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Abstract

Emitted biosonar clicks and auditory evoked potential (AEP) responses triggered by the clicks were synchronously recorded
during echolocation in an Atlantic bottlenose dolphin (Tursiops truncatus) trained to wear suction-cup EEG electrodes and to
detect targets by echolocation. Three targets with target strengths of 234, 228, and 222 dB were used at distances of 2 to
6.5 m for each target. The AEP responses were sorted according to the corresponding emitted click source levels in 5-dB bins
and averaged within each bin to extract biosonar click-related AEPs from noise. The AEP amplitudes were measured peak-to-
peak and plotted as a function of click source levels for each target type, distance, and target-present or target-absent
condition. Hearing sensation levels of the biosonar clicks were evaluated by comparing the functions of the biosonar click-
related AEP amplitude-versus-click source level to a function of external (in free field) click-related AEP amplitude-versus-click
sound pressure level. The results indicated that the dolphin’s hearing sensation levels to her own biosonar clicks were equal to
that of external clicks with sound pressure levels 16 to 36 dB lower than the biosonar click source levels, varying with target
type, distance, and condition. These data may be assumed to indicate that the bottlenose dolphin possesses effective
protection mechanisms to isolate the self-produced intense biosonar beam from the animal’s ears during echolocation.
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Introduction

Since echolocation studies on dolphins were initiated in the

early 1950’s [1,2], all of the odontocetes (toothed whales, including

dolphins and porpoises) so far investigated have been demonstrat-

ed to possess sophisticated echolocation systems and produce

highly directional biosonar clicks [3–6] used for navigation,

environmental investigation, and foraging [7–13]. The bottlenose

dolphin (Tursiops truncatus) was known to be able to produce

biosonar clicks with peak-to-peak source levels (i.e., sound pressure

levels at 1 m in front of the sound generation structures) up to

228 dB re: 1 mPa [4]. Presumably, the intense emitted clicks with

peak-to-peak sound pressure levels over 220 dB re: 1 mPa

referenced to a measurement 1 m in front of the animal’s head

might cause forward masking of the comparatively weak echoes

[14] during echolocation. However, the high sound pressure levels

of the emitted clicks in front of the animal’s head do not

necessarily mean that the sound levels perceived by the animal are

similarly intense both because of the high directionality of the

emitted clicks [3–6] and likely neurological suppression of the

hearing of the outgoing signals as discovered in echolocating bats

[15,16]. Despite the fact that the biosonar of odontocetes has been

investigated for over half a century, little is known about how, and

how much, the animals respond to their own emitted clicks during

echolocation, except the knowledge learned from a single false

killer whale Pseudorca crassidens [17].

By recording the brain auditory evoked potentials (AEPs) during

echolocation of a false killer whale and comparing the emitted

click-related AEP amplitudes to the AEP amplitudes evoked by

external ‘‘whale-like’’ clicks in a free acoustic field, Supin and his

colleagues demonstrated that the AEP sensation levels of the

whale’s hearing of its own emitted clicks was approximately 220

to 237 dB relative to the source levels of the biosonar clicks [18].

Both acoustic shadowing mechanisms based on head anatomy and

functional regulation of hearing sensitivity may have been

responsible for the low sensation levels of self-heard emitted clicks

[18]. However, the research was conducted on a single animal of

one species, and it is unknown how widely the data and the

explanation may be expanded to other species.

In the present study, we investigated the AEP sensation levels of

self-heard emitted clicks during echolocation in an Atlantic

bottlenose dolphin using the same AEP protocol and in the same

experimental facility as those in the study by Supin et al. [18]. The

difference of the dolphin biosonar behavior between target-present

and target-absent conditions was also examined and discussed.

Results

Biosonar clicks
Sound pressure levels of the dolphin’s biosonar clicks measured

at approximately 1.45 m from the animal’s nasal sacs were within

a range of 160 to 215 dB re 1 mPa peak-to-peak. Assuming that
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the source levels (SLs), i.e. the sound pressure levels at 1 m from

the animal’s nasal sacs, are approximately (with 0.5-dB tolerance)

