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Abstract

Light is an important environmental factor for almost all organisms. It is mainly used as an energy source but it is also a key
factor for the regulation of multiple cellular functions. Light as the extracellular stimulus is thereby converted into an
intracellular signal by photoreceptors that act as signal transducers. The blue-light receptor YtvA, a bacterial counterpart of
plant phototropins, is involved in the stress response of Bacillus subtilis. The mechanism behind its activation, however,
remains unknown. It was suggested based on fluorescence spectroscopic studies that YtvA function involves GTP binding
and that this interaction is altered by absorption of light. We have investigated this interaction by several biophysical
methods and show here using fluorescence spectroscopy, ITC titrations, and three NMR spectroscopic assays that while
YtvA interacts with BODIPY-GTP as a fluorescent GTP analogue originally used for the detection of GTP binding, it does not
bind GTP.
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Introduction

The detection of light is essential for nearly all organisms. It is

not only a source of energy but also triggers the regulation of

numerous biochemical pathways and physiological processes.

Especially plants have developed a wide range of different

photoreceptors to analyse environmental light by means of its

intensity, direction, duration and color [1]. One class of

photoreceptors are the phototropin related LOV proteins that

are able to respond to blue light. They are abundant in a variety of

different organisms reaching from prokaryotes to fungi and plants

[2–4]. Common to all LOV proteins is the presence of at least one

N-terminal LOV (light, oxygen, voltage) domain and a C-terminal

effector domain linked to each other by a short linker peptide [5–

8]. The LOV domain acts as a sensor for blue light harbouring a

flavin molecule as the light-sensing chromophore. The effector

domains of LOV proteins exhibit a wide range of different

functions such as kinases, phosphatases or stress factor regulators

[9].

YtvA of the common soil bacterium Bacillus subtilis belongs to

the class of LOV proteins. It is a ,60 kDa homodimer [10] and

each subunit consists of a N-terminal LOV domain and a C-

terminal sulphate transporter and anti sigma factor antagonist

(STAS) domain linked to each other by a helical amino acid

sequence, denoted Ja-helix. The protein is involved in the general

stress response pathway of Bacillus subtilis [11–14] but its exact

function remains unclear. The photocycle of YtvA is well

understood [15] but the link between light induced formation of

the chromophore adduct and activation of the effector domain is

still missing. In contrast to LOV proteins undergoing substantial

conformational changes upon illumination [16,17], no large-scale

structural changes were observed for YtvA [10]. Möglich et al.

suggested a mechanism based on a rotational movement of the

putative coiled-coil structured Ja-helices from both monomers

[18–20]. This possibly alters the orientation of the STAS domains

which subsequently leads to a change of binding properties to

potential interaction partners. It has been suggested that an

interaction partner for the STAS domain could be nucleoside

triphosphates (NTPs) [21]. This assumption was originally based

on sequence homology to other STAS domains, in particular to

SPOIIAA from Bacillus subtilis or the STAS domain of Rv1739c

from Mycobacterium tuberculosis that have both been shown to bind

NTPs [22,23]. Another hint for a potential GTP-binding

capability of YtvA is the existence of two classical GTP-binding

motifs, DXXG and NKXD, within its STAS domain (D193LSG

and N236KLD). It has been shown that beside other conserved

regions both motifs are jointly responsible for the interaction of

GTP with G-proteins [24]. Further evidence for NTP binding of

the STAS domain of YtvA was provided by Buttani et al. [25] that

used a fluorescence assay to investigate the binding of GTP to

YtvA and found a binding constant of KD = 38 mM for illuminated

YtvA and a increased affinity after dark reversion. This assay has

since been used to study the effect of mutations on the activation

mechanism in YtvA [25–28]. More recently, however, Nakasone

et al. could not confirm that GTP binds to YtvA but found that the

fluorescence labeled GTP analog (BODIPY-GTP) used in the

assays binds unspecifically to YtvA [29]. The aim of the

investigations described here was originally to determine the

precise binding site for GTP on YtvA using heteronuclear NMR.

