
Color-to-Grayscale: Does the Method Matter in Image
Recognition?
Christopher Kanan*, Garrison W. Cottrell

Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America

Abstract

In image recognition it is often assumed the method used to convert color images to grayscale has little impact on
recognition performance. We compare thirteen different grayscale algorithms with four types of image descriptors and
demonstrate that this assumption is wrong: not all color-to-grayscale algorithms work equally well, even when using
descriptors that are robust to changes in illumination. These methods are tested using a modern descriptor-based image
recognition framework, on face, object, and texture datasets, with relatively few training instances. We identify a simple
method that generally works best for face and object recognition, and two that work well for recognizing textures.

Citation: Kanan C, Cottrell GW (2012) Color-to-Grayscale: Does the Method Matter in Image Recognition? PLoS ONE 7(1): e29740. doi:10.1371/
journal.pone.0029740

Editor: Eshel Ben-Jacob, Tel Aviv University, Israel

Received July 13, 2011; Accepted December 4, 2011; Published January 10, 2012

Copyright: � 2012 Kanan, Cottrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the James S. McDonnell Foundation (Perceptual Expertise Network, I. Gauthier, PI), and the National Science Foundation
(NSF) (grant #SBE-0542013 to the Temporal Dynamics of Learning Center, G.W. Cottrell, PI). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ckanan@ucsd.edu

Introduction

Modern descriptor-based image recognition systems often

operate on grayscale images, with little being said of the

mechanism used to convert from color-to-grayscale. This is

because most researchers assume that the color-to-grayscale

method is of little consequence when using robust descriptors.

However, since many methods for converting to grayscale have

been employed in computer vision, we believe it is prudent to

assess whether this assumption is warranted. The most common

techniques are based on weighted means of the red, green, and

blue image channels (e.g., Intensity and Luminance), but some

methods adopt alternative strategies to generate a more percep-

tually accurate representation (e.g., Luma and Lightness [1]) or to

preserve subjectively appealing color contrast information in

grayscale images (e.g., Decolorize [2]). A priori, none of these

criteria suggest superior recognition performance.

The main reason why grayscale representations are often used

for extracting descriptors instead of operating on color images

directly is that grayscale simplifies the algorithm and reduces

computational requirements. Indeed, color may be of limited

benefit in many applications and introducing unnecessary

information could increase the amount of training data required

to achieve good performance.

In this paper we compare thirteen different methods for

converting from color-to-grayscale. While we do not evaluate

every method that has been developed, we evaluate all of the

widely used methods, as well as some less well known techniques

(e.g., Decolorize). All of the methods are computationally inexpen-

sive, i.e., they all have linear time complexity in the number of

pixels. This comparison is performed using the Naive Bayes

Nearest Neighbor (NBNN) [3] image recognition framework and

four different types of image descriptors. Our objective is to

determine if the grayscale representation used significantly

influences performance and if so, to identify which method is

preferred regardless of the dataset or descriptor type.

Our experiments are conducted with relatively few instances,

since classifier performance is much more sensitive to the quality

of the descriptors in this setting [4]. One reason for this

phenomenon is that an image recognition system can obtain

invariance properties simply by training it with more data, as long

as the additional data exhibits the same variation as the test set [5].

For many applications this is infeasible (e.g., automated surveil-

lance systems for detecting suspected criminals) and it could

reduce execution speed for some non-parametric classification

algorithms, e.g., nearest neighbor. If a descriptor is not suitably

robust when the size of the training set is small, the classifier may

inappropriately separate the categories. We believe this is

especially likely with large changes in illumination.

Related work has shown that illumination conditions and

camera parameters can greatly influence the properties of several

recent image descriptor types [6]. This suggests grayscale

algorithms that are less sensitive to illumination conditions fmay

exhibit superior performance when illumination is variable. To

our knowledge, this is the first time color-to-grayscale algorithms

have been evaluated in a modern descriptor-based image

recognition framework on established benchmark datasets.