3 dB higher, the SL range was estimated to be 164 to 217 dB re

1 mPa peak-to-peak (Table 1 and Fig. 1). The distributions of the

click SLs are presented in Fig. 1 for different target strengths,

target distances, and both target-present (Fig. 1a) and target-absent

(Fig. 1b) conditions. Mean values (6 standard deviations, SD) of

the click SLs and number of clicks analyzed are indicated in each

panel. The histogram apices of the emitted click SLs gradually

improved as the target distances changed from 2 to 6.5 m and

target strengths changed from 222 to 234 dB in both the target-

present (Fig. 1a) and target-absent (Fig. 1b) conditions, i.e., the

animal was inclined to produce louder biosonar clicks to detect

further or smaller targets. A comparison of target conditions

showed that for all the examined target types and distances, the

mean values of the biosonar click SLs in the target-absent

conditions were significantly higher than those in the target-

present conditions (Fig. 1; T-test for independent samples, p,0.05,

Table 1), indicating that the animal tended to produce louder

clicks in the target-absent conditions.

Examples of averaged click waveforms and spectra are

presented in Fig. 2 after averaging the clicks in each 5-dB bin of

the click SLs, from 17362.5 to 20862.5 dB. Fig. 2 shows that the

peak frequencies of the averaged clicks ranged from around

25 kHz at the lowest click SLs to over 50 kHz at the highest SLs.

Biosonar click-related AEP
The biosonar click-related AEP waveforms corresponding to

certain level bins of the emitted biosonar clicks were extracted

after the sorting, averaging, and filtering procedures described in

the materials and methods, for each examined target and at each

tested distance. Examples of the averaged and filtered AEP

recordings are shown in Fig. 3 for both target-present (Fig. 3a) and

target-absent (Fig. 3b) conditions, which were extracted from the

echolocation tasks during the detection of the 222 dB target at

3.5-m distance. For each averaged AEP record, the corresponding

biosonar-click source level (with a tolerance of 62.5 dB) was

assigned at the left side, and the number of AEP records used for

averaging was labeled at the end. As shown in Fig. 3, nearly all of

the records had an emitted click-related AEP waveform well

exceeding the noise level, even in the case where the number of

averaged AEP records was less than 200. The click-related AEP

waveform was characterized by a couple of alternative positive-

negative short waves (each shorter than 1 ms) located between 1.5

and 3.5 ms after the triggering. In both the target-present (Fig. 3a)

and target-absent (Fig. 3b) conditions, the amplitudes of the click-

related AEP waveforms appeared to increase along with the

biosonar-click source levels. The relatively smaller AEP response

waveforms located approximately between 7 and 9 ms after the

triggering for the recordings in the target-present conditions were

the animal’s AEP responses to the target echoes at 3.5-m target

distance (Fig. 3a).

AEPs evoked by external ‘‘dolphin-like’’ clicks
AEPs evoked by external ‘‘dolphin-like’’ clicks with sound

pressure levels (SPL, dB re 1 mPa peak-to-peak) between 116 and

155 dB (approximately 5-dB increments) directed toward the

assumed ‘‘acoustic window’’ of the dolphin, 2.15 m from the

sound projector, are presented in Fig. 4. AEPs evoked by external

clicks with SPLs higher than 155 dB were not measured in order

to avoid potential behavioral or physiological effects of loud

external clicks. Fig. 4 shows that all of the records had a

discernable AEP waveform located at approximately 3.5 to 6 ms

after triggering. The AEP waveforms characterized by a couple of

Table 1. Basic statistics of the recorded click source levels (SLs) and comparison between target-present and target-absent
conditions (T-test for independent samples, i.e., variables were treated as independent samples).

Target
Target
distance (m)

Target present
condition Click SLs (dB re: 1 mPa peak-to-peak) P-value (T-test)

Range Mean S.D. Number of clicks

222 dB Target 2.0 present 170.8–213.7 189.0 8.9 4771 p,0.0005

absent 169.8–211.6 191.3 9.0 4920

3.5 present 169.9–214.3 190.3 9.1 5445 p,0.0005

absent 170.9–217.9 194.5 9.8 6311

6.5 present 171.8–212.7 194.1 9.7 4886 p,0.0005

absent 171.7–214.8 198.4 9.4 5824

228 dB Target 2.0 present 170.7–214.5 191.3 9.4 4966 p,0.0005

absent 171.0–214.9 195.0 9.0 5203

3.5 present 169.1–215.3 190.2 10.4 5023 p,0.0005

absent 169.9–215.1 195.3 10.3 6694

6.5 present 170.6–214.9 197.0 10.2 4775 p,0.0005

absent 170.5–215.4 198.5 10.1 5392

234 dB Target 2.0 present 164.0–212.0 190.3 10.0 4990 p,0.0005

absent 165.4–215.7 192.4 10.3 5777

3.5 present 170.8–215.3 193.9 10.0 4811 p,0.0005

absent 170.8–216.8 197.4 10.4 5216

6.5 present 171.3–216.7 199.2 10.2 4760 p,0.0005

absent 171.0–215.5 200.0 9.6 5397

doi:10.1371/journal.pone.0029793.t001
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alternative positive-negative short waves were similar to the

biosonar click-related AEP waveforms in Fig. 3. The AEP

amplitudes increased with the sound pressure levels of the external

clicks. The incline was most steep within the range of 116 to

140 dB (Figs. 5, 6, 7).

