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Abstract

Both pandemic and seasonal influenza are receiving more attention from mass media than ever before. Topics such as
epidemic severity and vaccination are changing the way in which we perceive the utility of disease prevention. Voluntary
influenza vaccination has been recently modeled using inductive reasoning games. It has thus been found that severe
epidemics may occur because individuals do not vaccinate and, instead, attempt to benefit from the immunity of their
peers. Such epidemics could be prevented by voluntary vaccination if incentives were offered. However, a key assumption
has been that individuals make vaccination decisions based on whether there was an epidemic each influenza season; no
other epidemiological information is available to them. In this work, we relax this assumption and investigate the
consequences of making more informed vaccination decisions while no incentives are offered. We obtain three major
results. First, individuals will not cooperate enough to constantly prevent influenza epidemics through voluntary vaccination
no matter how much they learned about influenza epidemiology. Second, broadcasting epidemiological information richer
than whether an epidemic occurred may stabilize the vaccination coverage and suppress severe influenza epidemics. Third,
the stable vaccination coverage follows the trend of the perceived benefit of vaccination. However, increasing the amount
of epidemiological information released to the public may either increase or decrease the perceived benefit of vaccination.
We discuss three scenarios where individuals know, in addition to whether there was an epidemic, (i) the incidence, (ii) the
vaccination coverage and (iii) both the incidence and the vaccination coverage, every influenza season. We show that
broadcasting both the incidence and the vaccination coverage could yield either better or worse vaccination coverage than
broadcasting each piece of information on its own.
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Introduction

The increasing mediatization of medical and epidemiological

information determines an increasing role of social behavior for

the success of routine vaccination programs. Vaccine promotions,

epidemiological newscasts and rumors change the way in which

individuals perceive the utility of disease prevention. This

phenomenon has been described by empirical studies discussing

vaccination against human papillomavirus [1], measles-mumps-

rubella [2,3], poliomyelitis [4] and influenza [5,6]. Social behavior

is particularly important for influenza, which is a seasonal disease

and remains a continual epidemic and pandemic threat. In this

case, individuals need to make yearly vaccination decisions that

are all potentially biased by their perception of costs versus benefits

of vaccination.

Mathematical modeling of the potential impact of mass media

on the course of epidemics has become a topic of interest only in

the past few years [7–10]. Several problems have been discussed:

sequential disease outbreaks due to the psychological impact of the

reported incidence [7], coexistence of multiple endemic states

caused by media coverage [8], and the effect of mass media on

constant and seasonal vaccination programs [9,10]. The mathe-

matical techniques utilized so far are compartmental models

expressed as systems of ordinary differential equations. However, a

technique more adapted to describe decision making and adapt-

ability of individuals in the process of voluntary vaccination is

game theory.

Game theory has been successfully applied to modeling the

impact of social behavior on vaccination coverage (i.e., the

proportion of the population that gets vaccinated). Deductive

reasoning games have been used to predict the voluntary

vaccination coverage for pathogens that provide permanent

immunity [11–13]. In the case of pathogens that do not provide

permanent immunity (e.g., influenza), several modeling ideas have

been studied. An evolutionary game was proposed where an

individual copies the vaccination strategy of another with a

probability depending on the success of the vaccination strategy

[14]. A different approach is that based on inductive reasoning

games [15] initially applied to modeling financial markets [16]. In

this case, it is conjectured that individuals make repeated

vaccination decisions based on their expectations about future

epidemics that are, in turn, determined by their collective

vaccination coverage. Inductive reasoning games were applied to

understanding the dynamics of influenza vaccination coverage

assuming both uniform mixing of individuals [17,18] and mixing

through complex contact networks [19].

In this paper, we generalize previous modeling work [17,18] to

study the potential impact of mass media on social behavior and,
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implicitly, influenza vaccination coverage. So far, inductive

reasoning games of influenza vaccination assumed that, at the

end of each influenza season, the only epidemiological information

available to individuals was whether an epidemic took place. One

of the main outcomes of the models with uniform mixing is that

influenza epidemics gradually decrease in severity and are

occasionally prevented [17]. These models then predict the

occurrence of a severe epidemic because individuals expect that

their peers will vaccinate and they attempt to free-ride on herd

immunity. After the severe epidemic, individuals vaccinate again

in increasing numbers, year after year, until an epidemic is

prevented and the scenario repeats. Various vaccination incentives

were theoretically investigated for their efficiency in preventing

severe epidemics [17]. Here we investigate the potential impact of

broadcasting various epidemiological information for individuals

to evaluate their influenza vaccination decisions at the end of the

season. We analyze how epidemiological newscasts may influence

the perceived benefit of vaccination, change social behavior, and

prevent severe epidemics.