After a repeated failure to detect any binding we used fluorescence
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spectroscopy, isothermal titration calorimetry (ITC) and NMR

binding assays (protein as well as ligand detected) to investigate not

only the binding of GTP to YtvA and to the isolated STAS

domain of YtvA (further on denoted YtvA-STAS) but also that of

the fluorescent analogue, BODIPY-GTP. We can show that while

BODIPY-GTP does in fact bind to YtvA via the fluorescent dye in

an unspecific manner, GTP does not show any binding to either

protein and that thus YtvA function does not involve GTP

binding.

Results and Discussion

To investigate the binding of GTP to YtvA we applied three

different biophysical methods (Fluorescence spectroscopy, ITC,

NMR) to the full length protein and the isolated STAS domain.

To be able to separate the effects of GTP and the fluorescent dye,

three small molecules were used: GTP, BODIPY-GTP and

BODIPY alone, the latter two are shown in Figure 1.

Fluorescence spectroscopy
As a first step of the investigation we repeated the fluorescence

experiments of Buttani et al. [25]. The fluorescence spectroscopy

experiments clearly showed the binding of BODIPY-GTP to YtvA

and YtvA-STAS (Fig. 2A), respectively. After addition of YtvA or

YtvA-STAS to the fluorophore solution the relative fluorescence

was significantly increased. This is in agreement with the results

presented in the literature so far [25,29]. Since BODIPY is very

hydrophobic, however, interactions of BODIPY with hydrophobic

regions on the protein surface could be the reason for binding.

Such unspecific interactions would also lead to a fluorescence

enhancement and would therefore give a false positive result,

making the detection of effects of an interaction of GTP alone

nearly impossible. We therefore repeated the fluorescence

spectroscopic experiments with BODIPY alone, the spectra are

shown in Figure 2B. The relative fluorescence intensity changes

were comparable to those obtained from the BODIPY-GTP

experiment. This suggests that only the fluorophore is binding to

the protein but the GTP part does not. The latter, however, can

not be excluded since a weak GTP binding capability could simply

be masked due to the large fluorescence enhancement resulting

from fluorophore binding.

Isothermal titration spectroscopy
We therefore performed ITC experiments with YtvA and YtvA-

STAS. An advantage of the method is that beside BODIPY-GTP

also GTP alone can be used for the experiments. The isolated dye

alone is not soluble enough in buffer solution to perform ITC

experiments. All calculated values from the ITC measurements are

shown in Table 1 and the titration curves are given in Figure S1

and Figure S2 in the supplementary material. An interaction of

GTP with either YtvA or YtvA-STAS was not observable, only a

small heat resulting from dilution effects was detectable. The

titration of YtvA with BODIPY-GTP, however, produced a

typical binding curve and a calculated dissociation constant of

2.5 mM. Data obtained from the titration of YtvA-STAS with

BODIPY-GTP were analysed using the software Sedphat v9.01

[30] because the titration did not lead to a complete saturation.

The quality of the data from the latter titration was therefore not

as high as for YtvA, the lower temperature, but also the poor

stability of YtvA-STAS could be reasons for that. However,

Sedphat v9.01 is able to handle such difficulties much better than

the Microcal Origin software and produced a well fitted binding

curve (see Figure S3). The best-fit values for the thermodynamic

parameters were KD = 7.6 mM and DH = 248 kcal/mol. Whereas

the DH value was associated with great uncertainty, KD was

defined precisely, as demonstrated by variation of the reduced x2

around the best-fit minimum [31,32]. In the latter procedure, KD

is frozen at values close to but different from its best-fit value, and

the fit is repeated by optimising the other parameters (i.e., DH, the

heat of dilution and the incompetent fraction of BODIPY-GTP in

Figure 1. Fluorescent dyes. Structural formula of BODIPY-GTP (top) and BODIPY methyl ester (bottom).
doi:10.1371/journal.pone.0029201.g001

GTP Does Not Bind to YtvA
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the syringe). This provides a projection of the reduced x2 value

onto the KD plane (see Figure S4, blue circles). The reduced x2

threshold for the 99% confidence interval was then calculated on

the basis of Fisher’s F distribution (see Figure S4, red line). The

99% confidence interval for KD thus determined ranged from

6.2 mM to 9.4 mM. The ITC data confirmed the results from the

fluorescence spectroscopy experiments indicating that only the

fluorophore binds while GTP does not. Additionally the data

suggest that the STAS domain is responsible for the interaction.

