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Abstract

Background: Independent Component Analysis (ICA) has been widely applied to the analysis of fMRI data. Accurate
estimation of the number of independent components of fMRI data is critical to reduce over/under fitting. Although various
methods based on Information Theoretic Criteria (ITC) have been used to estimate the intrinsic dimension of fMRI data, the
relative performance of different ITC in the context of the ICA model hasn’t been fully investigated, especially considering
the properties of fMRI data. The present study explores and evaluates the performance of various ITC for the fMRI data with
varied white noise levels, colored noise levels, temporal data sizes and spatial smoothness degrees.

Methodology: Both simulated data and real fMRI data with varied Gaussian white noise levels, first-order auto-regressive
(AR(1)) noise levels, temporal data sizes and spatial smoothness degrees were carried out to deeply explore and evaluate
the performance of different traditional ITC.

Principal Findings: Results indicate that the performance of ITCs depends on the noise level, temporal data size and spatial
smoothness of fMRI data. 1) High white noise levels may lead to underestimation of all criteria and MDL/BIC has the severest
underestimation at the higher Gaussian white noise level. 2) Colored noise may result in overestimation that can be
intensified by the increase of AR(1) coefficient rather than the SD of AR(1) noise and MDL/BIC shows the least
overestimation. 3) Larger temporal data size will be better for estimation for the model of white noise but tends to cause
severer overestimation for the model of AR(1) noise. 4) Spatial smoothing will result in overestimation in both noise models.

Conclusions: 1) None of ITC is perfect for all fMRI data due to its complicated noise structure. 2) If there is only white noise
in data, AIC is preferred when the noise level is high and otherwise, Laplace approximation is a better choice. 3) When
colored noise exists in data, MDL/BIC outperforms the other criteria.
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Introduction

Functional magnetic resonance imaging (fMRI) technique has

been successfully used to investigate cognitive functions of human

brain by multivariate methods. Among various multivariate methods,

spatial independent component analysis (sICA, but referred to ICA in

this study) has been demonstrated to be a promising technique to

explore spatially independently distributed neural networks from

fMRI data without any prior information [1,2].

Based on an important hypothesis that the detected signals are

linear combinations of statically independent source signals, the

ICA model can be expressed by

X~AS ð1Þ

Where X is an M6N matrix consisting of the raw fMRI data. M is

the number of scans while N is the number of voxels. S is a K6N

matrix whose rows represent the spatially independent compo-

nents and K is the number of total independent components. A is

an M6K mixing matrix. Each column of matrix A represents the

time course of the corresponding independent components.

The basic goal of ICA is to estimate the spatially independent

components S and the mixing matrix A. However, due to the high

temporal dimensionality and high noise level of fMRI data, it

would be very likely to over-fit the data [3] and result in splitting

one component into two or more if ICA is applied on the full

temporal dimension [4]. Therefore, the number of spatially

independent components is often assumed to be less than the

temporal dimension of fMRI data. A lower dimensional subspace

containing the informative sources is usually identified by principle

component analysis (PCA) prior to ICA. However, it is essential to

estimate an appropriate dimension of the signal subspace in fMRI
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data before performing PCA. Underestimation may result in

mixing various components [1,5,6,7] and missing some valuable

information while overestimation can result in splitting the true

independent component [4,7,8], decreasing the stability of

independent component estimates and making the interpretation

of the ICA results difficult [9]. For example, Ma et al evaluated the

ability of sICA to capture resting state functional connectivity with

the number of independent components ranging from 2 to 30 and

demonstrated that the result of ICA was affected if this number

was too small [10].

Several methods based on ITC have been demonstrated to be

attractive for model order selection in signal processing including

Akaike’s information criterion(AIC) [11], Kullback–Leibler infor-

mation criterion(KIC) [12], the minimum description length

(MDL) criterion [13], Bayesian information criterion (BIC)

[14]and a Laplace approximation to Bayesian Criterion based

on model evidence [15]. Among these criteria, AIC is an

inconsistent estimator that tends, asymptotically, to overestimate

the number of signals [16]. KIC tends to outperform AIC in that it

is a consistent estimator and has less over-estimating than AIC

[12]. MDL and BIC are consistent estimators [17,18]. In the case

of large sample, BIC can be regarded as an approximation of

MDL despite being derived in an independent manner [13,14].

There have been some classical comparisons of ITC. Some studies

have mostly focused on comparisons between AIC and BIC in the

context of the general linear model. Results of these studies have

demonstrated that BIC is consistent and performs poorly in small

samples whereas AIC is not consistent and performs relatively well

in small sample [18,19]. Liavas et al studied the influence of the

distribution of the noise and signal eigenvalues on AIC and MDL’s

behavior [20]. Moreover, Fishler et al. (2002) investigated the

performance of BIC in the blind source separation and suggested

that BIC performed poorly at small sample sizes, but improved

with increasing sample size [21].

Recently, many studies have attempted to apply ITC to

estimate the number of independent components of fMRI data.