Methods

Color-to-Grayscale Algorithms
In this section we briefly describe thirteen methods with linear

time complexity for converting from color-to-grayscale, i.e.,

functions G that take a Rn|m|3 color image and convert it to a

Rn|m representation. All image values are assumed to be between

0 and 1. Let R, G, and B represent linear (i.e., not gamma

corrected) red, green, and blue channels. The output of each

grayscale algorithm is between 0 and 1. Since some methods have

PLoS ONE | www.plosone.org 1 January 2012 | Volume 7 | Issue 1 | e29740

names like Luster and Luminance, we denote all grayscale algorithms

by capitalizing the first letter and italicizing in the text. All

transformations are applied component-wise, i.e., applied inde-

pendently to each pixel. Several of the methods use the standard

gamma correction function C tð Þ~t’~t1=2:2 [7]. We denote

gamma corrected channels as R’, G’, and B’. The output of the

grayscale algorithms on several images is shown in Fig. 1.

Perhaps the simplest color-to-grayscale algorithm is Intensity [1].

It is the mean of the RGB channels:

GIntensity/
1

3
RzGzBð Þ: ð1Þ

Although Intensity is calculated using linear channels, in practice

gamma correction is often left intact when using datasets

containing gamma corrected images. We call this method Gleam:

GGleam~
1

3
R’zG’zB’ð Þ: ð2Þ

In terms of pixel values, Intensity and Gleam produce very different

results. Since C tð Þ is a concave function, Jensen’s inequality [7]

implies that Gleam will never produce a representation with values

greater than gamma corrected Intensity, and it follows that

GIntensityƒGGleamƒC GIntensity

� �
:

When gamma corrected Intensity and Gleam are both applied to

natural images, we found that Gleam produces pixel values around

20–25% smaller on average.

Unlike Intensity and Gleam, Luminance [8] is designed to match

human brightness perception by using a weighted combination of

the RGB channels:

GLuminance/0:3Rz0:59Gz0:11B: ð3Þ

Luminance does not try to match the logarithmic nature of human

brightness perception, but this is achieved to an extent with

subsequent gamma correction. Luminance is the standard algorithm

used by image processing software (e.g., GIMP). It is implemented

by MATLAB’s ‘‘rgb2gray’’ function, and it is frequently used in

computer vision (e.g. [9]). Luma is a similar gamma corrected form

used in high-definition televisions (HDTVs) [1]:

GLuma/0:2126R’z0:7152G’z0:0722B’: ð4Þ

Lightness is a perceptually uniform grayscale representation used

in the CIELAB and CIELUV color spaces [10]. This means an

increment in Lightness should more closely correspond to human

perception, which is achieved via a nonlinear transformation of the

RGB color space [10],

GLightness/
1

100
116f Yð Þ{16ð Þ, ð5Þ

where Y~0:2126Rz0:7152Gz0:0722B, and

f tð Þ~
t1=3 if tw 6=29ð Þ3

1

3

29

6

� �2

tz
4

29
otherwise:

8><
>: ð6Þ

We have normalized Lightness to range from 0 to 1, instead of the

usual range of 0 to 100. The Lightness nonlinearity f (t) implements

a form of gamma correction.

Value is the achromatic channel in the Hue, Saturation, and

Value (HSV) color space and it provides absolute brightness

information. It is computed by taking the maximum of the RGB

channels [10]:

GValue~max R,G,Bð Þ: ð7Þ

Since gamma correction is a monotonically increasing function it

follows that,

C max R,G,Bð Þð Þ~max R’,G’,B’ð Þ:

HSV is occasionally used in image recognition (e.g., [9,11,12]), but

Value is equally sensitive to changes in the brightness of one color

channel as it is to changes to all color channels, so we expect it to

perform poorly when significant brightness variation is present.