Interestingly, we found a significant difference in the stoichiometry

between the reaction of BODIPY-GTP with YtvA and YtvA-

STAS. While YtvA-STAS binds BODIPY-GTP in a 1:1 ratio, the

ratio for YtvA complexed with BODIPY-GTP is only 2:1. While

YtvA is clearly dimeric under the tested conditions [10],

sedimentation velocity experiments with YtvA-STAS performed

in our lab showed that this domain is mostly monomeric at low

concentrations (,100 mM) but tends to dimerize with increasing

concentration [33]. Furthermore, YtvA-STAS is only stable below

12uC and starts to aggregate at physiological temperatures, while

the full length protein exhibits a much higher stability. We

therefore assume that YtvA-STAS possesses hydrophobic regions

on its surface and that these regions are covered to some extend in

dimeric full length YtvA. Since the binding of BODIPY-GTP

seems to be driven by hydrophobic interactions this could explain

the above mentioned differences of the stoichiometric ratios.

NMR spectroscopy
NMR spectroscopy is well established as a method for the

detection of interactions between proteins and small ligands, in

particular if the interaction is weak. Two types of experiments are

possible: using 15N-labeled protein the signals of the protein can be

observed and changes upon binding detected by recording two-

dimensional 1H,15N correlations. In addition, ligand-detected

experiments can be performed by recording STD [34] or

WaterLOGSY [35,36] experiments in the presence and absence

of unlabeled protein. Both proteins were available in 15N-labeled

form, for the full length protein an assignment of the 1H,15N

correlation (for the dark state) was available as well [33].

Two-dimensional 1H,15N correlation spectra (1H,15N-HSQCs)

were recorded for YtvA-STAS with and without the addition of an

6-fold excess of GTP and are shown in Figure 3A. No significant

changes of chemical shift or intensities were observable in these

experiments, indicating that no interaction occurs. In contrast, the

overlay of 1H-15N-HSQC spectra of YtvA-STAS alone and YtvA-

STAS treated with BODIPY-GTP shows large intensity changes

for various cross peaks (Fig. 3B). This confirmed the interaction

between both species and showed that BODIPY-GTP is in

intermediate exchange with respect to the NMR time scale leading

to line broadening of those protein signals from residues

participating in the binding.

We repeated these experiments with YtvA, except that a 10-fold

excess of the appropriate ligand was added and that – given the

size of the protein - 1H,15N correlations were recorded as 1H-15N-

TROSY spectra [37,38]. Consistent with the results obtained from

YtvA-STAS no significant differences between the 1H-15N-

TROSY spectra of YtvA without and with GTP was observed

but various changes of cross peak intensities were observed in

presence of BODIPY-GTP. A superposition of the spectra from

both experiments is given in Figure S5 of the supplementary

material. We quantified the effects of the ligands for those residues

that show well resolved distinct single peaks. Figure 4 shows plots

of the ratios of signal intensity against the corresponding residues

of the YtvA sequence for GTP (Figure 4A) and BODIPY-GTP

(Figure 4B). In case of GTP the intensity ratios fluctuate closely

around 1 indicating that there are nearly no differences between

the corresponding spectra. Especially residues of the D193LSG and

the N236KLD motif were not influenced by GTP. In contrast, the

binding of BODIPY-GTP resulted in significant effects on YtvA.

While its LOV domain is nearly unaffected and the average ratio

Figure 2. Comparison of fluorescence spectra. Fluorescence
spectra obtained from experiments using BODIPY-GTP (A) or BODIPY (B)
as the fluorophore. The spectra are shown in a ‘bottom to the top’ order
for 2.2 mM sole fluorophore, 3 mM sole fluorophore, 2.2 mM fluorophore
with 12 mM YtvA and 3 mM fluorophore with 12 mM YtvA-STAS.
doi:10.1371/journal.pone.0029201.g002

Table 1. Results of the ITC experiments with YtvA and YtvA-STAS.

protein ligand DH (kcal/mol) -TDS (kcal/mol) N KD (mM) DG6 (kcal/mol)

YtvA-STAS GTP / / / n. b. d. /

YtvA-STAS BODIPY-GTP 248 41.3 0.96 7.6 26.7

YtvA GTP / / / n. b. d. /

YtvA BODIPY-GTP 29.660.3 2.0 0.5460.01 2.560.3 27.6

n.b.d.: no binding detected.
doi:10.1371/journal.pone.0029201.t001

GTP Does Not Bind to YtvA

PLoS ONE | www.plosone.org 3 January 2012 | Volume 7 | Issue 1 | e29201



of intensity within the core domain (amino acids 26–128) added up

to 0.93+/20.1, the YtvA-STAS domain and also the Ja-helix were

strongly affected. Average intensity change ratios were 0.60+/

20.21 for Ja and 0.61+/20.17 for YtvA-STAS, respectively.