The outline of the paper is as follows. In the next section we

introduce our generalized individual-level inductive reasoning

game by a set of eight assumptions. It turns out that, in the case of

large populations, the mean-field approximation of the game

typically provides an adequate description of the coverage

dynamics. Hence, a full analysis of the inductive reasoning game

is not typically necessary. Then, we develop this approximation in

the form of a one-dimensional map where influenza epidemiology

and social behavior remain broadly specified by a few unrest-

rictive axioms. Analysis of this iterated map leads to three key

results: (a) individuals will not cooperate enough to consistently

prevent influenza epidemics; (b) broadcasting epidemiological

information in addition to whether or not an epidemic occurred

may stabilize the vaccination coverage and prevent severe

epidemics; and (c) the stable vaccination coverage follows the

trend of the perceived benefit of vaccination. However, increasing

the amount of epidemiological information released to the public

may either increase or decrease the perceived benefit of

vaccination. To see these results at work, we analyze several

model examples. First, we discuss a slight generalization of a

previously published model displaying periodically recurring

severe epidemics [17,18] that serves as reference. Then, we

discuss two models where individuals know, every influenza

season, either (i) the incidence or (ii) the vaccination coverage, in

addition to whether there was an epidemic. We show that

broadcasting either epidemiological indicator may stabilize the

vaccination coverage and prevent severe epidemics. Finally, we

discuss two models where individuals know both the incidence

and the vaccination coverage every influenza season. One model

assumes that individuals are risk-avoiding and use the available

information to better protect themselves against infection, while

the other assumes that individuals are risk-seeking and use the

information to take even greater risk in the attempt to free-ride

on herd immunity. We show that broadcasting both the incidence

and the vaccination coverage could yield either better or worse

vaccination coverage than broadcasting each piece of information

on its own. We make concrete assumptions about influenza

epidemiology and present numerical results. Finally, we conclude

our work.

Methods

Our model describes a large population of individuals. We

account only for the occurrence of epidemics and we do not

consider outbreaks since outbreaks become decreasingly important

as the population size increases. Influenza transmission models

describing large populations [20–22] have demonstrated the

existence of a critical coverage level such that: if the coverage is

below the critical level, an epidemic will occur, otherwise the

epidemic will be prevented. Our inductive reasoning game

includes a simple model of this coverage threshold (see

Assumptions q1–2 below), assumes that the vaccine offers

complete protection for one year (n.b., increasing the critical

vaccination coverage may account for effects of treatment and

imperfect vaccines), and proceeds as follows. We consider a large

population of individuals acting in their own self-interest. Each

individual makes personal decisions as to whether or not get

vaccinated against influenza. The collective outcome of these

decisions drives influenza epidemiology which, in turn, affects

future individual-level decisions. The model proceeds iteratively in

two steps per influenza season. The first step is at the beginning of

the season when every individual makes their vaccination decision

depending on their experience with flu vaccination. An epidemic

may occur every influenza season, depending on how the achieved

coverage compares with the critical coverage. The second step is at

the end of the influenza season when every individual scores their

last vaccination decision. We assume that, if they did not get

vaccinated, an individual evaluates their decision favorably if they

avoided infection (the score has the maximum value of 1) and

unfavorably if they got infected (the score has the minimum value

of 0). Vaccinated individuals establish the scores of their decisions

based on the available epidemiological information. Then, each

individual updates their vaccination experience using the score of

their last vaccination decision. The whole process repeats in the

next influenza season.

Model definition
For an axiomatic description of the model, we denote the

coverage by p, the critical coverage by pc, and the probability of

getting infected by q. We now present the assumptions that define

our generalized inductive reasoning game in mathematical form.

Assumption 1. We consider a number of N individuals that

make yearly vaccination decisions. The interest of the individuals

is to avoid getting infected, preferably without having to vaccinate.

They act in their own interest and do not communicate their

vaccination decisions to each other.

Assumption 2. To make their vaccination decision, each

individual uses their past experience of vaccination outcomes.

Thus, individuals independently decide whether or not to

vaccinate using inductive reasoning.

Assumption 3. An individual weights their previous va-

ccination outcomes with respect to their most recent vaccination

outcome. A parameter s discounts the previous year’s vaccination

outcome with respect to the outcome of the present year

(0ƒsv1). For s~0, individuals completely ignore the outcome

of previous seasons and, as a consequence, do not use inductive

reasoning. If s were equal to 1, individuals would not discount the

previous vaccination seasons; therefore, the vaccination outcome

of the present season (i.e., season n) would be as important as any

of the previous seasons.

