primates. All animal

experiments have been performed in accordance with institutional

guidelines and have been approved by the local government

(permission number 33.11.42502-04-017/08 and 33.11.42502-04-

104/07/2007 from the ‘‘Niedersächsisches Landesamt für Ver-

braucherschutz und Lebensmittelsicherheit’’).

Antibodies
The following antibodies have been used: anti-IL-17A-APC,

anti-IL-17A-PE, anti-IL-17F-APC, anti-IL-22-PerCP-eF710, anti-

CD4-PE-Cy7, anti-CD44-APC, anti-NK1.1-APC, anti-IL-4, anti-

IL-10 and anti-IFNc from eBioscience; anti-CD62L-FITC, anti-

CD8-PE, anti-B220-PE, anti-CD11c-PE, anti-CD11b-PE, anti-

DX5-PE from BD Bioscience. The CD1d tetramer was purchased

from Proimmune and loaded with aGCPEG.

Immunization
The animals were immunized by i.n. route on day 0, 14 and 21

with 50 mg of ovalbumin (OVA; Sigma, purity grade VIII) alone

or co-administered with either 5 mg aGCPEG, 10 mg lipopolysac-

charide (LPS), 1 mg S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cystei-

nyl-amido-monomethoxy polyethylene glycol (bisBPPcysPEG),

10 mg cholera toxin B subunit (CTB), 200 mg Curdlan, 20 mg

CpG, 7.5 mg ISCOM, or 2.5 mg cdiGMP. The animals were

sacrificed on day 42. In experiments with Ja281 KO mice, the

animals were immunized on day 0 and 14 and sacrificed on day

34. Control animals received phosphate buffered saline (PBS).

Cell isolation
In all the experiments mice were euthanized by CO2 inhalation.

Lymphoid organs were dissected and single-cell suspensions were

obtained by mincing organs through a 100 mm nylon mesh.

Erythrocytes were lyzed by using the ACK buffer.

Flow cytometry and cell sorting
Cells were stained with the antibodies and data acquisition was

performed using a FACSCanto or FACSLSRII (BD Biosciences).

Data were analyzed using FACSDiva (BD Bioscience) and FlowJo

(Tree Star, Ashland, OR). Cells were sorted on a MOFlo (Dako

Cytomation) or FACSAria (BD Bioscience). In some experiments,

before sorting splenocytes were depleted from B cells using PanB

beads (Dynal), according to the manufacturer’s protocol.

In vitro proliferation
Naı̈ve cells (CD4+, CD44low, CD62Lhigh) from OTII mice were

sorted and stained with carboxyfluorescein diacetate succinimydyl

ester (CFSE). These cells were then co-cultured with bone marrow

derived DC (BMDC) at a 20:1 ratio, in the presence of antigen

(OVA peptide 323–339). NKT cells (NK1.1+, CD82, B2202,

CD11c2, CD11b2, DX52) were sorted from spleen of C57BL/6

mice and added to some cultures at a 1:5 T cells ratio. For

experiments where NK1.1 negative and positive NKT cells were

used, cells were sorted using anti-NK1.1 antibody and CD1d

tetramer. Th17 inducing conditions were obtained by adding to

the culture IL-6 at 20 ng/ml (eBioscience) and TGFb at 1 ng/ml

(R&D Systems). The blocking antibodies against cytokines were

used at a concentration of 20 mg/ml.

Cytokine assessment
Sorted cells were incubated in RPMI medium supplemented

with 10% FCS, 100 units/ml of penicillin-streptomycin, 2 mM L-

glutamine (Gibco), 1 mg/ml ionomycin and 0.01 mg/ml phorbol

myristate acetate (PMA; Sigma) for 24 h. Then, supernatants were

collected and stored at 280uC until use. Cytokines were evaluated

by ELISA (eBioscience), according to manufacturer’s protocol.

ELISpot
The ELISpot assays were performed according to manufactur-

er’s protocol (eBioscience).