Luster is the L channel in the HLS (Hue, Lightness, and

Saturation) color space [1]. We changed its name from lightness to

Luster so it is not confused with CIELAB’s Lightness channel. Luster

is the mean of the minimum and maximum RGB values, i.e.,

Figure 1. Qualitative comparison of color-to-grayscale algo-
rithms. The four images shown are: (1) a panel of fully saturated colors;
(2) Ishihara plate 3, in which a person with normal vision will see the
number 29, while a person with red-green deficient vision may see the
number 70; (3) a green shrub laden with red berries; and (4) a picture of
the Pacific Ocean. All images are shown gamma corrected so that the
details are not excessively dark, except for Gleam, Luma, and Lightness.
The color panel contains fully saturated colors, which Value, Intensity,
and Luster convert to the same shade of gray; however, humans do not
perceive these colors as having equivalent brightness which is a trait
captured by Lightness and Luminance. Gleam, Intensity, Luminance,
Lightness, and Decolorize all lose most of the chromatic contrast present
in the Ishihara plate, while Luster, and Value preserve it. The same
pattern of chromatic contrast degradation is present in the fruit image,
with the fruit becoming much more difficult to distinguish from the
leaves for some of the methods.
doi:10.1371/journal.pone.0029740.g001

Color-to-Grayscale: Does the Method Matter?

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e29740

GLuster/
1

2
max R,G,Bð Þzmin R,G,Bð Þð Þ: ð8Þ

It is less sensitive to changes in brightness than Value since any fully

saturated primary color will maximize Value, but all three channels

must be fully saturated to maximize Luster. Both HLS and HSV

were designed to be more easily manipulated when designing

computer graphics compared to RGB color space by decoupling

color and brightness, rather than attempting to mimic human

perception or to achieve brightness invariance.

Decolorize [2] is designed to preserve and enhance color contrast

when converting to grayscale. There are a few algorithms designed

with the same intent, but unlike others Decolorize has linear time

complexity in the number of pixels. Cadik [13] had 119 subjects

subjectively evaluate images processed using Decolorize, and the

subjects gave it the highest overall score compared to six other

methods. Qualitatively, Decolorize preserves color contrast in

natural images moderately well; however, it does not discriminate

between classification relevant and irrelevant details. The

algorithm begins by converting to the YPQ color space, where

the Y channel is almost identical to Luminance, and then it expresses

the grayscale image as a piecewise linear mapping of these

channels and their saturation. The algorithm is somewhat

complex, so we do not provide implementation details.

We also evaluate gamma corrected forms of Intensity, Luminance,

Value, Luster, and Decolorize, which are denoted Intensity0, Luminance0,
Value0, Luster0, and Decolorize0, respectively. In all cases the standard

gamma correction function C :ð Þ is used. This is not performed for

Gleam, Luma, and Lightness since they have forms of gamma

correction built into them.

Image Descriptors
Our experiments are performed using four descriptor types:

SIFT [14], SURF [15], Geometric Blur [16], and Local Binary

Patterns (LBP) [17]. Our objective is not to determine which

descriptor works best, but to see if the method of converting from

color-to-grayscale is consistent across descriptor types. Each of

these local descriptors are extracted from multiple spatial locations

in the image, and this spatial information is used by the image

recognition framework, as described in the next section. Before

extracting descriptors, each image is resized to make its smallest

dimension 128 with the other dimension resized accordingly to

preserve the image’s aspect ratio. We choose standard settings for

each descriptor type.

SIFT is a popular feature descriptor that is robust to changes in

illumination [14]. SIFT descriptors are computed from gradient

orientation histograms weighted by the gradient magnitude

computed over local neighborhoods. We densely extract 128-

dimensional descriptors using 9|9 pixel spatial bins with a

sampling density of 5 pixels. We use the dense SIFT implemen-

tation provided in the VLFeat toolbox [18]. About 500 descriptors

are produced per image.