AEP dependence on click level and comparison between
external click-related and biosonar click-related AEP
amplitudes

To quantitatively investigate the AEP dependence on click level

and compare AEP amplitudes evoked by the emitted biosonar

clicks with those evoked by the external clicks in the free field,

amplitudes of the AEP waveforms with over 6 dB AEP-to-noise

ratio were measured, corrected, and plotted as a function of click

levels: SPLs for the external clicks and SLs for the emitted

biosonar clicks (all as dB re 1 mPa peak-to-peak). The data are

presented in Figs. 5, 6, 7 for different targets and target distances

at both the target-present and target-absent conditions. Each

function is shown along with a least-squares linear regression line,

the corresponding equation and the correlation coefficient.

The dependence of the AEP amplitudes on click levels was

significant (correlation test, p,0.05) for both external click-related

AEPs and biosonar click-related AEPs (Figs. 5, 6, 7). The trends of

AEP amplitude increase along with click levels in Figs. 5, 6, 7 were

similar between external click-related AEPs and biosonar click-

related AEPs. The external click-related AEP amplitude increased

0.016 mV for each 1-dB increment of the click sound pressure

levels; the biosonar click-related AEP amplitude increased 0.014 to

0.029 mV for each 1-dB increment of the click source levels,

depending on target type, distance and condition. However, the

biosonar click-related AEP amplitude-versus-click SL functions

were approximately shifted upward along the click level scale

relative to the function of external click-related AEP amplitude-

versus-click SPL.

In order to quantitatively characterize the approximate shifts of

the amplitude-versus-level functions, we extrapolated the regres-

sion line for the external click-related AEP amplitude-versus-click

SPL function up to around 1.6 mV for the AEP amplitude (Figs. 5,

6, 7). Subsequently, differences of click levels which evoked equal

AEP amplitudes between the external click and the biosonar click

were measured point-by-point along the regression lines at each

level bin (62.5 dB) of the biosonar clicks from 17362.5 dB to

21362.5 dB. The basic statistics of the measurement are

presented in Table 2. The differences of click levels varied from

15.7 dB (234 dB target at 3.5 m under the target-absent

condition) to 35.9 dB (234-dB target at 6.5 m under the target-

present condition) on average.

In some, but not all cases, there is also an obvious shift of AEP

amplitude-versus-click SL functions between target-present and

target-absent conditions (Fig. 5b and c, 6b, and 7b). The basic

statistics of the measurement are presented in Table 2. In the

majority of the cases, the shifts of the regression lines based on a

point-by-point measurement between the target-present and

target-absent conditions were significant (paired T-test, p,0.05).

Apart from extrapolation of the regression line, we also tried to

obtain a direct estimate of the shift between the external click-

related and biosonar click-related AEP amplitude-versus-level

functions. It was possible within a range of biosonar click SLs of

178–183 dB and external click SPLs of 145–155 dB. In these

ranges, both biosonar click-related AEPs and external click-related

AEPs had similar amplitudes of approximately 0.6–0.7 mV. The

shifts between the functions were estimated to be approximately 25

to 35 dB on average, and they varied with target type, distance,

and condition (Figs. 5, 6, 7).

Discussion

Comparison of biosonar and external clicks
A comparison of the external ‘‘dolphin-like’’ click (see Fig. 8)

with the self-generated biosonar clicks (see Fig. 2) shows that both

the waveform and spectrum were similar, except that the peak

frequencies of the biosonar clicks of the levels from 170 to 180 dB

were lower and those of 205 dB were higher than those of the

external clicks.

Hearing sensation levels of the emitted biosonar clicks
Since both the waveforms and spectra of the external clicks were

similar to those of the biosonar clicks, and both the external clicks

and biosonar clicks evoked AEPs with similar waveforms (Figs. 3

and 4), equal AEP amplitudes may be considered as an indication

of equal hearing sensation levels of the two sound stimuli.