Intracellular cytokine staining
Cells were incubated in RPMI medium supplemented with 10%

FCS, 100 units/ml of penicillin-streptomycin, 2 mM L-glutamine

Figure 1. aGCPEG blocks induction of Th17 immune responses
after i.n. immunization. C57BL/6 mice were immunized with OVA co-
administered with different adjuvants. Control animals received PBS or
OVA alone. After 2 boosts on day 14 and 21, splenocytes were isolated
and cells were then cultured in ELISpot plates coated with anti-IL-17A
antibody for 48 h. Subsequently, plates were incubated with detection
antibody, developed and the numbers of spots were counted. From the
presented data the background was subtracted. *, statistically
significant (p,0.05). Results belong to one representative out of 3
independent experiments.
doi:10.1371/journal.pone.0030382.g001

NKT Cells Block Th17 Differentiation
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(Gibco) in the presence of 1 mg/ml ionomycin and 0.01 mg/ml

PMA for 4 h. For the last 2 h of culture Brefeldin A (Sigma) was

added to the final concentration 5 mg/ml. After washing, cells

were stained with antibodies against surface markers and fixed for

20 min in 2% paraformaldehyde. For intracellular cytokine

staining, cells were incubated on ice for 30 min in permeabiliza-

tion buffer (0.5% saponin and 0.5% bovine serum albumin [BSA]

in PBS). After washing, cells were stained with antibodies in

permeabilization buffer for further 30 min. Following 2 additional

washing steps in permeabilization buffer and one in PBS, cells

were analyzed by flow cytometry.

Real-time PCR
Cells obtained from the in vitro proliferation tests (see above)

were used for RNA isolation which was performed with the

RNeasy Kit from Qiagen, according to manufacturer’s protocol.

Figure 2. NKT cells block Th17 differentiation in vitro by soluble factors. Naı̈ve CD4+ cells were sorted from spleen of OTII animals and
stained with CFSE. Cells were then co-cultured with DC under Th17 inducing conditions together with a peptide encompassing the specifically
recognized epitope (OVA323–339) in the presence of either aGCPEG or BPPcysPEG. After 4 days in culture the cells were stained for IL-17A production
and analyzed by FACS. (A) To some cultures NKT cells were added (right panels). (B) To some cultures were added supernatants collected from 24 h
cultures of DC in presence of aGCPEG (left panel) or co-cultures of DC and NKT cells in the presence of aGCPEG (right panel). Results belong to one
representative out of at least 3 independent experiments.
doi:10.1371/journal.pone.0030382.g002

NKT Cells Block Th17 Differentiation
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Then, cDNA was generated from these samples using the

RevertAid First Strand cDNA Synthesis Kit from Fermentas.

For real-time PCR, the SYBR Green PCR Master Mix from

Applied Biosystems was used, employing 500 ng of cDNA, and

6 pmol of forward and reverse primers for the genes encoding

beta-actin and RORgt (ACTB forward 59-CCACCGATCCA-

CACAGAGTA-3 and reverse 59-GGCTCCTAGCACCAT-

GAAGA-39; and RORC forward 59-CACAAATTGAAGT-

GATCCCT-39 and reverse 95-AACTTGACAGCATCTCGG-

39, respectively). The samples were run using an Applied

Biosystems 7500 Real-Time PCR system. The expression of b-

actin was exploited for the quantitation and normalization of the

used cDNA. Results for RORC were normalized with respect to

the ‘‘aGCPEG without NKT cells’’ condition, which was

considered as 100%.

Statistical analysis
The statistical analysis was performed using the unpaired

Student’s t test. Values of p,0.05 were considered significant.

Results

aGCPEG blocks induction of Th17 immune responses
after i.n. immunization

Our previous studies showed that i.n. immunization leads per se

to the stimulation of a Th17 immune response [15]. In this work,

we immunized animals with OVA co-administered with a broader

spectrum of adjuvants to assess if this represents a universal

property associated with i.n. immunization or may be affected

according to the adjuvant used. The obtained results showed that

despite the fact that the number of cells expressing this cytokine

differs in absolute terms from case-to-case depending on the

adjuvant tested (Figure 1), i.n. administration always leads to the

development of cells with a Th17 phenotype. The only exception

from this rule was what observed in mice which received

aGCPEG as adjuvant, since the amount of IL-17A producing

cells was similar to those in non vaccinated control animals.