For instance, the average of AIC and MDL estimates was used to

determine the number of components in fMRI data [22]. BIC and

Laplace approximation were also applied to fMRI data [4,23].

Moreover, considering the spatial and temporal dependency of

fMRI data, several improved methods were proposed to estimate

the dimension of fMRI data [9,24,25]. Despite widespread use

of ITC, there have been few empirical investigations of the

performance of ITC in the context of ICA model. Even fewer

investigations have fully compared or examined the performance

of ITC with regard to the properties of fMRI data in particular.

Comprehensively investigating the performance of different ITC

in estimating the dimension of fMRI data is valuable to provide an

insight into the selection of different ITC for fMRI data. The

purpose of the current study was to empirically evaluate and

compare the performance of ITC in the context of ICA model. Of

particular interest was how these different criteria performed in

estimating the number of independent components of fMRI data

with different properties. The noises underlying real fMRI data

includes Gaussian/white noise, such as thermal noise [26], and

colored noise due to low-frequency physiological fluctuation [27].

Moreover, it has been demonstrated that the colored noises in

fMRI data can become ‘white’ when a ‘whitening’ filter is applied

[27]. Therefore, it is essential to investigate the impact of

Gaussian/white noise and colored noise in fMRI data on the

estimation of independent components by ITC. For colored noise,

both the simple Auto-Regressive (AR) models or related Auto-

Regressive and Moving Average (ARMA) models have been used

to model autocorrelation of noise of fMRI data [28,29,30].

Although a higher order AR model may be better for time series of

voxels that have a strong correlation structure, such as brain-stem

voxels, ventricular voxels and larger vessels [29], the AR(1) noise

model appears to work well for water phantom data and for

preprocessed fMRI data with motion artifacts corrected and signal

drifts removed [24]. In this paper, both the simulated and real fMRI

data with varied Gaussian white noise levels, AR(1) noise levels,

temporal data sizes and spatial smoothness degrees were used to

deeply explore and compare the performance of the traditional ITC

including AIC, KIC, MDL, BIC and Laplace approximation.

Results show the performance of ITC is dependent on the standard

deviation of Gaussian white noise, auto-correlation coefficient of

AR(1) noise, temporal data size and spatial smoothness of the fMRI

data. Moreover, the present study not only demonstrates some

conclusions of previous studies, but also reveals some new

information regarding the performance of different ITC. Some

suggestions about how to choose a proper ITC according to the

properties of fMRI data are given at the end of the paper.

Methods

Ethics Statement
The human fMRI experiment conducted in this study was

approved by the Institutional Review Board of Beijing Normal

University (BNU) Imaging Center for Brain Research, National

Key Laboratory of Cognitive Neuroscience. The subjects gave

written informed consent.

Information-Theoretic criteria
The estimation of the number of independent component of

fMRI data can be regarded as an issue of model order selection.

Given a set of N observations X~fx1,x2, . . . ,xNg and a family of

models, ITC aims at selecting the model that best fits the data.

Suppose f (X jH) is the probability distribution of X , while f (X jH)
is an estimation of f (X jH). The AIC criterion is to select the model

that gives the minimum Kullback-Leibler distance, defined by [11]

AIC~{2 log f (X jĤH)z2G(ĤH) ð2Þ

Here ĤH is the maximum likelihood estimate of the parameter vector

H. The first term is the maximum likelihood of the observations X

given the model parameter estimates and G(H) is a bias correction

term to make the AIC an unbiased estimate of the mean Kullback-

Leibler distance between the modeled density f (X jH) and the

estimated density f (X jĤH).

Based on Akaike’s work, Rissanen proposed to select the model

that yields the minimum description length (MDL) given by [13]

MDL~{log f (X jĤH)z
1

2
G(ĤH) log N ð3Þ

Note that apart from a factor of 2, the first term is identical to the

corresponding one in the AIC, while the second term has an extra

factor of 0.5log N where N is the size of sample.

Wax and Kailath developed the order selection formulations of

AIC and MDL based on the assumption of i.i.d Gaussian noise

with zero mean and equal variance [16], expressed as Eqs. (4–5)

log f (X jĤH)~N
XT

i~kz1

log li{N(T{k) log

XT

i~kz1

li

T{k
ð4Þ
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G(ĤH)~k(2T{k) ð5Þ

Where N is the sample size. T is the original dimension of the

multivariate data. k is the candidate order and lis are the

eigenvalues of sample covariance matrix of the observations.

In 1999, Cavanaugh proposed a model selection criteria named

as KIC which served as an asymptotically unbiased estimator of a

variant of the Kullback’s symmetric divergence between the true

model and a fitted approximated model [12]

KIC~{2 log f (X jĤH)z3G(ĤH) ð6Þ

Because maximum likelihood estimators can be obtained as large-

sample limits of the Bayes estimators, Schwartz proposed to select

the model that yielded the maximum posterior probability based

on the assumption that each competing model could be assigned a

prior probability [14]. The posterior probability is given by

P(kjX )~
P(X jk)P(k)XT

k~1

P(X jk)P(k)

ð7Þ

Using Laplace’s approximation, the posterior probability can be

described by [15].