Assumption 4. We define a vaccination decision as a

realization x(i)
n of a Bernoulli variable with parameter w(i)

n that

further depends on a variable v(i)
n . i and n are positive integers;

i~1,2,:::,N labels the individual and n§0 labels the season. If

individual i decides to get vaccinated in season n then x(i)
n ~1,

otherwise x(i)
n ~0. w(i)

n is the probability that individual i vaccinates

in season n. The variable v(i)
n characterizes the pro-vaccination

experience of the ith individual (see details in Assumption 7) and
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determines w(i)
n . The domains of the variables are as follows:

x(i)
n [f0,1g, w(i)

n [½0,1�, and v(i)
n [½0,1=(1{s)).

Assumption 5. In year n, a set of N vaccination decisions is

made fx(i)
n ; 1ƒiƒNg that, together with the pro-vaccination

experiences in year n, determine the pro-vaccination experiences

of all individuals in year (nz1), fv(i)
nz1; 1ƒiƒNg, which further

determine fw(i)
nz1; 1ƒiƒNg, the parameters of the Bernoulli

variables in year (nz1). Then, the set of vaccination decisions in

year (nz1) is obtained fx(i)
nz1,1ƒiƒNg. Our inductive reasoning

game is an array of sets of vaccination decisions.

Assumption 6. The infection event of individual i in year n is

described by a variable z(i)
n . (If individual i got infected in season n

then z(i)
n ~1, otherwise z(i)

n ~0.) The infection process is as follows.

If x(i)
n ~1 then z(i)

n ~0. If x(i)
n ~0, then z(i)

n is a realization of a

Bernoulli variable with parameter q(pn), where pn~
PN

i~1 x(i)
n =N

is the coverage achieved that year. That is, if individuals vaccinate,

they are fully protected, otherwise they risk infection with

probability q(pn).
Assumption 7. At the end of the influenza season of year n,

each individual provides a score between 0 and 1 for their

vaccination decision x(i)
n based on their infection status z(i)

n and

broadly available epidemiological information. We have three

cases: (a1) if x(i)
n ~0 and z(i)

n ~1 then the score is 1 and

v
(i)
nz1~sv(i)

n z1; that is, if individual i did not get vaccinated and

got infected, then the individual considers that the vaccination was

necessary; (a2) if x(i)
n ~0 and z(i)

n ~0 then the score is 0 and

v
(i)
nz1~sv(i)

n ; which means that if individual i did not get vaccinated

and did not get infected, then they consider that the vaccination

was unnecessary and (b) if x(i)
n ~1, then the score of the

vaccination decision is F (pn) and v
(i)
nz1~sv(i)

n zF (pn). That is, if

individual i got vaccinated then they did not get infected and use

the broadcast epidemiological information to evaluate their

vaccination decision (see discussion below);

Assumption 8. The probability that an individual chooses to

get vaccinated is updated as follows

w
(i)
nz1~v

(i)
nz1=½(1{snz1)=(1{s)�: ð1Þ

That is, an individual’s probability to get vaccinated in the next

season is given by the updated cumulative vaccination experience.

We have normalized v
(i)
nz1 by (1{snz1)=(1{s) because this factor

is the maximum possible value for v
(i)
nz1 if individual i would have

fully benefited from vaccination in all of the n influenza seasons.

We further introduce general assumptions for the functions q(:)
and F (:) that result from their biological and sociological meaning.

The function q(:) represents the probability of getting infected

versus coverage and must illustrate both a critical coverage and a

herd immunity effect (i.e., higher overall coverage must offer

higher overall protection). We express this mathematically by the

following two assumptions.

Assumption q1. q : ½0,1�?½0,1� is continuous. We also re-

quire that q(:) is differentiable everywhere in the domain except

at pc.

Assumption q2. q(p)~0 for pcƒpƒ1 and q’(p)v0 for

0ƒpvpc, where the prime denotes the derivative with respect to

the argument.

We note that the q-functions obtained from analysis of the

Susceptible-Infected-Recoved and Susceptible-Exposed-Infected-

Recoved models [17] are compatible with the above assumptions.

A vaccinated individual evaluates their vaccination decision

depending on the epidemiological outcome of the influenza season

which we express in terms of the vaccination coverage. We make

assumptions on the analytic form of F (:) to reflect the fact that

the individual tries to benefit from herd immunity and that they are

not satisfied to have had vaccinated when epidemics were prevented.

Assumption F1. F : ½0,1�?½0,1� is continuous and

differentiable everywhere in the domain except at p~pc.

Assumption F2. F ’(p)ƒ0 wherever F (:) is differentiable.