NKT cells block Th17 differentiation
Considering the mechanisms of action of aGCPEG, we first

assessed if NKT cells can block Th17 differentiation. To this end,

we stimulated in vitro cells from OTII animals with antigen-loaded

DC under Th17 inducing conditions in the presence of either

BPPcysPEG (a TLR2/6 agonist) or aGCPEG (Figure 2A). Under

these conditions, OTII cells differentiate in Th17 cells, indepen-

dently of the stimulator used. Next, we assessed if this basic

response pattern was modified in the presence of NKT cells. The

obtained results demonstrated that co-incubation with NKT cells

results in an almost absolute blockage of IL-17A production when

Figure 3. NKT cells block Th17 differentiation by secretion of
IL-4 and IFNc. (A) Naı̈ve CD4+ cells were sorted from spleens of OTII
animals. Cells were then co-cultured with DC under Th17 inducing
conditions with the specific peptide (OVA323–339) under stimulation
with either aGCPEG or BPPcysPEG in the presence or absence of NKT
cells. After 24 h culture supernatants were collected and the levels of IL-
4, IFNc and IL-2 were measured by ELISA. (B) Naı̈ve CD4+ cells were
sorted from spleen of OTII animals and stained with CFSE. Cells were
then co-cultured with DC under Th17 inducing conditions with the
specific peptide (OVA323–339) and aGCPEG, in the presence or absence
of NKT cells. To some cultures neutralizing antibodies against IL-4 and/
or IFNc were added. After 4 days of culture the cells were stained for IL-
17A production and analyzed by FACS. Results belong to one
representative out of at least 3 independent experiments.
doi:10.1371/journal.pone.0030382.g003

NKT Cells Block Th17 Differentiation
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aGCPEG was used as stimulus. We also observed an inhibition of

IL-17F production by flow cytometry under these experimental

conditions (8–20 fold reduction). In addition, transcriptional

analysis by RT-PCR showed a down regulated expression of

RORC (5–10 fold reduction) in the presence of NKT cells. The

marginal decrease in the percentage of Th17 cells observed in the

cultures with BPPcysPEG and NKT cells can be explained by the

fact that NKT cells can be activated not only by its cognate ligand,

but also by cytokines present in the medium [16].

During the interaction between DC and NKT cells, these cells

influence each other by direct and indirect interactions [2]. It was

also shown that this interplay results in changes in the global

cytokine expression profiles of DC [17]. To evaluate if the

observed blockage of Th17 differentiation is due to either a direct

interaction between cells or soluble factors, we stimulated in vitro

cells derived from OTII mice under the above-mentioned Th17

inducing conditions in presence or absence of pre-conditioned

supernatants collected from either DC cultures or co-cultures of

DC with NKT, which were stimulated with aGCPEG or

BPPcysPEG (Figure 2B). The results from this experiment

showed that the observed blockage is mainly mediated by soluble

factors. The presence of DC was necessary for proper activation of

NKT cells and obtaining the pre-conditioned medium using

aGCPEG as stimulus, since NKT cells are only activated by aGC

when it is presented on CD1d molecules (i.e. using DC or tetramer

loaded with aGC).

NKT cells express different cytokines [2] from which at least

IFNc, IL-4 and IL-2 are known to block Th17 differentiation

[18,19]. To evaluate which of these cytokines might be responsible

for the observed blockage of Th17 differentiation, we first assessed

their levels in supernatants of co-cultures of OTII cells and DC

stimulated with aGCPEG or BPPcysPEG in the presence or

absence of NKT cells (Figure 3A). The obtained results showed

that from the tested candidates IL-2 most probably does not play a

role, since the levels of this cytokine were higher in the co-cultures

where NKT cells were absent. In contrast, we observed increased

levels of both IFNc and IL-4, most probably produced by NKT

cells, as described in the literature [20,21]. Thus, we then tested if

addition of blocking antibodies against these cytokines would result

in a restored IL-17A production (Figure 3B). The obtained

results demonstrated that the presence of blocking antibodies

against IFNc and IL-4 resulted in increased levels of IL-17A

production. This effect was even stronger when these two blocking

antibodies were combined. Since a previous report indicated that

IL-10 might be also involved in inhibition of Th17 development

by NKT cells [7], we also evaluated the levels of this cytokine.