Lap(k)&P(U) P
k

i~1
li

� �{1
2
v̂v
{

N(T{k)
2 2pð Þ

Tk{k(k{1)=2
2 jAzj{

1
2N

{k
2ð8Þ

Where

P(U)~2{k P
k

i~1
C((T{iz1)=2)p{(T{iz1) ð9Þ

v̂v~

XT

i~kz1

li

T{k
ð10Þ

Azj j~ P
k

i~1
P
T

j~iz1
l̂l{1

j {l̂l{1
i

� �
li{lj

� �
N ð11Þ

where l̂ll~ll for lƒk and l̂ll~v̂v otherwise. Usually, log (Lap(k)) is

used instead of Lap(k).

A simplification of Laplace’s method is the BIC approximation.

This approximation drops all terms which do not grow with N and

can be simplified as [14,15,23]

BIC(k)& P
k

j~1
lj

� �{N=2

v̂v{N(T{k)=2N{(mzk)=2 ð12Þ

Simulations
In this section, simulated fMRI data were generated to assess

the performance of different ITCs by varying Gaussian white noise

level, colored noise level, temporal data size and spatial

smoothness of the simulated data. AIC, KIC, MDL, BIC and

Laplace approximation were applied to each simulated dataset to

estimate the number of independent components.

White noise model
All simulated data in the following simulations were generated

in a similar way. A two-dimensional 2006200 matrix with each

pixel’s intensity of 100 was duplicated T times, one for each time

point. T was determined by each simulation. Gaussian noises with

zero mean and specific standard deviation (SD) were added to all

pixels at every time point to simulate system noises. As shown in

Fig. 1A, seven white rectangular regions of interest (ROIs) were

constructed over this matrix. The time courses added to the

corresponding ROIs were shown in Fig. 1B. Each simulated

experiment in each condition was repeated 50 times and the

means of the 50 estimations of ITCs were obtained.

a) Effect of Gaussian Noise Level

The number of time points T was set to 120. The SD of

Gaussian noise varied from 0.2 to 5 with an increase of 0.4.

Figure 1. Seven simulated sources. A) The actived spatial regions. B) The corresponding time courses.
doi:10.1371/journal.pone.0029274.g001
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b) Effect of temporal data size

Three Gaussian noise levels were set to SD = 1, 2 and 3. At each

noise level, the number of time points T varied from 40 to 170

with an increase of 10.

c) Effect of spatial smoothness

The temporal data size T was 120. The noise levels were set to

SD = 1, 2, 3. Each simulated data was spatially smoothed with a

Gaussian filter. The full weight at half maximum (FWHM) of the

Gaussian kernel of the filter was changed from 0.5 to 3 pixels.

AR(1) noise model
The following simulated data were generated in the same way as

above, except that colored noise rather than Gaussian white noise

was added to all pixels at every time point. Colored noise was

generated based on AR(1) model with the form of Eq. (13).

g(t)~qg(t{1)ze(t) ð13Þ

Where q is the AR(1) coefficient and e(t) is a random variable with

Gaussian distribution having a zero mean and specific SD. Both q

and SD of AR(1) noise are factors to be investigated. Each

simulated experiment in each condition was also repeated 50 times

and the means of the 50 estimations of ITCs were obtained.

a) Effect of AR(1) coefficient

In investigation of the AR coefficient, the number of time points

T was set to 120. Three AR(1) noise levels were set to SD = 1, 2

and 3. At each noise level, the AR(1) coefficient q varied from 0.05

to 0.95 with an increase of 0.05.

b) Effect of SD of AR(1) noise

The number of time points T was set to 120. Three AR(1)

coefficient levels were set to q = 0.1, 0.5 and 0.9. The SD of AR(1)

noise varied from 0.2 to 5 with an increase of 0.2.

c) Effect of temporal data size

Three AR(1) coefficient levels were set to q = 0.1, 0.5 and 0.9.

The SD of AR(1) noise was set to 1. At each AR(1) coefficient level,

the number of time points T varied from 80 to 320 with an

increase of 40.

d) Effect of spatial smoothness

In this section, the temporal data size T was 120. The SD of

AR(1) noise was set to 1. Three AR(1) coefficient levels were set to

q = 0.1, 0.5, 0.9. Each simulated dataset was spatially smoothed

with a Gaussian filter. The FWHM of the Gaussian kernel is

changed from 0.5 to 3 pixels.

Real fMRI experiment
Participants. One right-handed college participant

(age = 23) with normal vision was recruited. The subject was

asked simply to relax with eye closed and remain still for

314 seconds during the whole fMRI scanning.