Thus the binding of BODIPY-GTP appears to be confined to

the Ja-helix and the STAS domain but in a rather unspecific

manner. A similarily unspecific mechanism for the interaction of

BODIPY-GTP with hydrophobic regions of the LOV domain of

YtvA was suggested by Nakasone et al. [29], their assumption being

based on the comparison of BODIPY-GTP binding to different

truncated versions of the LOV domain part of the protein. Such

truncations may alter the hydrophobicity of the resulting surface

leading to interactions with hydrophobic ligands which may

explain why binding to the LOV domain was detected while the

interaction seems to be confined to the STAS domain and the Ja-

helix in our experiments. As indicated in the ITC experiments we

detect a similar effect when truncating the protein: the binding of

BODIPY-GTP to YtvA-STAS differs from that to YtvA. We know

from further NMR experiments performed with full length YtvA

[33] that the Ja-helix and the STAS domain are more flexible than

the LOV domain. This could explain why the two former parts of

the protein are more accessible to unspecific hydrophobic

interactions while the LOV domain - being a relatively rigid and

tight binding dimer - does not expose any hydrophobic patches as

easily as the linker and the STAS domain during their movements.

More importantly, however, the NMR experiments with protein

detection described above indicate again that no binding of GTP

to YtvA is taking place.

To confirm the results obtained with detection of the protein

and to investigate a possible interaction of GTP with light-

activated YtvA we applied two further NMR techniques; the STD

[34] and the WaterLOGSY [35,36] experiment. Both techniques

are based on the detection of the ligand and detect changes in its

NMR spectrum caused by an interaction with the protein. While

in a STD spectrum binding is indicated by the presence of signals

from the ligand, it is detectable in a WaterLOGSY experiment by

a sign change of the signals from the small molecule. Given that

latter technique relies on exchange with the bulk solvent,

hydrogens of the ligand that are in exchange with it will always

appear irrespective of binding. We first performed the experiments

using BODIPY-GTP and its interaction with YtvA could be

clearly verified. Figure 5 shows the expanded regions of the NMR

spectra, the WaterLOGSY and the STD experiment of YtvA

complexed with BODIPY-GTP are shown in Figure 5A and

Figure 5B, respectively. Also displayed are the reference spectra of

YtvA (Figure 5C) and BODIPY-GTP (Figure 5D). Signals

belonging to the aromatic protons from the BODIPY part are

highlighted by asterisks. The signal marked by an arrow resulted

from an exchangeable proton of BODIPY-GTP and is therefore

only visible in the reference and the WaterLOGSY spectrum. Both

types of experiments confirmed that the hydrophobic part of

BODIPY is responsible for the interaction. The repetition of the

experiments with YtvA in the lit-state (continuously illuminated)

produced comparable results (data not shown).

To study the interaction between GTP and YtvA all

experiments were repeated under the same conditions as

Figure 3. Superposition of 1H-15N-HSQC spectra of YtvA-STAS without and with added ligands. 1H-15N-HSQC spectra of (A) 30 mM
uniformly 15N-labeled YtvA-STAS without (black) and with 180 mM GTP (red) and (B) 30 mM uniformly 15N-labeled YtvA-STAS without (black) and with
180 mM BODIPY-GTP (red).
doi:10.1371/journal.pone.0029201.g003

GTP Does Not Bind to YtvA
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previously used with BODIPY-GTP. Regions of the 1D 1H -NMR

spectra are given in Figure 6. A 1D 1H-NMR reference spectrum

of YtvA is only shown for the dark state (Fig. 6E) since the

difference to the lit spectrum is rather small. Figure 5F shows the

reference spectrum of GTP. The WaterLOGSY and STD spectra

of GTP in the presence of dark state YtvA are shown in Figure 6A

and Figure 6B, respectively. The corresponding spectra achieved

from the experiment performed under continuous illumination are

shown in Fig. 6C (WaterLOGSY) and Fig. 6D (STD). The signal

marked by an arrow belongs to a water exchangable proton of

GTP. The sharp signal at 8.25 ppm in the GTP reference

originates from the proton bound to C8 of the purine and the

doublet at 6.04 ppm is derived from H19 of the ribose. Both GTP

signals are absent in the STD spectra and negative in the

WaterLOGSY spectra. This again shows unambiguously that

YtvA, independent of its activation state, does not interact with

GTP.