Therefore, it was possible to evaluate hearing sensation levels of

the biosonar clicks based on the AEP amplitudes evoked by the

external clicks of known SPLs [18]. The relative shifts of the

amplitude-versus-SL and amplitude-versus-SPL regression lines

(see Figures 5, 6, 7) show that the hearing sensation level of a

biosonar click with a certain SL is equal to that of an external click

with SPL of 15.7 to 35.9 dB below the biosonar click SL,

depending on target type, distance, and condition.

The external click-related AEPs were recorded at click SPLs up

to 155 dB, at which the provoked AEP amplitude is around

0.7 mV. It was noted that there is a plateau in the external click-

related AEP regression between the SPLs of 140 and 150 dB

(Figs. 5, 6, 7). The reason is unclear in the present study.

Nevertheless, based on the fact that the AEP amplitudes evoked by

the biosonar clicks of similar waveform and spectrum increasing

linearly up to approximately 1.6 mV, we assumed that the

regression line of the external click-related AEP amplitude-

versus-click level function could be extrapolated up to AEP

amplitude of 1.6 mV. Besides, a direct comparison of biosonar

click-related AEPs and external click-related AEPs was also done

within a narrow range where amplitudes of the biosonar click-

related AEPs and external click-related AEPs were overlapped

(0.6–0.7 mV). Within the narrow range, the hearing sensation level

of a biosonar click of a certain SL is equal to that of an external

click with a SPL of approximately 25 to 35 dB below the sonar

click SL. This direct comparison resulted in an evaluation

somewhat different from, however overlapped by that obtained

with the use of extrapolated regression lines. The difference

between the two manners of evaluation may be a result of the very

limited number of points available for direct comparison and

slightly different slopes between the external click-related AEP

amplitude-versus-click SPL function and biosonar click-related

AEP amplitude-versus-click SL functions (Figs. 5, 6, 7). Neverthe-

less, the general result is the same between the two evaluation

methods, i.e., the sensation level of a biosonar click is equal to that

of an external click with SPL of approximately 16 to 36 dB on

average below the biosonar click SL.

Figure 1. Distributions of emitted click SLs for different target types, distances, and target-present (a) and target-absent (b)
conditions. M is the mean value 6 s.d. of the click levels, N is number of collected clicks.
doi:10.1371/journal.pone.0029793.g001
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Rather similar ratios (220 to 237 dB) between the hearing

sensation level and SLs of biosonar clicks were found in a false

killer whale [18]. These data may be assumed to indicate that both

the bottlenose dolphin and false killer whale possess an effective

protection system to isolate the self-produced biosonar beam from

the animal’s ears.

Biosonar click sensation level dependence on
echolocation conditions

The hearing sensation levels of the biosonar clicks varied

depending on the type of target, distance, and condition (Figs. 5,

6, 7; Table 2). More specially, for all the examined target types at

target distances of 3.5 and 6.5 m, the sensation levels were

significantly different between the target-present and target-

absent conditions (Table 2). At the same click SL, the sensation

levels of the biosonar clicks during the target-absent condition

was 5.4–13.3 dB higher than during the target-present condition.

Although this difference was not statistically significant at a few

combinations of target strength and distance (Table 2), the

general trend of higher response at target-absent rather than at

target-present conditions was obvious. This result would be

expected if the dolphin were capable of adjusting her hearing

response or sound-damping mechanisms according to the

echolocation conditions as has been previously shown in a false

killer whale [18]. In addition, the mean values of the biosonar

click levels produced by the dolphin were consistently signifi-

cantly higher at the target-absent conditions than those at the

target-present conditions for all the examined target strengths

and target distances (Table 1). Presumably, louder clicks required

more energy. It may suggest that the dolphin also adjusted its

biosonar production with more efforts to produce louder clicks

during the target-absent condition. The behavioral and physio-

logical significance of the adjustments of both hearing response

and click production could be explained as that in the absence

of a stronger echo, the increase of both hearing response and

click intensity may be a dual-component way to increase the

opportunity to acquire a weaker echo.