Imaging Parameters. Brain scans were performed at the

MRI Center of Beijing Normal University using a 3.0-T Siemens

whole-body MRI scanner. A single-shot T2*-weighted gradient-

echo, EPI sequence was used for the functional imaging

acquisition, with the parameters: TR/TE/flip angle = 2000 ms/

30 ms/90o, FOV = 2006200 mm, matrix = 64664, and slice

thickness = 3.6 mm. 33 axial slices parallel to the AC-PC line

were obtained in an interleaved order to cover the whole

cerebrum and partial cerebellum. The anatomical MRI was

acquired using a T1-weighted 128 slice MPRAGE sequence

parallel to the sagittal plane which covers the whole brain. The

parameters for this sequence were: TR/TE/flip angle = 2530 ms/

3.39 ms/7u, FOV = 2566256 mm, matrix = 2566256, and slice

thickness = 1.33 mm.

Preprocessing. Data were preprocessed using SPM2

software (Statistical Parametric Mapping; http://www.fil.ion.ucl.

ac.uk/spm2). All functional images were realigned and spatially

normalized into the standard MNI template space, resliced to

36364 mm voxels.

Dimension Estimation. In order to investigate the

performance of ITC in the real resting fMRI data with different

Gaussian white noise levels, colored noise levels (including varied

AR(1) coefficients and different SD levels of AR(1) noise), temporal

data sizes and spatial smoothness, some new datasets were

generated based on the preprocessed data before ITCs were

applied. Firstly, four datasets with four different Gaussian white

noise levels were generated by adding the additional Gaussian

noise with SD equal to 0, 1, 2 and 3 to each voxel of the resting

fMRI data. Secondly, three datasets with three different AR(1)

coefficients were created by adding additional AR(1) noise with q

equal to 0.1, 0.5 and 0.9. The SD of the three datasets was set to 2.

Thirdly, three datasets with three SD levels of AR(1) noise were

produced by adding additional AR(1) noise with SD equal to 1, 2

and 3 respectively. The q of the three datasets was set to 0.5.

Fourthly, four datasets with varied temporal data sizes are

comprised of the full preprocessed dataset with a temporal size

of 157 and three other truncated datasets using only the first 100,

120 and 140 scans. Lastly, three datasets with different spatial

smoothness includes two datasets spatially smoothed with a

46464 mm3 and 86868 mm3 Gaussian kernel and the

unsmoothed dataset. ITCs were applied to each dataset.

Results

Simulations
White Noise model. The mean and accuracy rate of the 50

estimations of different ITCs versus the Gaussian noise level (SD) are

shown in Fig. 2. Although all the criteria underestimate the true

number of components at high noise level, MDL/BIC shows the

severest underestimation and AIC exhibits the slightest

underestimation (See Fig. 2A). For the low noise level, AIC is more

likely to overestimate than the others (also See Fig. 2A). Except AIC,

the accuracy rate of the other criteria are equal to 1 at low noise level.

Moreover, for KIC, MDL, BIC and Laplace approximation, the

accuracy rate of Laplace approximation decreases to zeros at

relatively higher noise level and that of MDL/BIC decreases to zeros

at relatively lower noise level. However, the accuracy rate of AIC

decreases slowest at high noise level.

Fig. 3A–C shows the variation of the means of estimations with

the temporal data size at the three Gaussian noise levels. The

results of all methods reach stable at relatively smaller temporal

size (N = 110) when the Gaussian noise level (SD = 1 and 2) is not

very high (See Fig. 3A–B). Nonetheless, the results are stable at

relatively larger temporal size (N = 140) when the Gaussian noise

level (SD = 3) is high (See Fig. 3C). For all noise levels, the

estimations of all the criteria are more and more approximate to

the true value with the increasing of the temporal size and tend to

underestimate with the decreasing of the temporal size. Further-

more, the impact of the temporal data size on the estimations

becomes more and more remarkable with the increasing of the

Gaussian noise level. Among all the criteria, the MDL/BIC tends

to yield the severest underestimation, especially at the high noise

level.

Fig. 3D–F displays the mean estimation of all the criteria versus

FWHM at the three Gaussian noise levels. Spatial smoothing may

have pretty slight impact on the performance of all the criteria

when the FWHM of Gaussian filter is smaller than one pixel.

However, AIC, KIC and Laplace approximation show severe

Comparison of Information-Theoretic Criteria
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overestimation when the FWHM is larger than one pixel. The

overestimations by the three criteria are raised with the increase of

the FWHM. Compared to AIC, KIC and Laplace approximation,

MDL/BIC manifests better performance even for high FWHM

although it also has slight overestimation.

AR (1) noise model. Fig. 4 illustrates the changes of mean

estimation of all criteria with the increase of AR(1) coefficient and

SD of AR(1) noise. All of the criteria overestimate the number of

components when the noise is temporally correlated. When q is

less than 0.5, the estimation of ITCs rises rapidly with the increase

of q. However, the estimation rises much slower when q is larger

than 0.5 (See Fig. 4A–C). Moreover, all estimations vary slightly as

SD of AR(1) noise increases (See Fig. 4D–F). Among all the

criteria, MDL/BIC shows the least overestimation whereas AIC

shows the most.