In conclusion we have shown using several biophysical

techniques that while the fluorescent analogue of GTP, BOD-

IPY-GTP, does indeed interact with YtvA in an unspecific

manner, GTP itself does not and that these effects are independent

of the presence of blue light. YtvA therefore appears to be no

GTP-binding protein and experimental results based on the

assumption of an interaction between GTP and YtvA have to be

reconsidered. That also applies to theories assuming a GTP

dependent function or activation mechanism of YtvA, and the

interpretation of in vivo mutational studies [25–28].

Materials and Methods

Buffer
Buffer A: 30 mM Tris-HCl pH = 7.9; 300 mM NaCl; 1 mM

MgSO4; 5 mM imidazole; 10% glycerol; CompleteH protease

inhibitor mix (Roche)

Buffer B: 20 mM Tris-HCl pH = 7.5; 300 mM NaCl; 1 mM 2-

Mercaptoethanol

Buffer C: 10 mM Na2HPO4; 1.8 mM KH2PO4; 2.7 mM KCl;

137 mM NaCl; 5 mM 2-Mercaptoethanol; pH = 7.4

Buffer D: 20 mM Tris-HCl pH = 7.4; 50 mM NaCl; 100 mM

TCEP

Buffer E: 20 mM Na-Phosphate pH = 7.5, 150 mM NaCl,

2 mM DTT

Cloning
Construction of the expression plasmids for full-length YtvA and

for the STAS domain of YtvA (amino acids 148–261) was

performed as described earlier [10]. For cloning of the STAS

domain the following primers were used:

Forward tobacco etch virus (TEV): 59-gac gac gac aag atg gaa

aac ctg tat ttc cag-39

Forward YtvA-STAS: 59-aac ctg tat ttc cag gga act cct att gtc

ccg att cg-39

Reverse YtvA-STAS: 59-gag gag aag ccc ggt tta cat aat cgg aag

cac ttt aac g-39

Via the PCR, a TEV cleavage site was introduced, leaving an

additional Gly at the the N-terminus after proteolysis. In YtvA the

wild-type Met1 was replaced by this glycine. The plasmid

described earlier by Losi et al. [39] was used as a template. The

amplified DNA sequences were cloned into the pET 30 EK/LIC

vector using the ligation independent cloning technique (EK/LIC

system, Merck KGaA) [40]. All clones were checked by

bidirectional DNA sequence analysis (Invitek, Berlin, Germany).

Protein expression and purification
Expression and purification of unlabeled YtvA was done

following the protocol of Jurk et al. [10]. Recombinant expression

of YtvA-STAS was also carried out using T7-Express Rosetta2

cells as expression host (New England Biolabs GmbH, Frankfurt

Figure 4. Plots of 1H-15N-TROSY cross peak intensity ratios of YtvA. Plots of the 1H-15N-TROSY cross peak intensity ratios of (A) 50 mM
uniformly 2H-15N-labeled YtvA with and without 500 mM GTP and (B) 50 mM uniformly 2H-15N-labeled YtvA with and without 500 mM BODIPY-GTP
against the YtvA sequence. Corresponding 2D 1H-15N-TROSY spectra were recorded with YtvA kept in the dark state. Residues are represented by
asterisks for the LOV domain, triangles for the Ja-helix and circles for STAS domain. An intensity ratio of 1 (dashed line) means that the addition of the
appropriate ligand has shown no effect on corresponding residues.
doi:10.1371/journal.pone.0029201.g004

GTP Does Not Bind to YtvA
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a.M., Germany). For unlabeled YtvA-STAS cells were grown in