It was also noticed that in most cases the slope in the biosonar

click-related AEP amplitude-versus-click SL function was steeper

than that in the external click-related AEP amplitude-versus-click

SPL function. This suggested that the louder biosonar clicks trend

to have higher relative hearing sensation levels. Perhaps even

though the biosonar clicks were generally similar to the external

clicks, the waveforms and spectra of the biosonar clicks were

Figure 2. Averaged waveforms and spectra of the transmitting biosonar clicks. (a) Waveforms of the clicks were sorted by peak-to-peak
amplitude in 5-dB bins and averaged within each bin. Peak-to-peak click source levels are indicated near the waveforms. (b) Power spectra of the
corresponding waveforms. Peak frequencies (fp) are shown with the spectra.
doi:10.1371/journal.pone.0029793.g002

Figure 3. Examples of AEP responses to emitted biosonar
clicks. The AEPs were presented after averaging AEP records within
each 5-dB bin of the corresponding click SLs in target-present (a) and
target-absent (b) conditions. The 5-dB bins (62.5 dB) of click SLs are
indicated near the records in dB re 1 mPa. N—number of averaged
records. Note that nearly all of the averaged AEP responses had an AEP
waveform locating between 1.5 and 3.5 ms in the records well
exceeding noise level, consisting of a couple of alternative positive-
negative short waves (each shorter than 1 ms). The zero point of the
time scale corresponds to the time point when the hydrophone (h in
Fig. 9) picked up the clicks and triggered the AEP recordings.
doi:10.1371/journal.pone.0029793.g003

Figure 4. AEP records to external ‘‘dolphin-like’’ clicks. The click
peak-to-peak SPLs are indicated near the records in dB re 1 mPa. Note
that the AEP waveforms are similar to the AEP waveforms in Fig. 3.
doi:10.1371/journal.pone.0029793.g004
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slightly changing with click SLs, especially the peak frequencies

shifting up with increasing amplitudes (Fig. 2), while the

waveforms and spectra of the external clicks were constant. As it

was known, the hearing sensitivity of the dolphin will change with

frequencies of sound stimuli, the relative hearing sensation levels of

the biosonar clicks with different click SLs and thus different peak

frequencies may change. Perhaps, louder biosonar clicks with

higher peak frequencies have higher relative hearing sensation

levels, which resulted in the steeper slopes in the biosonar click-

related AEP regression lines comparing with the external click-

related AEP regression line. Alternatively, the dolphin might be

actively improving her hearing sensation levels towards louder

clicks.

Materials and Methods

Ethical Statement
This research was conducted under University of Hawaii

Institutional Animal Care and Utilization Committee with

approval protocol No. 93-005-17 to PEN and Marine Mammal

Permit No. 978-1567 from the NMFS NOAA Office of Protected

Resources to PEN. This is contribution number 1481 of the

Hawaii Institute of Marine Biology.

Subject
The experimental subject was an adult captive born female

Atlantic bottlenose dolphin (Tursiops truncatus) named BJ, who was

Figure 5. AEP amplitude-versus-click level functions. Comparison between functions of the biosonar click-related AEP amplitude-versus-click
SL and the external click-related AEP amplitude-versus-click SPL for the target with 222-dB target strength at distances of 2 (a), 3.5 (b), and 6.5 m (c),
respectively, under both target-present and target-absent conditions. For each function, a least-square linear regression line, the corresponding
equation and the correlation coefficient are indicated.
doi:10.1371/journal.pone.0029793.g005
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24 years old at the time of the experiment. She was housed in a

wire-net enclosure in the facilities of the Hawaii Institute of

Marine Biology, Marine Mammal Research Program, Kaneohe

Bay, Hawaii. The animal was trained to wear soft latex suction

cups containing human EEG electrodes to pick up the evoked

potentials. The animal performed echolocation tasks in which she

swam into a hoop, ensonified and detected targets by echolocation,

and reported the target presence or absence using a go/no-go

reporting paradigm [19]. Three targets were used in this study.

They were hollow aluminum cylinders with an outer diameter of

38 mm, an inner diameter of 25.4 mm, and lengths of 180, 90,

and 46 mm. Their target strengths were 222, 228, and 234 dB,

respectively, as measured by a short pulse produced by excitation

of a 60-mm spherical piezoceramic transducer with 10-ms

rectangular pulses. Previous investigations on peak frequencies of

the biosonar produced by this animal indicated that the maxima of

the distributions were between 40 and 50 kHz [20]. The AEP

audiogram for this dolphin collected in 2001 and 2005 by using

sinusoidally amplitude modulated (SAM) tone stimuli showed that

her hearing thresholds abnormally increased at sound frequencies

above 45 kHz; however, below this limit the thresholds were

normal, and the animal was able to echolocate with performance

levels over 95% [20].