The variations of the means of estimations with the tem-

poral data size at the three AR(1) coefficient levels are

displayed in Fig. 5A–C. For all the three AR(1) coefficient

Figure 2. Results of the simulated data with varied Gaussian white noise levels. A) Means of the 50 estimations versus SD of Gaussian
noises. B) Accuracy rate versus SD of Gaussian noises. The curves in the figures represent the estimation of different criteria as is specified in the
legend.
doi:10.1371/journal.pone.0029274.g002

Figure 3. The variation of means of the 50 estimations with the temporal data size(A–C) and FWHM of Gaussian filter(D–F) at three
different white noise levels. A) SD = 1. B) SD = 2. C) SD = 3. D) SD = 1. E) SD = 2. F) SD = 3.
doi:10.1371/journal.pone.0029274.g003
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levels, estimations of AIC, KIC and Laplace criteria increase

with the rising of T. However, BIC/MDL tends to decline as T

increases in the case of q = 0.1 and ascend in the case of q = 0.5

and 0.9.

The mean of the 50 estimations of different ITC versus FWHM

are shown in Fig. 5D–F. When FWHM is smaller than or equal to

1 pixel, larger FWHM leads to larger estimations for all criteria.

However, the estimations of ITCs exhibit very slight variation

Figure 4. Results of simulated data with varied AR(1) noise levels. A–C) Means of the 50 estimations versus AR(1) coefficient at three levels of
SD of AR(1) noise. D–F) Means of the 50 estimations versus SD of AR(1) noise at three AR(1) correlation levels.
doi:10.1371/journal.pone.0029274.g004

Figure 5. Results of the simulations with varied temporal data size (A–C) and different FWHM (D–F) for three AR(1) coefficient
levels. A) SD = 1. B) SD = 2. C) SD = 3. D) SD = 1. E) SD = 2. F) SD = 3.
doi:10.1371/journal.pone.0029274.g005
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when FWHM is larger than 1 pixel. Moreover, BIC/MDL shows

the slightest overestimation.

Real fMRI experiment
Fig. 6 illustrates the results of real fMRI experiment. In Fig. 6A,

the estimations of all the criteria reduce with the increase of the

additionally added white noise level. Compared to the original

fMRI data, the estimation of ITCs falls slightly when additional

AR(1) noise with q = 0.1 is added. The estimation rises with the

increase of q (See Fig. 6B). Fig. 6C shows that raising SD of AR(1)

noise will slightly increase the estimation. Moreover, raising either

the temporal size or the FWHM of Gaussian kernel leads to the

increase of intrinsic dimension estimation for all the criteria (See

Fig. 6D–E). In most cases, BIC/MDL produces the smallest

estimations whereas AIC yields the largest estimations. These

results of the real fMRI data are consistent with the above

simulations.

Discussion

In order to better understand the behavior of ITC, the

performance of AIC, KIC, MDL, BIC and Laplace approxima-

tion were compared empirically through use of a variety of

simulations with different Gaussian white noise levels, AR(1) noise

levels, temporal data sizes and spatial smoothness. A number of

conclusions were drawn, both about ITC in general, and about the

performance of individual criterion in particular. Moreover, all the

criteria were applied to the real resting fMRI data to further verify

the findings of the simulations.

Some conclusions drawn from the results are consistent with

previous studies. For instance, AIC is demonstrated to be an

inconsistent estimator and tends to over-estimate at low Gaussian

white noise level [16]. Despite inconsistency, our simulation based

on white noise model demonstrated that AIC performs better at

the high Gaussian noise level in contrast to the others [17]. BIC

and MDL yield almost the same estimations in the simulated data

and real fMRI data because the sample size of the simulation

(N = 40000) and real fMRI data (N = 116865) in the current study

are sufficiently large [16]. All the criteria will overestimate the

number of components when the temporal correlation in noise

cannot be neglected [24]. Spatial smoothing may lead to the

overestimation [9], especially for AIC, KIC and Laplace

approximation.

In terms of the pure white noise model, results show that high

Gaussian noises can result in the underestimation of all the criteria.