That is, individuals would try to benefit from herd immunity; as

coverage increases, the pro-vaccination experience gained by

individuals who got vaccinated decreases.

Assumption F3. F (p)v1 for pcƒpƒ1. That is, individuals

are not fully satisfied to have had vaccinated when epidemics were

prevented.

The score function F (:) may be interpreted as the perceived benefit of

vaccination, normalized between 0 and 1. It depends both on the

epidemiological information available to vaccinated individuals and

how they react to this information. Such a function could be

grounded in terms of how individuals seek to maximize their utility,

given their estimates of infection risk. We take the function as a given,

and note that Assumptions F1–3 are plausible for any underlying

model of self-interested behavior. To address risk-avoiding versus

risk-seeking vaccination strategies, we discuss score functions in Sec.

that combine distinct pieces of epidemiological information (infection

incidence and vaccination coverage) in two different ways.

Mean-field approximation
We now derive a deterministic approximation for the

vaccination coverage dynamics in the limit of a large population

(i.e., N??). We denote by S:T the average over the realizations

of the game and introduce the variable pn:SpnT for the average

coverage over the realizations of the game in the limit of large

N. By the Central Limit Theorem (using the Lyapunov condition),

we have that pn~
PN

i~1 x(i)
n =N is normally distributed with

average pn and standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1 s(i) 2

n =N2

q
, where

s(i)
n is the standard deviation of the distribution of x(i)

n (i.e.,

s(i) 2
n ~w(i)

n (1{w(i)
n )). Since

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1 s

(i) 2
n =N

q
is bounded from

above, the dynamics of pn at large finite N can be approximated

by adding Gaussian noise with amplitude *
ffiffiffiffiffiffiffiffiffiffi
N{1
p

to the

dynamics of pn. However, in most of the phase space of p, the

noise will not change the qualitative dynamics of the orbit and

mean-field will be a suitable approximation. Furthermore, since

the noise amplitude is small and the functions q(:) and F (:) are

continuous, we have Sq(p)T&q(p) and SF (p)T&F(p).
From the definition of pn, we immediately obtain

pn~
PN

i~1 Sw(i)
n T=N. Now, following Assumption 7, it is straight-

forward to arrive at the equations listed below according to the

scoring tree for vaccination decisions

branch expected population fraction expected v(i) update

(a1) (1{pn)q(pn) v
(i)
nz1~sv(i)

n z1;

(a2) (1{pn)½1{q(pn)� v
(i)
nz1~sv(i)

n ;

(b) pn v
(i)
nz1~sv(i)

n zF (pn):

ð2Þ

The weighted average of Eqs. (2) yields

unz1~sunz(1{pn)q(pn)zpnF (pn), ð3Þ

where u denotes the average of v(i) over the entire population. Taking

the population average of Eq. (1), we obtain pnz1~(1{s)unz1=

(1{snz1), which in the limit of n?? yields simply

Newscasts for Increasing Flu Vaccination Coverage
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pnz1~(1{s)unz1: ð4Þ

Combining Eqs. (3) and (4), we obtain a mean-field autonomous

approximation of the coverage dynamics of the inductive reasoning

game without regard to the individual-level processes

pnz1~M(pn; s):spnz(1{s)½(1{pn)q(pn)zpnF (pn)�: ð5Þ

Our dynamical system, M(:; s), is defined on the unit interval.

Epidemiological indicators
It is straightforward to relate epidemiological variables to the

framework of the mean-field model. We introduce N�n for the

number of susceptible individuals in season n and r�n(:) for its

distribution over realizations of the game. The incidence in one

influenza season is defined as the number of new cases per

susceptible individual. Since we model the number of cases among

the susceptible individuals by a binomial distribution with

parameter q(pn) (Assumption 6) and pn~(N{N�n )=N, the

expected incidence in season n, denoted by SInT, is given by

SInT~
XN

i~N�n

r�n(N�n )
q(pn)N�n

N�n
~Sq(pn)T&q(pn); ð6Þ

i.e., the probability that an unvaccinated individual becomes

infected. Prevalence is defined as the fraction of cases in the

general population. The expected prevalence in season n, denoted

by SPnT, can be written as

SPnT~
XN

i~N�n

r�n(N�n )
q(pn)N�n

N
~S(1{pn)q(pn)T&(1{pn)q(pn): ð7Þ

Other epidemiological indicators may be derived in a similar

fashion.

Results

General results
We first derive three results that apply to all models satisfying

Assumptions 1–8, q1–2 and F1–3.

Proposition 1. The mean-field model has no attractor

included in the ½pc,1� interval.