SURF [15] is a rotation invariant descriptor inspired by SIFT,

but it uses Haar wavelets instead of the image’s gradient to quickly

identify interest points and generate features. The features at an

interest point are the sum of the Haar wavelet responses. We use

the OpenSURF implementation [19], with five octaves, a hessian

threshold of 10{6, and an ‘‘extended’’ 128-dimensional represen-

tation. SURF produces about 100 descriptors per image.

Geometric Blur (GB) [16] descriptors are extracted by applying

a spatially varying blur to oriented edge channels, with the amount

of blur increasing from the center of each descriptor. Like SIFT,

GB descriptors contain neighborhood information. We use

standard parameters, i.e., the descriptors are computed at 300

randomly sampled points with a~0:5 and b~1. The algorithm

produces 300 204-dimensional descriptors per image. See [16] for

additional details.

LBP [17] descriptors have been used for texture and face

recognition. Unlike the other descriptors we use, they do not

directly operate on an image’s gradient or edge-like features.

Instead the image’s pixels are used to create a local histogram of

‘‘binary patterns,’’ which are quantized into a 58-dimensional

feature vector. We use the VLFeat [18] implementation of LBP

with a cell size of 12 pixels, and we compute LBP descriptors at 3

image scales (1,
1

2
, and

1

4
), which are concatenated together to form

a 174-dimensional representation. About 150 descriptors are

produced per image. LBP is locally invariant to monotonically

increasing changes in brightness.

Image Recognition Framework
The Naive Bayes Nearest Neighbor (NBNN) framework [3]

relies solely on the discriminative ability of the individual

descriptors, making it an excellent choice for evaluating color-to-

grayscale algorithms. NBNN assumes each descriptor is statisti-

cally independent (i.e., the Naive Bayes assumption). Given a new

image Q with descriptors d1, . . . ,dn, the distance to each

descriptor’s nearest neighbor is computed for each category C.

These distances are summed for each category and the one with

the smallest total is chosen. Assuming that all training images have

their descriptors extracted and stored, NBNN is summarized as:

1. Compute descriptors d1, . . . ,dn for an image Q.

2. For each C, compute the nearest neighbor of every di in C:

NNC(i).

3. Classify: ĈC~arg minC

Pn
i~1 Dist i,NNC ið Þð Þ.

As in [3], Dist x,yð Þ~ dx{dy

�� ��2
za ‘x{‘y

�� ��2
, where ‘x is the

normalized location of descriptor dx, ‘y is the normalized location

of descriptor dy, and a modulates the influence of descriptor

location. We use a~0 for the Barnard et al. dataset, described

below, since it exhibits substantial rotation variation. We use a~1
for the other datasets.

Using 15 training instances per category for Caltech 101 with

SIFT descriptors, Boiman et al. [3] reported achieving

65:0+1:14% accuracy while our Intensity0 results with SIFT are

68:87+0:93%. Boiman et al. did not report which grayscale

method they used.

Results

We perform recognition experiments in three domains: (1) faces

(AR Face Dataset [20]), textures (CUReT [21]), and objects

(Barnard et al. [22] and Caltech 101 [23]). Example images from

all datasets except AR are shown in Fig. 2. Images from AR are

not shown to comply with PLoS privacy guidelines.

After computing training descriptors, we subtract their mean.

This is followed by applying zero-phase whitening (ZCA) for AR,

CUReT, and Barnard et al. datasets to induce isotropic covariance

[24]. For Caltech 101, principal component analysis whitening is

used instead to reduce the dimensionality to 80, retaining at least

85% of the variance for all descriptor types. This number was

chosen based on the memory and speed limitations imposed by

NBNN, and when this was done for the other datasets it had

negligible impact on the relative performance of the best

algorithms compared to using ZCA whitening. Finally, the

descriptors are normalized to unit length. These same steps are

applied to descriptors during testing.

Color-to-Grayscale: Does the Method Matter?