Moreover, Laplace approximation has the best robustness to the

noises among the consistent estimators because its estimation

accuracy rate decreases at the relatively high noise level. Although

the formulas for AIC, KIC and MDL all have similar structures

including the maximum log-likelihood term and the penalty term

(See Eqs. (2, 3 and 6)), only the log term will vary with the noise

level due to the impact of the noise on the distribution of the

eigenvalues of the sample covariance matrix. Fig. 7A exhibits the

variation of the first term of the formulas (22Log-likelihood) with

the candidate order k at different Gaussian white noise levels. It is

observed that the decreasing rate of negative Log-likelihood

reduces rapidly with the increasing of the Gaussian white noise

level. The formula of AIC, KIC and MDL will reach minimum

when the decreasing rate of negative Log-likelihood is equal to the

increasing rate of the penalty. That means slower increasing rate

of penalty is needed to adjust the negative Log-likelihood to ensure

the correctness of estimation at the high Gaussian white noise

level. However, the penalty of AIC, KIC and MDL is independent

of the Gaussian noise level. Therefore, when adding the penalty

having faster increasing rate to the negative Log-likelihood at high

Gaussian noise level, the formulas are more likely to reach

minimum earlier than the true value. Among the three criteria, the

penalty of AIC grows slowest whereas that of MDL grows fastest

Figure 6. Results of the real resting fMRI data. A) Estimations of fMRI data with different added Gaussian noise levels. B) Estimations of fMRI
data with different added AR(1) coefficient levels (SD = 2). C) Estimations of fMRI data with different added SD of AR(1) noise (q = 0.5). D) Estimations
of data with different temporal data size. E) Estimations of data spatially smoothed by Gaussian filter with different FWHM.
doi:10.1371/journal.pone.0029274.g006
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with the increasing of k (See Fig. 7B) which may result in the least

underestimation of AIC and the most underestimation of MDL.

Moreover, it should be noted that the very small growing rate of

AIC penalty is more likely to induce the overestimation of AIC at

the low Gaussian noise level.

Next, smaller temporal data size also induces the underestima-

tion of all the criteria because the decreasing rate of the negative

Log-likelihood reduces fast with the decreasing of the temporal

size T (See Fig. 7C). Although the growing rate of the penalty also

reduces slowly with the decreasing of T, its reduction speed is

much smaller compared to that of the negative Log-likelihood.

Thus, the underestimation of small temporal size is severer in

contrast to that of the large size. Moreover, large temporal size

facilitates more accurate estimation of ITC at high Gaussian noise

level because the fast decreasing rate of the negative Log-

likelihood for large temporal size may counteract the slow

decreasing rate of the negative Log-likelihood induced by high

noise level.

Regarding the AR(1) noise model, it was found that bigger AR(1)

coefficient q could result in more overestimation of ITCs although

the rising speed of overestimation was largely reduced in the case of

larger q (See Fig. 4A–C). By contrast, the increase of SD of AR(1)

noise has very slight impact on the degree of overestimation (See

Fig. 4D–F). From the AR(1) noise model in Eq.(13), we can see that

bigger q indicates stronger autocorrelation of the colored noise. It

has been reported that the break between signal eigenvalues and

Figure 7. The log and penalty terms versus candidate order k and the bound BD versus the temporal data size. A) The variation of the
negative log-likelihood with k at different noise levels. B) The penalty terms of AIC, KIC and MDL versus k. C) The variation of the negative log-
likelihood with candidate order k at different temporal data size with SD = 1. D) The variation of the bound BD versus the temporal data size.
doi:10.1371/journal.pone.0029274.g007
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noise eigenvalues can be smoothed by the autocorrelations in

colored noise [24]. Moreover, the dispersion of the noise

eigenvalues will lead to overestimation because ITCs may ignore

an arbitrarily large gap between the signal and the noise eigenvalues

[20]. Therefore, it is the AR(1) coefficient rather than the SD of

AR(1) noise that has more impact on overestimation, which is

demonstrated by the results of the simulated data.

Although all the criteria tend to overestimate in the case of

AR(1) noise, AIC shows the severest overestimation and MDL/

BIC shows the slightest overestimation. For the simulated data

consisting of seven signals with the temporal data size T, the signal

eigenvalues should be l1, …, l7 and the noise eigenvalues should

be l8, …, lT. Liavas et al (2001) defined the metric Dk~lk=Akz1

that represents the degree of the eigenvalue lk close to the last T-k

eigenvalues lk+1, …, lT [20]. Akz1 is arithmetic mean of the last

T-k eigenvalues. Smaller Dk indicates that lk is closer to the last T-

k eigenvalues.

If
lkz1

Akz2
wBD D 1z(T{k)(âa�{1),

then ITC (kz1)vITC(k)

Here âa� D
ffiffiffi
cT{k{1
p

1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

T{k

ffiffiffi
cT{k{1
p

{1ffiffiffi
cT{k{1
p

s !
and c var-

ied among AIC, KIC and MDL as listed below,

cAIC D exp
2(T{k)-1

N

� �
ð14Þ

cKIC D exp
3(2(T{k)-1)