TB medium supplemented with 2% glucose and the appropriate

antibiotics. Starting from an overnight pre-culture fresh media was

inoculated to an OD600 of 0.15 and cells were grown at 37uC to a

final OD600 of 1.0–1.2. Cultures were cooled down to 22uC and

protein expression was induced by adding IPTG (Carl Roth

GmbH, Karlsruhe, Germany) to 1 mM final concentration. 18–

20 h after induction cells were harvested by centrifugation in a

pre-chilled rotor at 4uC and either stored at 280uC or, after

resuspension in buffer A, directly lysed with an EmulsiFlex-C3

High-Pressure Homogenizer (Avestin Inc., Ottawa, Canada). 15N-

labeled YtvA-STAS was expressed in M9 minimal medium [41],

supplemented with twice the concentration of M9-salt, using a

high cell density fermentation system (FedBatch Pro, DASGIP,

Germany). For details see Fiedler et al. [42]. A pre-culture of

400 ml TB (supplemented as described above) was inoculated

from an overnight culture to an OD600 of 0.05 and cells were

grown at 37uC to a final OD600 between 1.0–1.5. Cells were

harvested by mild centrifugation (10006g, 10 min) at room

temperature and the pellet was resuspended in 50 ml M9 minimal

medium. 25 ml of the resuspended cells were used for the

inoculation of one 250 ml bioreactor. During the batch phase the

temperature was kept constantly at 37uC. The pH of the media

was kept above 7 during the whole fermentation process by

stepwise addition of 1 M NaOH. After depletion of mostly all C

and N sources the bioreactor was cooled to 22uC and 15 ml of the
15N-labeled expression feed was pumped into the bioreactor with a

flow rate of 1.3 ml/h. The induction was started 30 min

afterwards by the addition of IPTG to a final concentration of

1 mM. 1 h after complete addition of the expression feed cells

were harvested or directly lysed as described above. Production of
2H-15N-labeled YtvA was performed as described in Jurk et al.

[33]. Unlabeled and 15N-labeled YtvA-STAS were purified by

affinity chromatography on a PorosH 20 mc column (Workstation

Vision, Applied Biosystems) using recommended standard buffers.

TEV cleavage was performed during dialysis overnight at 8uC in

Buffer B by addition of 1 OD280 TEV protease to 100 OD280 of

fusion protein followed by a second affinity chromatography

purification step to remove the TEV protease and the cleaved tag.

TEV protease was recombinantly expressed as N-terminal His6-

tagged fusion protein using E. coli BL21-DE3 as expression host.

TEV protease clone was generously provided by Gunter Stier

(EMBL, Heidelberg, Germany). Finally, the proteins were further

purified by size exclusion chromatography using a 26/60 Super-

dex 75 column on a Pharmacia Biotech FPLC system (LKB GP-

10) equilibrated with buffer C. Sample concentration was

increased with a stirred Cell 8050 (Millipore GmbH, Schwalbach,

Germany) equipped with Ultrafiltration Disc YM-10 (10 kDa

NMWL) for Ytva or PLBC (3 kDa NMWL) for YtvA-STAS.

Proteins were checked to be .95% pure by overloading a SDS-

gel. Photochemical activity of YtvA was checked by comparison of

UV-Vis spectra recorded from dark and illuminated samples.

Sample preparation
All proteins used for fluorescence spectroscopy and 1D 1H-

NMR experiments (STD/WaterLOGSY) were dialysed for 24 h

against 1000-fold excess of buffer C at 8uC. Proteins used for

Isothermal Titration Calorimetry were dialysed for 24 h at 8uC
against 1000-fold excess of buffer D except for YtvA-STAS where

the pH was set to 7.5 and 150 mM NaCl was used. 2D

heteronuclear NMR experiments were done in buffer C for YtvA

and buffer E for YtvA-STAS, respectively. Concentration and

chromophore content of YtvA was determined according to Jurk

et al. [10]. Concentration of YtvA-STAS was calculated from the

absorption at 280 nm using a calculated molar extinction

coefficient of 2980 M21 cm21 at 280 nm (ProtParam). GTP,

BODIPY-GTP (BODIPYH TR GTP) and BODIPY (BODIPYH
TR methyl ester), all purchased from Invitrogen, were not dialysed

because of its small molecular weight, the tendency of BODIPY-

GTP to adsorb to the dialysis membrane and the small solubility of

BODIPY in aqueous solutions. Desired concentrations were

achieved by dilution with the appropriate dialysis buffer.