Experimental facilities and setup
AEP recording during echolocation. The experimental

facilities and setup were fully described in Li et al. [21] and

described here as shown in Figs. 9 and 10. Briefly, the

experimental enclosure consisted of two parts: (1) the

experimental pen, and (2) the target presentation section. The

Figure 6. Same as in Fig. 5 but for the target with 228-dB target strength.
doi:10.1371/journal.pone.0029793.g006
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experimental pen was an 8610 m2 floating frame that bore a

wire-net enclosure and was used to house the experimental

subject during data collection. The target section was 668 m2

floating frame which served only to mount targets and did not

bear wire net in order to avoid the production of confounding

extra echoes. In the net divider separating the experimental pen

and target section, there was a dolphin-sized circular opening

bounded by a hoop (1 in Fig. 9). In front of the hoop, a RESON

TC4013 hydrophone (Reson, Slangerup, Denmark; 2 in Fig. 9)

was mounted on a beam at a distance of 1.6 m to the hoop

(Fig. 10, approximately 1.45 m from the animal’s nasal sacs) to

record sounds emitted by the animal during her positioning in the

hoop station. A target (3 in Fig. 9) was hung from a thin

monofilament thread in the target section at distances of 2.15,

3.65 or 6.65 m to the hoop (Fig. 10, approximately 2, 3.5, or

6.5 m to the animal’s nasal sacs). The target could be pulled up

out of the water and lowered down into the water via pulleys

from the instrument shack (8 in Fig. 9). Between the recording

hydrophone and hoop station, there was a movable acoustic

screen (4 in Fig. 9, AS in Fig. 10) and a fixed visual screen (5 in

Fig. 9, VS in Fig. 10). During a trial, the acoustic screen was

lowered which opened the space in front of the animal for

echolocation. Near the hoop station, a response ball (6 in Fig. 9)

was mounted above the water surface serving as a target-present

response indicator. The animal’s position in the station hoop was

monitored through an underwater video camera (7 in Fig. 9) by

both the experimenter in the instrument shack (8 in Fig. 9) and

the trainer (position 11 in Fig. 9). When not in the hoop, the

animal stationed at a foam stationing pad (10 in Fig. 9) waiting

for the instructions from the trainer. The experimenter and

trainer kept communication during experimental session through

a window (9 in Fig. 9) of the instrument shack.

Figure 7. Same as in Fig. 5 but for the target with 234-dB target strength.
doi:10.1371/journal.pone.0029793.g007
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Recordings of AEP elicited by external ‘‘dolphin-like’’

clicks. The experimental facilities and setup were the same as in

the echolocation sessions (Fig. 9), except that the target was

replaced by an ITC-1032 spherical transducer (International

Transducer Corporation, Santa Barbara, CA, USA) (3 in Fig. 9) at

a distance of 2.15 m to the hoop for projecting the external clicks,

and the hydrophone (2 in Fig. 9) and response ball (6 in Fig. 9)

were removed.

Experimental procedure, equipments and data collection
Data recording during echolocation. The experimental

procedures were the same as those used by Li et al. [21] and briefly

described here. Experimental sessions were typically conducted in

the morning when fish was first offered. One session was

conducted per day. Each session consisted of 50 trials, 25 target-

present and 25 target-absent, randomly alternated using a

modified Gellermann series [22].

Each session began with the trainer attaching suction-cup

electrodes to the dolphin for AEP recording. Each trial was

initiated with a hand signal to cue the animal to swim from the

stationing pad to the hoop along trace ‘a’ in Fig. 9. The animal

typically emitted 20 to 40 clicks during each trial. The biosonar

clicks and the click-triggered AEPs were recorded by the click- and

AEP-acquisition system (see below) operated by the experimenter

in the instrument shack. The go response was required when the

target was present and the no-go response was required when the

target was absent. For the go response, the animal was required to

back out of the hoop and follow trace ‘b’ in Fig. 9 to touch the

response ball with her rostrum. The animal received a bridge

whistle if her response was correct. The subject would then follow

trace ‘c’ in Fig. 9 back to the stationing pad, receive the fish

reward, and wait for the hand signal to begin the next trial. For the

no-go response, instead of touching the response ball the animal

was required to stay in the hoop for 6 s. If the response was

correct, she received a bridge whistle and was required, following

trace ‘c’ in Fig. 9, to return back to the stationing pad, receive her

fish reward, and wait for the hand signal to begin the next trial. If

the dolphin was incorrect in either a go or no-go trial, she was not

given a fish reward and was required to return to the stationing

pad waiting for the next trial.