2N

� �
ð15Þ

cMDL D exp
(2(T{k)-1)ln N

2N

� �
ð16Þ

The variable BD is a bound that can separate the eigenvalues of

signals from those of the noise. In other words, the eigenvalues lk+1,

…, lT can be identified as noise eigenvalues only for Dk.BD and

Dk+1,BD. Moreover, larger BD will make Dk+1 less than BD in the

case of smaller k. Fig. 7D displays the variation of BD with temporal

data size for AIC, KIC and MDL. It can be seen that MDL has the

largest bound and AIC has the smallest bound. Thus, among all the

criteria, the overestimation of MDL/BIC is the least and that of

AIC is the most. In order to further examine the impact of q and SD

of AR(1) noise on the dispersion of noise eigenvaules, the variations

of Dk with k (k.8) for different q and different SD of AR(1) noise are

shown in Fig. 8A–B. Because Dk increases rapidly with the increase

of the AR(1) coefficient q for smaller k (See Fig. 8A), it can be

inferred that the noise eigenvalues are clustered more closely in the

case of smaller q. Moreover, Dk will become less than the bound BD

earlier for small q compared to large q. Therefore, small q

contributes to less overestimation of ITCs relative to large q and

overestimation becomes more likely for increasing the dispersion of

noise eigenvalues. It should be noted that the increase of SD of

AR(1) noise only lead to pretty slight variation of Dk (See Fig. 8B).

This indicates that the variation of SD of AR(1) noise does not affect

the dispersion of noise eigenvalues.

Larger temporal data size can lead to more overestimation for

AR(1) noise because increasing the temporal data size will raise Dk

and intensify the dispersion of noise (See Fig. 8C). Meanwhile, we

also find that MDL/BIC exhibits different behavior from the other

criteria when q is equal to 0.1. The estimation of MDL/BIC

decreases with the increase of T and gradually approaches the true

number of components. In contrast to the other criteria, the bound

of MDL/BIC is the largest and manifests the fastest increasing

speed with the raise of T (See Fig. 7D). Moreover, Dk reduces with

the decrease of q. Because the bound of MDL/BIC increases

rapidly with T and small q counteracts the increasing of Dk with

the rising of T, the estimation of MDL/BIC lessens with the

increase T in the case of q = 0.1.

Moreover, spatial smoothness intensifies the overestimation of

ITCs in the case of AR(1) noise. However, the overestimation is

not increased with FWHM when FWHM is larger than 1. Fig. 8D

depicts the variation of Dk with different FWHM. It can be seen

Figure 8. The variation of Dk versus candidate order k. A) Different AR(1) coefficient levels. B) Different SD of AR(1) noise. C) Different temporal
data size. D) Different FWHM.
doi:10.1371/journal.pone.0029274.g008
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that the head values of Dk are much smaller for FWHM = 0.5 than

FWHM = 1.5/2.5. However, there is only very small difference of

Dk between FWHM = 1.5 and FWHM = 2.5. Therefore, the

simulated results of spatial smoothness can be interpreted by the

variation of Dk with FWHM.

Finally, it should be noted that the impact of SD of AR(1) noise

on the real fMRI data is different from that of simulated data

although most of results of the real fMRI data are in accordance

with the simulated data. When only AR(1) noise exists in the

simulated data, SD of AR(1) noise shows no impact on the degree

of overestimation. However, larger SD of AR(1) noise induces

larger estimation when AR(1) noise is added additionally to the

real fMRI data. The different results may be attributed to the

existence of white noise in the real fMRI data. Because large

Gaussian white noise can result in underestimation, Gaussian

white noise may counteract the o of AR(1) noise in the real fMRI

data. However, the counteraction may become slighter and

slighter and consequently the estimation rises gradually with the

increase of SD of AR(1) noise.

In conclusion, Through both simulated and real fMRI data with

varied Gaussian white noise levels, AR(1) noise levels, temporal

data sizes and spatial smoothness, our study not only demonstrated

some performances of ITC reported in the previous studies, but

also obtained some additional conclusions regarding the perfor-

mance of ITC. Based on the results of the current study, some

suggestions on the selection of ITC to estimate the dimension of

fMRI data were provided: 1) None of ITC is perfect for all fMRI

data due to its complicated noise structure. 2) If there is only white

noise in the data, AIC is preferred when the noise level is high and

otherwise, Laplace approximation is a better choice. However,

KIC may be better than Laplace approximation for the huge

amounts of data at the low Gaussian noise level because Laplace

approximation is more time consuming. 3) When colored noise

exists in the data, MDL/BIC outperforms the other criteria.

Acknowledgments

We wish to thank Dr. Hui Wu and Dr. Litao Zhu for technical assistance

with real fMRI data acquisition.

Author Contributions

Conceived and designed the experiments: MH JL ZL. Performed the

experiments: MH XW ZL. Analyzed the data: MH ZL. Wrote the paper:

MH ZL LY. Results interpretation: MH ZL.

References

1. Martin JM, Scott M, Greg GB, Tzyy-Ping J, Sandra SK, et al. (1998) Analysis of

fMRI data by blind separation into independent spatial components. Human

Brain Mapping 6: 160–188.
2. Calhoun VD, Adali T, Hansen LK, Larsen J, Pekar JJ (2003) ICA of Functional

MRI Data: An Overview. Fourth International Symposium on Independent
Component Analysis and Blind Source Separation. Nara, Japan.

3. Jaakko S, Ricardo V, Fraunhofer FI, Te-won L, Jean-francois C, et al. (2003)

Overlearning in marginal distribution-based ICA: analysis and solutions. J Mach
Learn Res 4: 1447–1469.