Proof. In the ½pc,1� interval, the mean-field model is given by

pnz1~pn½sz(1{s)F (pn)�: ð8Þ

Since F (p)v1 for pcƒpƒ1 (Assumption F3) we obtain that

pnz1vpn. Thus, the ½pc,1� interval is repelling. An orbit starting

in the ½pc,1� interval decreases monotonically until an iterate

belongs to the ½0,pc) interval.

Remark 1-1. The ½pc,1� interval may contain points that

belong to an attractor of the mean-field model.

These results have important consequences for public health.

They demonstrate that, under very general assumptions, a group

of self-interested individuals will not cooperate enough to

consistently prevent influenza epidemics through voluntary recurrent

vaccinations. Furthermore, if the score function fulfills assumptions

F1–3, even a public health program that manages to increase the

perceived benefits of vaccination would not eliminate influenza

epidemics. However, a public health program may successfully

control the influenza coverage dynamics to achieve more modest

goals such as maintaining a high time-average of the coverage

and/or a stable coverage. In this study we address the goal of

stabilizing the vaccination coverage close to, yet below the critical

level. We thus proceed with the fixed-point analysis of the mean-

field model given by Eq. (5) in the range where pvpc and

epidemics are not prevented.

Proposition 2. The fixed point of the mean-field model,

denoted by p̂p, has the following properties:

1. p̂p is the unique solution in the (0,pc) interval of the equation

q(p̂p)~
p̂p½1{F (p̂p)�

1{p̂p
:h(p̂p), ð9Þ

and does not depend on the memory parameter s.

2. The stability of p̂p is given by the condition

swS, where

S:1z2½q0(p̂p)(1{p̂p){q(p̂p)=p̂pzp̂pF 0(p̂p)�{1; Sv1:
ð10Þ

Furthermore, assuming that the functions q(:) and F (:) are

three times differentiable in the (0,pc) interval, p̂p typically loses

stability through a period-doubling bifurcation.

Proof

1. The equation for p̂p is immediately obtained by setting the

fixed-point condition for Eq. (5); i.e., pnz1~pn:p̂p. Using

Assumptions F1–3 we immediately have that h’(p)§0 in the

½0,pc� interval, h(0)~0 and h(pc)§0. Using also Assumptions

q1–2, Eq. (9) has a unique solution in the (0,pc) interval. Given

that Eq. (9) is independent of s, p̂p is independent of s, as well.

2. Let us denote by l the derivative of the mean-field map at the

fixed point p̂p; l is given by

l~sz(1{s)½q’(p̂p)(1{p̂p){q(p̂p)zF (p̂p)zp̂pF ’(p̂p)�: ð11Þ

The fixed point p̂p is linearly stable if and only if {1vlv1
(Ref. [23], Chapter 4). Using Eq. (9) to substitute F (p̂p) and

the Assumptions q1–2 and F1–3, we obtain straightforwardly

that lv1 is always satisfied and the condition {1vl can be

written in the form of the Eq. (10). Note that Sv1 since the

square bracket in the definition of S is strictly negative.

Thus, the fixed point p̂p always has a nonempty domain of

stability in the parameter space, ½S,1�\½0,1�=1. The fixed

point p̂p may only lose stability as s decreases below S; i.e., l
decreases below minus one. With the additional require-

ments

L2M(p; s)

LsLp

����
(p̂p;S)

=0, ð12Þ

1

2

L2M(p; s)

Lp2

����
2

(p̂p;S)

z
1

3

L3M(p; s)

Lp3

����
(p̂p;S)

=0, ð13Þ

the dynamical system M(:; s) satisfies the conditions for

having a generic period-doubling bifurcation at (p̂p; S) – Ref.

[23], Chapter 4, Theorem 4.3 and Ref. [24], Chapter 2.3.

Other bifurcations are possible, depending on the particular

choices for the functions q(:) and F (:). However, they are not
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generic. In other words, a smooth arbitrary small perturba-

tion of these functions will break the bifurcation into generic

ones that survive such perturbations. Equation (12) can be

rewritten as

1{F (p̂p)½ �{p̂pF ’(p̂p)zq(p̂p){(1{p̂p)q’(p̂p)=0, ð14Þ

and is always satisfied virtue of Assumptions F1–3 and the

fact that p̂p[(0,pc). Equation (13) requires that the functions

q(:) and F(:) are three times differentiable in the (0,pc)
interval and is typically satisfied; i.e., if violated, a smooth

arbitrary small perturbation of these functions will have Eq.

(13) satisfied.