However, we did not detect IL-10 in the supernatant fluids of co-

cultures with OTII cells. Furthermore, addition of blocking

antibodies against IL-10 did not result in a reestablishment of

IL-17A cell differentiation (data not shown).

To further confirm the role of NKT cells in the inhibition of

Th17 differentiation after i.n. immunization with aGCPEG, we

performed immunization studies with wild type (WT) mice and

Ja281 KO animals, which are deficient for iNKT cells (Figure 4).

While Th17 cell differentiation was blocked in WT animals

receiving the antigen together with aGCPEG by i.n. route,

antigen-specific IL-17A producing cells were detected in Ja281

KO animals, which do not have iNKT cells. This confirmed that

NKT cells are responsible for the observed aGCPEG-mediated in

vivo blockage in Th17 polarization.

Next, we assessed if aGCPEG can also modulate the effect of

other adjuvants. To this end, mice were immunized using as

adjuvant LPS or Curdlan alone or co-administrated with

aGCPEG (Figure 5). The number of cells producing IL-17A

was significantly lower in the groups of animals which received

aGCPEG than in those immunized with LPS or Curdlan alone.

However, the induction of Th17 cells was not completely blocked,

as we observed in case of animals immunized with aGCPEG

alone. This clearly demonstrates that aGCPEG can be exploited

to modulate the biological activities of other adjuvants.

Figure 4. NKT cells block Th17 differentiation after i.n.
immunization in vivo. C57BL/6 and Ja281 KO mice were immunized
with OVA co-administered with aGCPEG. Control animals received PBS,
OVA or OVA with the TLR2/6 agonist BPPcysPEG. After 1 boost on day
14, splenocytes were isolated and cells (16106/well) were then cultured
in ELISpot plates coated with anti-IL-17A antibodies for 48 h.
Subsequently, plates were incubated with detection antibodies,
developed and the numbers of spots were counted. From the
presented data the background was subtracted. *, statistically
significant (p,0.05). Results belong to one representative out of 2
independent experiments.
doi:10.1371/journal.pone.0030382.g004

Figure 5. aGCPEG efficiently modulates the effect of other
adjuvants. C57BL/6 mice were immunized with OVA co-administered
with different combinations of LPS, Curdlan and aGCPEG. Control
animals received PBS or OVA alone. After 2 boosts splenocytes were
isolated from animals and cells (56105/well) were then cultured in
ELISpot plates coated with anti-IL-17A antibody for 48 h. Subsequently,
plates were incubated with detection antibody, developed and the
numbers of spots were counted. From the presented data the
background was subtracted. *, statistically significant (p,0.05). Results
belong to one representative out of 3 independent experiments.
doi:10.1371/journal.pone.0030382.g005

NKT Cells Block Th17 Differentiation
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NK1.12 NKT cells block Th-17 differentiation
Several recent reports demonstrated the existence of a special

iNKT cell subpopulation, which is characterized by the lack of the

NK1.1 molecule and production of IL-17A [9,10,11]. This cell

subpopulation is present in the respiratory tract of mice. Thus, we

wanted to assess if despite their contribution to IL-17A production,

these cells can also contribute to the blocking of Th17 cell

differentiation. For this purpose we stimulated OTII cells in Th17

inducing conditions alone or in co-culture with NK1.1 positive

and negative NKT cells (Figure 6). The results from this

experiment showed that NK1.1 negative NKT cells also block

Th17 differentiation. Since NK1.1 positive and negative NKT

cells differ in the production of cytokines other that IL-17A (data

not shown), we tested which cytokines are responsible for the

blockage of Th17 differentiation in the case of NK112 NKT cells.

This was critical, due to the fact that this specific subpopulation

was excluded from our previous in vitro experiments, since the

sorting strategy used for isolation of NKT cells included NK1.1 as

a positive marker for these cells. As expected from their cytokine

production profile, NK1.1 negative cells mediate this blockage via

IL-4, having IFNc a marginal contribution, if any at all.