PLoS ONE | www.plosone.org 3 January 2012 | Volume 7 | Issue 1 | e29740

We perform 30-fold cross-validation per dataset for each color-

to-grayscale method with the same train and test partitions used in

each combination. For each cross-validation run we calculate the

mean per-class accuracy, the standard method for Caltech 101

[23]. For each dataset and descriptor combination we provide dot

plots of the mean per class accuracy. The dot plots are sorted by

the mean performance across descriptors. Dot plots provide a

more compact representation than bar charts and allow for easy

comparison of the methods.

We use multiple comparison tests (Wilcoxon signed-rank tests)

to determine which color-to-grayscale algorithms are significantly

different from the method with the greatest mean performance for

each descriptor type. Holm-Bonferroni correction is used to ensure

that the overall Type I (false positive) error rate is a~0:01. In the

dot plots we indicate which methods are not statistically different

from the best method for each descriptor type with a yellow

triangle.

Results for all four datasets are shown in Fig. 3, and they are

described in detail below. We focus our analysis on the methods

that are top performers for multiple descriptor types.

AR Face Dataset
The Aleix and Robert (AR) dataset [20] is a large face dataset

containing over 4,000 color face images under varying lighting,

expression, and disguise conditions. In our experiments we omit

images with disguises and changes in expression, leaving eight

neutral facial expression images per person (see [20] for example

images). In each cross-validation run, we randomly choose one

training image per person and six testing images. Because there

are large changes in brightness, methods that are not robust to

these changes could dramatically impair performance. Chance

performance is
1

120
.

Our results on the AR dataset are provided in Fig. 3A. For

SIFT, SURF, and GB, there is a large performance gap between

the best and worst methods, consistent with our hypothesis that the

choice of grayscale algorithm is especially important when the

number of training instances is small and there is a large amount

of brightness variation. Gleam performs well for all four descriptors.

Value performs poorly for all descriptors. SIFT performs best

compared to the other descriptors.

CUReT
The Columbia-Utrecht Reflectance and Texture (CUReT)

dataset [21] contains 61 texture types, such as rabbit fur,

styrofoam, pebbles, and moss. It exhibits large uniform changes

in illumination conditions. We use only the predominantly front-

facing images. For training, we use 3 training images and 7 test

images per category, chosen randomly. Example images are

shown in Fig. 2A. Chance performance on CUReT is
1

61
.

Our CUReT results are given in Fig. 3B. Performance of

grayscale algorithms on CUReT is more variable than AR with

several methods performing well for each descriptor type, but

members of the Luminance family (Luminance, Luminance0, Luma,

and Decolorize) tend to be better than alternatives, with Luminance0

as the top performer for SURF and LBP and Luminance being a top

performer for SIFT, GB, and LBP. SIFT achieves the best

performance, followed by LBP.

Barnard et al. Dataset
The Barnard et al. dataset [22] contains images of 20 distinct

objects. Each object is photographed in 11 different illumination

conditions while the pose of the object is simultaneously varied (see

Fig. 2B). We chose this dataset because it is the only object dataset

that exhibits a variety of systematic changes in lighting color,

which we hypothesized would influence many of the grayscale

representations. We train on 2 images per object and test on the

remaining 9. Chance accuracy is
1

20
.

Two or more methods work well for each descriptor type, but

some of them are consistent across descriptors. Intensity0 and Gleam

work well for GB, LBP, and SURF. Intensity and Luminance perform

best for SIFT. Because it is rotation invariant, SURF achieves

greater accuracy compared to the other descriptors.

Figure 2. Example dataset images. (A): Images from four CUReT categories: Felt, Straw, Lettuce, and Salt Crystals. (B): The ‘‘Crucheroos’’ object
from Barnard et al. observed in all illumination conditions. (C): Six sample images for three Caltech 101 categories. Images from AR are not shown to
comply with PLoS privacy guidelines.
doi:10.1371/journal.pone.0029740.g002

Color-to-Grayscale: Does the Method Matter?