We note that the period doubling bifurcation can be either direct or

inverse (Ref. [24], Chapter 2.3). In the case of a direct bifurcation, the

fixed point p̂p loses stability at s~S and, simultaneously, a period-two

attractor is created. In the vicinity of the bifurcation, the period-two

orbit is symmetric about p̂p, having one iterate above and one below

the fixed point. Hence, mild and severe influenza epidemics alternate.

We consider this scenario to be an inferior outcome since the health

care system has to manage more severe epidemics while the average

coverage remains the same. In the case of an inverse bifurcation, the

stable fixed point p̂p merges with an unstable period-two orbit and loses

stability at s~S. Past bifurcation, the local dynamical structure

consists of the unstable fixed point p̂p without any attractor in the

neighborhood. Hence, an orbit in this region will evolve to some

distant attractor. A class of such attractors is created through

codimension-one border-collision bifurcations. Due to the disconti-

nuity of the model derivative at pc, critical periodic orbits with points

in the ½pc,1� interval are created at particular values of s. Denoting the

kth iterate of the model map by M ½k�(:; s), the equation of a period-k
critical orbit is M ½k�(pc; s)~pc. The critical periodic orbit may turn

into a noise-robust attractor having at least one point in the (pc,1�
interval; see also discussion in Ref. [18]. If the fixed point p̂p loses

stability through an inverse period doubling bifurcation and is

captured by such an attractor, then complex coverage dynamics

ensues where influenza epidemics are occasionally prevented.

Finally, we present a variational result that links changes in the

score function to changes in the stationary coverage.

Proposition 3. Let dF : ½0,1�?½0,1� be an infinitesimal

deformation of F(:) such that the function F (:)zdF(:) satisfies

Assumptions F1–3. If the function F(:) is perturbed by the amount

dF (:), then the fixed point p̂p is perturbed by an amount dp̂p having

the same sign as dF(p̂p).
Proof. Applying Eq. (9) for the functions F (:) and

F (:)zdF(:), and subtracting, we obtain in the first infinitesimal

order

dF (p̂p)~dp̂p½{q’(p̂p)(1{p̂p)=p̂pzq(p̂p)=p̂p2�: ð15Þ

According to Assumptions q1–2, the factor in the square bracket of

Eq. (15) is positive.

Remark 3-1. The above result can be immediately

generalized for finite deformations of F (:) that are performed

through sequential infinitesimal steps.

Remark 3-2. Stability of the fixed point p̂p may be lost due to

deformations because the stability condition (10) depends on F ’(p̂p).
The above results show that the stable vaccination coverage

follows the trend of the perceived benefit of vaccination (i.e., score

function F (:)). Providing more epidemiological information to the

public may cause either an increase or a decrease in the perceived

benefit of vaccination, as we show by analyzing two different

strategies. Risk-avoiding individuals may use the additional

information to avoid infection risk and increase the value of their

score function. In contrast, risk-seeking individuals may perceive a

lower benefit to vaccination and attempt even more to free-ride on

herd immunity. Hence, broadcasting additional epidemiological

information may result in either increasing or decreasing the stable

vaccination coverage.

Model examples
To illustrate the results expressed by Propositions 1–3, we

discuss and compare five models. We use subscripts 1–3, 4a, 4b to

refer to the dynamical elements corresponding to the models 1–3,

4a, 4b, respectively. In each case, we assume that individuals

know, at the end of every influenza season, whether an epidemic

took place. In particular, for model 1, we assume that this is the

only information available, determining a certain form for the

function F (:). In fact, model 1 is only a slight generalization of the

basic model previously studied [17,18] and serves as reference. For

the models 2, 3, 4a and 4b we assume that individuals are given

additional epidemiological information that determine other

functional forms for F (:), in each case. For the time being, we

leave the function q(:) unspecified. Later we discuss a choice of

function for q(:) and present numerical results.

Model 1
In this model, at the end of each influenza season, individuals

know only whether there was an epidemic and vaccinated

individuals consider vaccination to have been worthwhile only if

there was an epidemic. The F -function is given by [18]

F1(p)~1{h(p{pc), ð16Þ

where h(:) is the unit step function defined as

h(x)~
1, if x§0;

0, if xv0:

�
ð17Þ

In Ref. [18], q(:) is a piecewise linear function. However, to

recover the qualitative features of the dynamics, it is sufficient that

q(:) satisfies Assumptions q1–2. Performing a similar analysis, we

immediately obtain that there are no fixed points and pc may be

attracting only from the left. The coverage dynamics around pc

proceeds in a cyclic fashion. When the coverage is less than pc,

individuals become infected and they increase their probability of

getting vaccinated in the next influenza season. The vaccination

coverage gradually approaches pc, until it eventually slightly

exceeds the critical level due to the stochastic nature of the

individual-level adaptive decision-making process. At this point, an

influenza epidemic does not occur. However, in the following

season, many individuals decide not to get vaccinated, as an

epidemic did not occur in the previous season; thus vaccination

coverage abruptly decreases in the vicinity of spc and a severe

epidemic ensues. Then, the vaccination coverage repeats in a

similar cyclic dynamic. In technical terms, the mean-field

dynamics approaching pc is not robust to noise. Once the

coverage slightly exceeds pc due to noise, the next iterate of the

coverage drops in the vicinity of spc and a severe epidemic occurs

[18]. This model is not generic since an infinitesimal perturbation

of F(:) may shift the attractor away from the boundary, destroying

the sensitivity to noise. However, the biological and sociological

considerations leading to the particular form of the function F(:)
are natural. Consequently, the model may be considered

representative for this application. A similar situation occurs for

models of disease transmission based on ordinary differential
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equations. Although the transcritical bifurcation that models the

epidemic threshold is not generic, it is considered representative

assuming no migration of infected individuals.

Stable, noise-robust, fixed-point dynamics prevent the severe

epidemics found in model 1, if and only if p̂p, the fixed point of the

model under consideration, satisfies the condition

p̂pwspc: ð18Þ

Combining this relation with the stability condition (10) we obtain

that the fixed-point dynamics of the vaccination coverage prevent

the severe epidemics in model 1 if and only if Svp̂p=pc.

Furthermore, the memory parameter s must belong to the

following interval

s[(S,p̂p=pc):S: ð19Þ

Model 2
We consider that, at the end of every influenza season, the

individuals know the incidence of infection that was realized in

that season.This implies that they also know whether there was an

epidemic: if the incidence was larger than zero then there was an

epidemic; otherwise there was not. If they got vaccinated, then

individuals use the epidemiological information to evaluate their

vaccination decisions. In particular, we assume that the score of

their last vaccination decision equals the seasonal incidence which

also represents the individual-level risk of becoming infected if

unvaccinated; see Eq. (6)

F2(p)~q(p): ð20Þ

We note that other models are possible. For example, more concerned

individuals may use a score function that increases faster with the

incidence; e.g., F2(p)~q(p)b, where 0vbv1. Here we choose

b~1 for analytical tractability. Hence, the fixed point equation (9)

becomes

q(p̂p2)~p̂p2:h2(p̂p2): ð21Þ

In this case, p̂p2vpc (see Fig. 1) and noise-robust equilibrium

dynamics of the coverage is possible. The stability bound for s is

S2~1{2=½1{q’(p̂p2)�: ð22Þ

Model 3
In this case we assume that, at the end of each influenza season,

the vaccination coverage is disclosed to the public. Additionally,

we assume that individuals know whether there was an epidemic.

An F -function that summarizes this facts is

F3(p)~(1{p)½1{h(p{pc)�: ð23Þ

If the epidemic was prevented, then the individuals that got

vaccinated evaluate their last vaccination as unnecessary; i.e.,

F3(p)~0, if p§pc. Otherwise, they evaluate their last vaccination

as necessary to the degree that their peers did not get vaccinated;

F3(p)~1{p, if pvpc. These simple assumptions yield in fact a

score function F3(:) that is discontinuous at pc and violates

Assumption F1; see Eq. (23). Hence, the mean-field approximation

of the inductive reasoning game fails for coverage dynamics in the

vicinity of pc. However, the fixed point equation (9) is

q(p̂p3)~p̂p2
3=(1{p̂p3):h3(p̂p3), ð24Þ

and p̂p3vpc (see Fig. 1). Therefore, the fixed point dynamics of the

one-dimensional map does approximate that of the inductive

reasoning game. Noise-robust equilibrium dynamics of the

coverage is possible. The stability bound for s is

S3~1{2=½{q’(p̂p3)(1{p̂p3)zq(p̂p3)=p̂p3zp̂p3�: ð25Þ

Model 4a
Finally, we discuss the case where both incidence and coverage

are disclosed to the public. First, we assume that the individuals

are avoiding risk of infection by increasing their vaccination scores.