Discussion

The aim of vaccination is to induce adaptive immunity and

generate memory cells able to combat a specific pathogen, which

might be encountered in the future by the vaccinee. Since an

optimal protective immune response against different pathogens

requires different Th phenotypes, it follows that it could be

beneficial to specifically stimulate appropriate Th cell subsets

Figure 6. NK1.12 NKT cells also block Th17 differentiation. Naı̈ve CD4+ cells were sorted from spleen of OTII animals and stained with CFSE.
Cells were then co-cultured with DC under Th17 inducing conditions with the specific peptide (OVA323–339) and aGCPEG in the absence (left panels)
or in the presence of either NK1.1+ (central panels) or NK1.12 (right panels) NKT cells. Some cultures also received blocking antibodies against IL-4, IL-
10 or IFNc. After 4 days in culture, cells were stained for IL-17A production and analyzed by FACS. Results belong to one representative out of 3
independent experiments.
doi:10.1371/journal.pone.0030382.g006

NKT Cells Block Th17 Differentiation
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following vaccination. In this particular context, the stimulation of

Th17 cells might be beneficial for clearance of different infectious

agents, but IL-17A was also reported to be involved in the

pathogenesis of autoimmune diseases [22,23,24,25]. It follows,

that it would be extremely helpful to have tools enabling to trigger

or block at will the stimulation of antigen-specific Th17 cells.

In our previous studies we showed that i.n. immunization leads

per se to the induction of a Th17 immune response, which can

make in turn this administration route an attractive alternative for

certain applications. In the present work we demonstrated that the

Th17 phenotype generated by i.n. immunization can be easily

manipulated. Our results showed that when an antigen is co-

administrated by i.n. route using aGCPEG as adjuvant, the

development of Th17 cells is completely blocked. The aGCPEG

can be also exploited to modulate the Th17 response pattern

triggered by other adjuvants. The blockage of Th17 differentiation

is mediated by iNKT cells. This is supported by the results of in

vitro experiments showing that differentiation of IL-17A producing

CD4+ cells under Th17 inducing conditions is blocked by NKT

cells stimulated with aGCPEG. This was further confirmed by the

observed inhibition of IL-17F production and the down-regulated

expression of RORC. Preliminary results also suggested that there

is a reduction in the production of IL-22 (data not shown).

These results were corroborated by in vivo studies in which

efficient differentiation of Th17 cells was observed after immuni-

zation using aGCPEG as adjuvant in mice lacking iNKT cells (i.e.

Ja281 KO animals). Additional in vitro studies suggested that this

blockage is mediated by IL-4 and IFNc. Interestingly, despite their

capacity to produce IL-17A, NK1.12 NKT cells also block

differentiation of Th17 cells. However, in the particular case of this

NKT cell subpopulation IL-4 seems to play the major role for

blocking Th17 responses.

By and large, our results and those from other groups [7]

demonstrate the important role played by NKT cells in the

dynamic control of IL-17A expression, especially in those

territories where NK1.1 negative NKT cells are present. It can

be hypothesized that while significantly contributing to the early

production of IL-17A during infection, later these cells can

become instrumental for blocking differentiation of Th17 cells.

This is especially interesting taking under consideration reports in

which a time-dependent role was proposed for IL-17A, implicating

early IL-17A production for subsequent Th1 immunity [26].

In conclusion, our results have demonstrated that aGCPEG can

be considered as the adjuvant of choice for clinical applications in

which it is desired to combine the benefits of i.n. immunization

with the stimulation of Th phenotypes other than Th17. In this

context, aGCPEG usually leads to Th2 dominant immune

response, as demonstrated by previous studies from us [14] and

others [3]. This is independent of either the antigen evaluated or

the haplotype of the tested mouse strain. However, there are other

compounds recognized by TCR of iNKT cells, which due to

differential affinity to invariant TCR lead to Th1 immune

responses [2,27]. The use of these compounds might represent a

valid strategy to modulate Th responses by using a single agonist of

the TCR expressed by iNKT cells. On the other hand, we showed

that co-administration of aGCPEG with other adjuvants also

results in a significantly reduction in the number of IL-17A

producing memory cells. This shows that aGCPEG can be easily

exploited to modulate responses stimulated by other adjuvants,

thereby dramatically expanding its potential applications for fine-

tuning immune responses to vaccines.
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