The data recording equipment and flow chart are presented in

Fig. 10. AEP responses were picked up by EEG electrodes which

were gold-plated 10-mm disks (Grass Technologies, West War-

wick, RI, USA) mounted within 60-mm silicon suction cups. The

recording electrode was attached with conductive gel on the dorsal

head surface, located midline, approximately 5–7 cm behind the

blowhole. The reference electrode was also attached along with

conductive gel on the animal’s back near the dorsal fin. AEPs were

led by shielded cables to an EEG amplifier (GRASS CP511 AC

Amplifier, Grass Technologies) and amplified 20,000 times within

a frequency band of 300 to 3,000 Hz. The amplified signal was

monitored by an oscilloscope (Fluke 196C Scopemeter, Fluke

Corporation, Everett, WA, USA) and input to a 16-bit analog-to-

digital converter of a data acquisition card (NI USB-6251,

National Instruments, Austin, TX, USA) connected to a standard

laptop computer. Signals from the click-recording RESON

Table 2. Basic statistics of the regression line shift (dB re: 1 mPa) measured by point-by-point click level differences along the
regression lines between emitted biosonar click-related AEP amplitude-versus-click SL functions and external click-related AEP
amplitude-versus-click SPL function, and comparison between target-present and target-absent conditions (Paired T-test, i.e., T-
test for dependent samples).

Target
Target
distance (m)

Target present
condition

Regression line shift between biosonar click-related AEP
amplitude-versus-click SL function and external click-related
AEP amplitude-versus-click SPL function (dB)

Target present/absent
difference: P-value
(paired T-test)

Min Max Mean S.D. Number of points

222 dB Target 2.0 present 10.1 41.6 25.8 10.8 9 P,0.0005***

absent 13.9 42.7 28.3 9.8 9

3.5 present 29.8 33.3 31.6 1.2 9 p,0.0005***

absent 15.7 28.2 22.0 4.3 9

6.5 present 34.0 35.0 34.5 0.3 9 p,0.0005***

absent 23.1 28.1 25.6 1.7 9

228 dB Target 2.0 present 5.7 35.2 20.4 10.1 9 p = 0.2798

absent 21.9 25.7 23.8 1.3 9

3.5 present 28.5 36.0 32.3 2.6 9 p,0.0005***

absent 13.7 28.2 21.0 5.0 9

6.5 present 30.8 38.5 34.6 2.7 9 p,0.05*

absent 26.7 31.7 29.2 1.7 9

234 dB Target 2.0 present 17.3 46.0 31.7 9.8 9 p = 0.4033

absent 24.6 35.1 29.8 3.6 9

3.5 present 18.8 39.1 29.0 6.9 9 p,0.0005***

absent 4.4 27.1 15.7 7.8 9

6.5 present 26.9 44.9 35.9 6.2 9 p,0.0005***

absent 22.5 38.3 30.4 5.4 9

*, and ***, difference is significant at p-level,0.05.
doi:10.1371/journal.pone.0029793.t002
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TC4013 hydrophone were input to a signal amplifier (Krohn-Hite

Model 3362 filter, Krohn-Hite Corporation, Brockton, MA, USA)

and amplified by 20 dB within a frequency range of 1 to 200 kHz,

monitored by the same oscilloscope, and led to another analog-to-

digital converter of the same data acquisition card. Sampling rates

were 25 kHz for the AEP-recording and 500 kHz for the click-

recording.

The data collection process was controlled by the experimenter

with a custom-made program designed with LabVIEW (National

Instruments) running on the laptop computer. The program

continuously monitored the click-recording input, and each time

when the signal exceeded a predetermined triggering level (157 dB

p-p re: 1 mPa), a 15-ms window of the EEG-recording channel and

0.1-ms window of the click-recording channel were recorded and

stored in the memory of the laptop computer without averaging

for off-line analysis. The click-recording window included a 0.02-

ms pretrigger time.

AEP recording to external ‘‘dolphin-like’’ clicks. For this

phase of the experiment, the animal was sent to the same hoop

station by the trainer (position 11 in Fig. 9) after having the

suction-cup electrodes attached for AEP recording. As soon as she

took the proper position, external clicks were played through the

transducer, and AEPs to these click stimuli were collected. After

that, the animal was called back to the trainer for a fish reward.