4. Beckmann CF, Smith SM (2004) Probabilistic independent component analysis
for functional magnetic resonance imaging. IEEE Trans Med Imaging 23:

137–152.
5. Bartels A, Zeki S (2005) Brain dynamics during natural viewing conditions–a

new guide for mapping connectivity in vivo. Neuroimage 24: 339–349.

6. van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DEJ (2004)
Functional connectivity as revealed by spatial independent component analysis

of fMRI measurements during rest. Human Brain Mapping 22: 165–178.
7. Esposito F, Seifritz E, Formisano E, Morrone R, Scarabino T, et al. (2003) Real-

time independent component analysis of fMRI time-series. Neuroimage 20:

2209–2224.
8. Moritz CH, Carew JD, McMillan AB, Meyerand ME (2005) Independent

component analysis applied to self-paced functional MR imaging paradigms.
Neuroimage 25: 181–192.

9. Li YO, Adali T, Calhoun VD (2007) Estimating the number of independent
components for functional magnetic resonance imaging data. Hum Brain Mapp

28: 1251–1266.

10. Ma LS, Wang BQ, Chen XY, Xiong JH (2007) Detecting functional
connectivity in the resting brain: a comparison between ICA and CCA.

Magnetic Resonance Imaging 25: 47–56.
11. Akaike H (1973) Information theory and an extension of the maximum

likelihood principle. 2nd International Symposium on Information Theory. pp

267–281.
12. Cavanaugh JE (1999) A large-sample model selection criterion based on

Kullback’s symmetric divergence. Statistics & Probability Letters 42: 333–343.
13. Rissanen J (1978) Modeling by shortest data description. Automatica 14:

465–471.
14. Schwarz G (1978) Estimating the dimension of a model. Annals of Statistics 6:

461–464.

15. Minka TP (2001) Automatic choice of dimensionality for PCA. Advances in
Neural Information Processing Systems 15: 598–604.

16. Wax M, Kailath T (1985) Detection of signals by information theoretic criteria.
IEEE Transactions on Acoustics, Speech and Signal Processing, 33: 387–392.

17. Hurvich CM, Tsai C-L (1990) The Impact of Model Selection on Inference in

Linear Regression. The American Statistician 44: 214–217.

18. Karhunen J, Cichocki A, Kasprzak W, Pajunen P (1997) On neural blind

separation with noise suppression and redundancy reduction. Int J Neural Syst 8:

219–237.

19. Bickel P, Zhang P (1992) Variable Selection in Nonparametric Regression with

Categorical Covariates. Journal of the American Statistical Association 87:

90–97.

20. Liavas AP, Regalia PA (2001) On the behavior of information theoretic criteria

for model order selection. IEEE Transactions on Signal Processing 49:

1689–1695.

21. Fishler E, Grosmann M, Messer H (2002) Detection of signals by information

theoretic criteria: general asymptotic performance analysis. IEEE Transactions

on Signal Processing 50: 1027–1036.

22. Calhoun VD, AdalI T, Adali T, Pekar JJ (2002) A method for making group

inference from functional MRI data using independent component analysis.

Human Brain Imaging 14: 140–151.

23. Højen-Sørensen PAdFR, Winther O, Hansen LK (2002) Analysis of functional

neuroimages using ICA with adaptive binary sources. Neurocomputing 49:

213–225.

24. Cordes D, Nandy RR (2006) Estimation of the intrinsic dimensionality of fMRI

data. Neuroimage 29: 145–154.

25. Xie XP, Cao ZT, Weng XC, Jin D (2009) Estimating intrinsic dimensionality of

fMRI dataset incorporating an AR(1) noise model with cubic spline

interpolation. Neurocomputing 72: 1042–1055.

26. Huettel S, Song A, McCarthy G Functional Magnetic Resonance Imaging:

{Sinauer Associates}.

27. Purdon PL, Weisskoff RM (1998) Effect of temporal autocorrelation due to

physiological noise and stimulus paradigm on voxel-level false-positive rates in

fMRI. Human Brain Mapping 6: 239–249.

28. Bullmore E, Long C, Suckling J, Fadili J, Calvert G, et al. (2001) Colored noise

and computational inference in neurophysiological (fMRI) time series analysis:

Resampling methods in time and wavelet domains. Human Brain Mapping 12:

61–78.

29. Friston KJ, Josephs O, Zarahn E, Holmes AP, Rouquette S, et al. (2000) To

Smooth or Not to Smooth?: Bias and Efficiency in fMRI Time-Series Analysis.

Neuroimage 12: 196–208.

30. Locascio JJ, Jennings PJ, Moore CI, Corkin S (1997) Time series analysis in the

time domain and resampling methods for studies of functional magnetic

resonance brain imaging. Human Brain Mapping 5: 168–193.

Comparison of Information-Theoretic Criteria

PLoS ONE | www.plosone.org 10 December 2011 | Volume 6 | Issue 12 | e29274