Fluorescence spectroscopy
Fluorescence spectroscopy was performed on a Jasco FP-6500

spectrofluorometer at 20uC using a 700 ml, 1 cm light-path half-

Figure 6. Sections of ligand detected 1D 1H-NMR spectra from
the analysis of weak molecular interactions between YtvA and
GTP. WaterLOGSY (A) and STD-Watergate (B) of 20 mM dark state YtvA
mixed with 200 mM GTP. WaterLOGSY (C) and STD-Watergate (D) of
20 mM lit state YtvA mixed with 200 mM GTP. Watergate of (E) 20 mM
dark state YtvA and (F) 200 mM GTP. Signals belonging to GTP are
connected by dotted lines. Exchangeable ligand protons are marked by
arrows.
doi:10.1371/journal.pone.0029201.g006

Figure 5. Sections of ligand detected 1D 1H-NMR spectra from
the analysis of weak molecular interactions between dark state
YtvA and BODIPY-GTP. WaterLOGSY (A) and STD-Watergate (B) of
20 mM YtvA mixed with 200 mM BODIPY-GTP. Watergate of (C) 20 mM
dark state YtvA and (D) 200 mM BODIPY-GTP. Signals of protons from
the aromatic BODIPY part are marked by asterisks. Exchangeable ligand
protons are marked by arrows.
doi:10.1371/journal.pone.0029201.g005

GTP Does Not Bind to YtvA
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micro fluorescence cuvette. Excitation wavelength was set to

590 nm with 5 nm slit width and emission was detected between

600–650 nm with low sensitivity. Reference spectra of the single

components were recorded under the same conditions as used for

the binding experiments (12 mM YtvA, 2.2 mM ligand and 12 mM

STAS, 3 mM ligand). That includes the presence of 0.06% DMSO

in all samples, since BODIPY is only available diluted in DMSO.

The differences of the ligand concentrations resulted from the fact

that the concentration of the YtvA stock solution was not as high

as the concentration of the YtvA-STAS stock solution. All

experiments were directly performed inside the cuvette. The

appropriate components were pooled together, mixed by several

inversion steps and measured after one minute of incubation. All

measurements were performed twice. To prevent YtvA from

photo-activation all experiments were done under safe red light

(l.620 nm).

Isothermal Titration Calorimetry
Isothermal Titration Calorimetry experiments were performed

with a VP-ITC microcalorimeter (MicrocalH) at 25uC for YtvA

and 12uC for YtvA-STAS, respectively. All titrations were

performed twice except the titration of YtvA-STAS with

BODIPY-GTP. After the dialysis the protein and ligand samples

were diluted with the appropriate dialysis buffer. The 500 mM

ligand solution was titrated into the sample cell containing either

60 mM YtvA, 30 mM YtvA or 50 mM YtvA-STAS except the

titrations of YtvA-STAS with GTP where 1 mM GTP was titrated

to 100 mM YtvA-STAS. The volume of each injection was 10 ml

except the first one where only 2 ml were injected. Spacing time

between each injection was 5 min. Control experiments were

performed by an identical injection pattern of ligand into the

sample cell containing only buffer to monitor dilution effects. Data

analysis was performed using the Microcal Origin software.

Baseline correction and peak integration were done manually. The

association constant (K), standard enthalpy change (DH), standard

entropy change (DS) and stoichiometry (N) for the interactions

were obtained from fitting of the experimental titration curve. The

fit was performed for a single binding site. The enthalpy, the

association constant and the stoichiometry were kept variable

during the fitting procedure. The data obtained from the titration

of YtvA-STAS with BODIPY-GTP were calculated using the

software Sedphat v9.01 [30]. Its algorithm fits data of titrations

where a complete saturation could not be reached much better

than the Microcal Origin software. Free enthalpy (DGu) was

calculated from the fitted parameters using the following equation:

DGu= -RTlnK =DH -TDS.

NMR experiments
NMR experiments were performed at 300 K on a Bruker

Avance 600 MHz spectrometer equipped with a 5 mm triple

resonance PFG (z-axis) cryo probe head. All spectra were

processed using TopspinH 2.1 software. Analysis of crosspeak

intensities from 2D heteronuclear NMR spectra was done using

ccpnmr analysis v.2.1 software [43]. Heteronuclear NMR

spectroscopic investigation of YtvA-STAS interaction with

GTP/BODIPY-GTP was achieved by recording 2D 1H-15N-

HSQC experiments. 30 mM uniformly 15N-labeled YtvA-STAS

was treated either with 180 mM GTP or 180 mM BODIPY-GTP.