PLoS ONE | www.plosone.org 4 January 2012 | Volume 7 | Issue 1 | e29740

Caltech 101
The popular Caltech 101 dataset [23] consists of images found

using Google image search from 101 object categories, with at

least 31 images in each. As shown in Fig. 2C, Caltech 101 has a

large amount of interclass variability. We adopt the standard

Caltech 101 evaluation scheme. We train on 15 randomly chosen

images per category and test on 30 other randomly chosen images

per category, unless there are fewer than 30 images available in

which case all of the remaining images are used. Chance

performance on Caltech 101 is
1

101
.

Our Caltech 101 results are provided in Fig. 3D. Several

methods work well, but only Gleam performs well for all four

descriptors. Intensity0 also works well for SIFT, SURF, and LBP.

While the choice of grayscale algorithm is significant for Caltech

101, it has a less dramatic effect compared to the other datasets.

This is likely because Caltech 101 exhibits less brightness variation

and we use a comparatively larger training set. SIFT substantially

exceeds the performance of the other descriptors.

The greatest mean per-class accuracy on Caltech 101 is Luster0,
which achieved 68:91+0:90% accuracy. For comparison [25],

achieved 67:0+0:5% with grayscale SIFT descriptors that had

been sparse coded in a hierarchical spatial pyramid matching

system.

Combined Analysis
The mean rank performance of each grayscale algorithm

marginalized over the datasets and descriptor types is shown in

Fig. 4. The simplest methods perform best, with Gleam achieving

the greatest rank, but it is not significantly different from Intensity0.
Value performs most poorly. Methods incorporating gamma

correction are generally superior to their counterparts that omit

it, e.g., Intensity compared to Intensity0 (recall that Gleam, Luma, and

Lightness have forms of gamma correction built into them).

Our results indicate that each descriptor type is sensitive to the

choice of grayscale algorithm. To analyze magnitude of this effect,

we computed the coefficient of variation (CV) of each method’s

performance across grayscale algorithms. These results are shown

in Fig. 5. In general, LBP is the least sensitive to the choice of

grayscale algorithm, with the only exception being CUReT. For

all of the descriptors the choice of grayscale algorithm mattered

the least for Caltech 101, probably because of the greater number

of training instances and lack of illumination variability.

Figure 3. Results for each dataset. Methods that are not statistically different from the method with the greatest mean performance within each
descriptor type are indicated with a gold triangle. The x-axis is the mean per-class accuracy. Each dot plot is sorted by the mean accuracy across
descriptors, so that the best grayscale method across methods will be near the top of each dot plot. See text for detailed analysis. (A): Performance of
each descriptor type on the AR Face dataset. (B): Performance of each descriptor type on CUReT. (C): Performance of each descriptor type on the
Barnard et al. dataset. (D): Performance of each descriptor type on Caltech 101.
doi:10.1371/journal.pone.0029740.g003

Color-to-Grayscale: Does the Method Matter?

PLoS ONE | www.plosone.org 5 January 2012 | Volume 7 | Issue 1 | e29740

Discussion

Our objective was to determine if the method used to convert

from color-to-grayscale matters, and we can definitively say that it

does influence performance. For all datasets there was a significant

gap between the top performing and worst performing methods.

Our results indicate that the method used to convert to grayscale

should be clearly described in all publications, which is not always

the case in image recognition.

For object and face recognition, Gleam is almost always the top

performer. For texture recognition, Luminance0 and Luminance are

good choices. Although color descriptors are sometimes extracted

in the HSV colorspace, our results suggest replacing Value with

Gleam is advisable.

In general, we observed little benefit from using a method based

on human brightness perception. The only potential exception was

textures. Emulating the way humans perceive certain colors as

brighter than others appears to be of limited benefit for grayscale

image recognition. However, methods that incorporate a form of

gamma correction (e.g., Lightness, Gleam, Luma, Luster0, etc.) usually

perform better than purely linear methods such as Intensity and

Luminance.