The external clicks were produced with activation of the

transducer by short rectangular pulses. The pulses were digitally

generated by the same NI card and played through a 16-bit

digital-to-analog converter, amplified by a power amplifier

(Hewlett-Packard Agilent 465A, Palo Alto, CA, USA), and

projected by the ITC-1032 spherical transducer. The resulting

click waveform and spectrum are presented in Figure 8. Pilot

measurements showed they were similar to typical biosonar clicks

of the experimental subject in both waveform and spectrum [21].

Figure 9. Experimental facilities and setup (top view). 1, Hoop
station; 2, Recording hydrophone; 3, Target during echolocation
sessions or transducer during AEP recording to external ‘‘dolphin-like’’
clicks; 4, Acoustic screen; 5, Visual screen; 6, Response ball; 7, Video
camera; 8, Instrument shack; 9, Window; 10, Stationing pad; 11, Trainer
position; a, the animal swam to the hoop station from the stationing
pad; b, the animal got out of the hoop station to touch the response
ball to report that the target was present; c, the animal swam back to
the stationing pad.
doi:10.1371/journal.pone.0029793.g009

Figure 8. Waveform (a) and spectrum (b) of the external
‘‘dolphin-like’’ clicks.
doi:10.1371/journal.pone.0029793.g008
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The equipment for AEP collection included the same

electrodes, amplifier, and data acquisition card as for data

recording during echolocation. The amplifier gain, passband,

and recording window for AEP recording were also same: 20,000

times, 300–3,000 Hz, and 15 ms, respectively. Unlike the AEP

collection during echolocation, the card was programmed for on-

line averaging to extract AEP from background noise. The

averaging was triggered by the external clicks presented at a rate of

20/s. AEP was collected by averaging 1000 individual records.

The sound pressure levels (dB re 1 mPa peak-to-peak) of the

external clicks were calibrated by using the same hydrophone

(RESON TC4013) that was used for biosonar click recording

during the echolocation sessions. The hydrophone was positioned

at the center of the hoop station while the animal was not there,

which is 2.15 m to the sound projector (transducer, Fig. 10). Thus,

the position of the hydrophone was considered to be around the

assumed ‘‘acoustic window’’ at the lower jaw of the subject [23].

Data analysis
The AEP recordings triggered by the emitted biosonar clicks

were sorted according to levels of the triggering click in 5-dB bins,

from 16062.5 dB to 21562.5 dB re 1 mPa peak-to-peak. To

extract low-amplitude AEPs from the background noise, an off-

line averaging procedure was used [24]. In each bin, all the AEP

records were averaged, thus each resulting AEP waveform

corresponded to a certain biosonar-click level with a tolerance of

62.5 dB [18]. Only the bins with AEP-to-noise ratio over 2 (i.e.,

6 dB) were included for final analysis; these were bins from

17062.5 dB to 21062.5 dB re 1 mPa peak-to-peak. The starting

part of the obtained averaged AEP records appeared to be

contaminated by some artifacts; therefore, the first 15 sampling

points of each AEP record (0.6 ms on the time scale) were ignored.

A high-pass zero-phase shift digital filtering with a cutoff frequency

of 800 Hz was used for the rest of the record (Li et al., 2011). This

process slightly changed the AEP waveform and reduced the low-

frequency AEP components but was considered as acceptable for

comparison of responses analyzed in the same way [21,24]. The

peak-to-peak amplitudes of the averaged and filtered AEPs were

then measured. Even after the filtering, the potential addition of

background noise to the response might increase the measured

amplitude within the AEP window, thus resulting in overestimate

of AEP amplitude. To mitigate the effect of the potential addition

of background noise, the measured peak-to-peak AEP amplitude

was corrected by subtracting the noise power from the response

power using the formula:

Acorr~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

m{(2
ffiffiffi
2
p

Nrms)
2

q
,

where Am is the measured peak-to-peak amplitude in the AEP

response window, Nrms is noise RMS within a response-free

window in the same averaged and filtered record, Acorr is the

corrected peak-to-peak amplitude, and the factor of 2!2 relates

peak-to-peak to RMS values [25].

The on-line averaged AEPs to external clicks were filtered in the

same way as AEPs during echolocation. The corresponding peak-

to-peak AEP amplitudes were measured and then corrected for

background noise in the same manner as biosonar click-related

AEPs.
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