Investigation of interactions between YtvA (dark state) and GTP

or BODIPY-GTP was done by recording 2D 1H-15N-TROSY

spectra of 50 mM uniformly 2H-15N-labeled YtvA with and

without a 10-fold excess of the appropriate ligand. Additionally

for YtvA, NMR spectroscopic investigations of weak molecular

interactions were performed using WaterLOGSY [35,36] and

Saturation Transfer Difference (STD) experiments [34]. Both

types of experiments were also applied to investigate the binding

capabilities of the ligands to illuminated YtvA. For this purpose we

used a Fiber Coupled Light Source that allows a continuous

irradiation of the sample with lmax = 455 nm directly within the

magnet (for details see Figure S6 and S7 in the supplementary

material). To achieve an uniform illumination of the NMR

samples the end of the optical fiber was modified as described by

Kuprov et al. [44]. Ligand detected experiments were performed

with 20 mM YtvA plus a 10-fold excess of the appropriate ligand.

1D 1H -NMR spectra with water suppression (Watergate) [45]

were recorded with the sole ligands and sole YtvA for reference,

respectively. Concentrations were kept equal in all corresponding

experiments. A reference spectrum (Watergate), a 1D Water-

LOGSY and a 1D STD-Watergate spectrum was recorded during

each interaction study.

Supporting Information

Figure S1 ITC titration curves of YtvA-STAS. (A) 1 mM

GTP in buffer, (B) 1 mM GTP in 100 mM YtvA-STAS and (C)

500 mM BODIPY-GTP in 50 mM YtvA-STAS. All titrations were

performed at 12uC.

(EPS)

Figure S2 ITC titration curves of dark state YtvA. (A)

500 mM BODIPY-GTP in 60 mM YtvA, (B) 500 mM BODIPY-

GTP in 30 mM YtvA and (C) 500 mM GTP in 60 mM YtvA. All

titrations were performed at 25uC.

(EPS)

Figure S3 Fit curve of the data obtained from the
titration of YtvA-STAS with BODIPY-GTP. The binding

curve and the residuals were calculated with Sedphat v9.01.

(TIF)

Figure S4 Plot of the confidence intervall analysis of the
KD obtained from the titration of YtvA-STAS with
BODIPY-GTP. The projection of the reduced x2 values onto

the KD plane is shown by blue circles. The reduced x2 threshold

for the 99% confidence interval is shown by the red line. The 99%

confidence interval for KD (all values on or below the red line)

ranges from 6.2 mM to 9.4 mM.

(TIF)

Figure S5 Superposition of 1H-15N-TROSY spectra of
dark state YtvA without and with added ligands. 1H-15N-

TROSY spectra of (A) 50 mM uniformly 2H-15N-labeled YtvA

without (black) and with 500 mM GTP (red) and (B) 50 mM

uniformly 2H-15N-labeled YtvA without (black) and with 500 mM

BODIPY-GTP (red). All spectra were recorded with YtvA kept in

the dark state.

(TIF)

Figure S6 LED based Fiber Coupled Light Source for
NMR sample illumination. The light of a modified high

power LED (Luxeon LXHL-LR5C, lmax = 455 nm) is butt

coupled into an optical fiber (Thorlabs 0,48NA multimode fiber

BFH48-1000) and directly transmitted into a 5 mm NMR sample

tube. The optical output power is adjustable by means of its

intensity and duty cycle from 0 mW up to 8 mW (measured with a

S302C Thermal Power Head, Thorlabs).

(JPG)

Figure S7 NMR sample illumination with our Fiber
Coupled Light Source. Shown is the illumination of YtvA

(500 mM in PBS) at lmax = 455 nm directly inside the NMR tube.

To achieve a homogeneous illumination within the hole sample
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the end of the fiber was etched stepwise (12 steps, 3 mm per step)

in a mixture containing 30% hydrofluoric acid and 20% sulfuric

acid at 60uC as described earlier by Kuprov et al. [44].

(JPG)
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