Developing a pre-processing algorithm specifically designed for

edge-based and gradient-based descriptors is an interesting future

direction. One way to achieve this is to learn a transformation

from color-to-grayscale that is robust to changes in brightness,

perhaps by allowing the gamma value to vary per color channel,

e.g.,

G/ 1

3
R1=azG1=bzB1=c
� �

, ð9Þ

Figure 4. Mean rank results across datasets and descriptor types. The x-axis is the mean rank for a particular grayscale method when the
results are combined across the datasets and descriptor types. Gleam and Intensity0 exhibit the greatest rank and most robust performance.
doi:10.1371/journal.pone.0029740.g004

Figure 5. Coefficient of variation for each descriptor type and dataset. The y-axis is the coefficient of variation for the accuracy of each
descriptor type computed across all of the grayscale methods. All of the methods are sensitive to the choice of grayscale algorithm, but LBP is the
least sensitive in general. The choice of grayscale algorithm mattered the least for Caltech 101 and the most for the AR Face Dataset.
doi:10.1371/journal.pone.0029740.g005

Color-to-Grayscale: Does the Method Matter?

PLoS ONE | www.plosone.org 6 January 2012 | Volume 7 | Issue 1 | e29740

where a,b,cw0 are learned parameters. There is no reason to

assume that the single value used in the standard gamma

correction function is ideal for recognition. Alternatively, it may

be advisable for the transformation weights to vary depending on

the global or local statistics of each particular image. In both cases

it is challenging to optimize the weights explicitly for recognition

since doing so would require re-extracting descriptors. As long as

the number of parameters remains relatively small, they could

feasibly be optimized per dataset using cross-validation or a meta-

heuristic, e.g., genetic algorithms or hill climbing. An alternative is

to learn a mapping from color images to descriptors directly.

There has been some success with this approach [26,27], but it has

not been widely adopted because these learned transformations

tend to be considerably slower than engineered methods (e.g.,

SIFT) when a comparable descriptor dimensionality is used.

In this paper we asked the question, ‘‘Does the method used to

convert to grayscale matter in image recognition?’’ and we have

shown that it does significantly influence performance, even when

using robust descriptors. The choice made the largest impact for

datasets in which only a limited amount of training data was used

and illumination conditions were highly variable. We were

successful in identifying a method that was consistently superior

for face and object recognition. Similarly, for the problem of

texture recognition, a pair of top performers emerged. It is now

incumbent upon researchers in the computer vision community to

report the conversion method they use in each paper, as this

seemingly innocuous choice can significantly influence results.

Author Contributions

Conceived and designed the experiments: CK. Performed the experiments:

CK. Analyzed the data: CK GWC. Contributed reagents/materials/

analysis tools: CK. Wrote the paper: CK GWC.

References

1. Jack K (2007) Video demystified, 5th edition. Newnes.
2. Grundland M, Dodgson N (2007) Decolorize: Fast, contrast enhancing, color to

grayscale conversion. Pattern Recognition 40: 2891–2896.

3. Boiman O, Shechtman E, Irani M (2008) In defense of nearest-neighbor based
image classification. In: Proc Computer Vision Pattern Recognition (CVPR-

2008). doi:10.1109/CVPR.2008.4587598.
4. Coates A, Ng A (2011) The importance of encoding versus training with sparse

coding and vector quantization. In: Proc Inter Conf Machine Learning (ICML-

2011). pp 921–928.
5. Simard P, Steinkraus D, Platt J (2003) Best practices for convolutional neural

networks applied to visual document analysis. In: Proc International Conf on
Document Analysis and Recognition (ICDAR-2003). doi:10.1109/ICDAR.

2003.1227801.
6. Andrepoulos A, Tsotsos JK (2011) On sensor bias in experimental methods for

comparing interest point, saliency and recognition algorithms. IEEE Trans

Pattern Analysis and Machine Intelligence. doi:10.1109/TPAMI.2011.91.
7. Hoeffding W (1963) Probability inequalities for sums of bounded random

variables. Jour American Statistical Association 58: 13–30.
8. Pratt W (2007) Digital image processing Wiley-Interscience.

9. Bosch A, Zisserman A, Munoz X (2007) Image classification using random

forests and ferns. In: International Conf on Computer Vision (ICCV-2007).
doi:10.1109/ICCV.2007.4409066.

10. Acharya T, Ray A (2005) Image processing: principles and applications Wiley-
Interscience.

11. Ohba K, Sato Y, Ikeuchi K (2000) Appearance-based visual learning and object
recognition with illumination invariance. Machine Vision and Applications 12:

189–196.

12. Yoo S, Park R, Sim D, Wolgye-dong N (2007) Investigation of color spaces for
face recognition. In: Proc IAPR Conf on Machine Vision Applications 2007.

doi:10.1.1.140.7931.
13. Ĉadı́k M (2008) Perceptual evaluation of color-to-grayscale image conversions.

Computer Graphics Forum 27: 1745–1754.

14. Lowe D (2004) Distinctive image features from scale-invariant keypoints.
International Jour Computer Vision 60: 91–110.

15. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) SURF: Speeded Up Robust
Features. Comp Vis Image Understanding (CVIU) 110(3): 346–359.

16. Berg AC, Berg TL, Malik J (2005) Shape matching and object recognition using

low distortion correspondence. In: Proc Computer Vision and Pattern
Recognition (CVPR) 2005. doi: 10.1109/CVPR.2005.320.

17. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture
measures with classification based on feature distributions. Pattern Recognition

19(3): 51–59.

18. Vedaldi A, Fulkerson B (2008) VLFeat: An Open and Portable Library of
Computer Vision Algorithms. Available: http://www.vlfeat.org. Accessed: 2011

Dec 5.
19. Evans C (2009) Notes on the OpenSURF library. Univ Bristol Tech Rep CSTR-

09-001.
20. Martinez A, Benavente R (1998) The AR Face Database. CVC Technical

Report #24.

21. Dana K, Van-Ginneken B, Nayar S, Koenderink J (1999) Reflectance and
Texture of Real World Surfaces. ACM Trans on Graphics 18: 1–34.

22. Barnard K, Martin L, Funt B, Coath A (2000) Data for colour research. Color
Research and Application 27: 148–152.

23. Fei-fei L, Fergus R, Perona P (2004) Learning generative visual models from few

training examples: an incremental Bayesian approach tested on 101 object
categories. In: Proc Computer Vision and Pattern Recognition (CVPR-

2004);doi:10.1109/CVPR.2004.109.
24. Bell AJ, Sejnowski TJ (1997) The ‘‘independent components’’ of natural scenes

are edge filters. Vision Res 37(23): 3327–3338.
25. Yang J, Yu K, Gong Y, Huang T (2009) Linear Spatial Pyramid Matching

Using Sparse Coding for Image Classification. In: Proc Computer Vision and

Pattern Recognition (CVPR-2009) 2009. doi:10.1109/CVPR.2009.5206757.
26. Kanan C, Cottrell G (2010) Robust classification of objects, faces, and flowers

using natural image statistics. In: Proc Computer Vision Pattern Recognition
(CVPR-2010). doi: 10.1109/CVPR.2010.5539947.

27. Raina R, Battle A, Lee H, Packer B, Ng A (2007) Self-taught learning: Transfer

learning from unlabeled data. In: International Conf Machine Learning (ICML-
2007). doi:10.1145/1273496.1273592.

Color-to-Grayscale: Does the Method Matter?

PLoS ONE | www.plosone.org 7 January 2012 | Volume 7 | Issue 1 | e29740