pc

Figure 1. Representation of the possible fixed point equations for the example models. For illustration, we consider pc~0:6 [17,18]. We
assume that q(p)~0 in the shaded region (i.e., where p§pc) and that q(:) is larger than zero and strictly decreasing in the complementary region.
Model 1 has an attractor from the left at pc . For models 2, 3, 4a and 4b, the functions h2,3,4a,4b(p) are represented with thin violet continuous, thick
green continuous, cyan dot-dashed and red dashed lines, respectively. Note that h2(:) and h3(:) intersect at (1=2,1=2), h2(:) and h4a(:) intersect at (1,1),
and h3(:) and h4b(:) intersect at (W,1), where W is the golden ratio conjugate. The function h4a(:) is smaller than h2,3(:) in the unit interval; thus,
p̂p2,3vp̂p4a . When restricted to the unit square, h4b(:) is larger than h2,3(:); thus, p̂p4bvp̂p2,3.
doi:10.1371/journal.pone.0028300.g001
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In particular, we assume that vaccinated individuals acknowledge

a posteriori the benefit of their last vaccination not only for

eliminating their personal risk of infection q(p) but also for

contributing to the proportion of successful free-riders

(1{p)½1{q(p)�. We consider the following scoring function

F4a(p)~fq(p)z(1{p)½1{q(p)�g½1{h(p{pc)�

~1{½1{F2(p)�½1{F3(p)�:
ð26Þ

Note that F2,3(p)ƒF4a(p),Vp[½0,1�. The function F4a(:) is

discontinuous at p~pc; model 4a is subject to the same caveat

as model 3 regarding the dynamics in the vicinity of pc. The fixed

point equation (9) becomes

q(p̂p4a)~p̂p2
4a=(1{p̂p4azp̂p2

4a):h4a(p̂p4a): ð27Þ

Noise-robust equilibrium dynamics of the coverage is possible

since p̂p4avpc (see Fig. 1). The stability bound for s is

S4a~1{2=½{q’(p̂p4a)(1{p̂p4azp̂p2
4a)zq(p̂p4a)

(p̂p4a{1=p̂p4a){p̂p4a�:
ð28Þ

Model 4b
In this model, as well, incidence and coverage are disclosed to

the public. We assume that the individuals are risk-seeking in their

attempt to ride on herd immunity. If they got vaccinated, they

evaluate their last vaccination necessary only to the degree that

their peers got infected, using a scoring function that equals the

prevalence

F4b(p)~(1{p)q(p)~F2(p)F3(p): ð29Þ

F4b(:) may also be considered reasonable for the case where

just the prevalence of infection is broadcast. Note that

F4b(p)ƒF2,3(p),Vp[½0,1�. The fixed point equation (9) becomes

q(p̂p4b)~p̂p4b=(1{p̂p2
4b):h4b(p̂p4b): ð30Þ

Once again, noise-robust equilibrium dynamics of the coverage is

possible since p̂p4bvpc (see Fig. 1). The stability bound for s is

S4b~1{2=½{q’(p̂p4b)(1{p̂p2
4b)zq(p̂p4b)(p̂p4bz1=p̂p4b)�: ð31Þ

In Fig. 1, we illustrate the functions h2,3,4a,4b(p) and compare all

the models presented above. The relevant domain is the unit

square; i.e., 0ƒpƒ1 and 0ƒh(p)ƒ1. It is straightforward to

show that

1. h3,4b(p)w1, Vp[(W,1�, where W is the golden ratio conjugate;

2. h2,3(p)§h4a(p), Vp[½0,1�, thus p̂p2,3vp̂p4a;

3. h4b(p)§h2,3(p), Vp[½0,W�, thus p̂p4bvp̂p2,3.

Thus, among all the models we considered, the ones where

individuals know most about influenza epidemiology (i.e., models

4a and 4b) yield the highest and the lowest value for the fixed point

of the voluntary vaccination coverage. A comparison between p̂p2

and p̂p3 awaits a particular choice for the function q(:).

Numerics
For a numerical comparison, we have chosen the q-function

below [17,18]

q(p)~q(0)(1{p=pc)h(pc{p): ð32Þ

We do not present numerics for model 1 since they have been

extensively studied [17,18]. Figure 2 presents maps and bifurcation

diagrams for the other four models where we have chosen pc~0:6
and q(0)~0:8, as in Refs. [17,18]. Each column of panels

Figure 2. Maps and bifurcation diagrams for the example models 2, 3 and 4a and 4b with the q-function given by Eq. (32) having
pc~0:6 and q(0)~0:8 [17,18]. Panels A and E refer to model 2; panels B and F refer to model 3; panels C and G refer to model 4a; and panels D and
H refer to model 4b. Panels A–D represent the model maps M2,3,4a,4b(p; 0:7) (thick black line) and M2,3,4a,4b(p; 0:1) (thick red line) versus p,
respectively; the thin dot-dashed black line bisects the first quadrant and dashed red vertical line marks p~pc. Panels E–H represent bifurcation
diagrams of the maps M2,3,4a,4b(:; s) versus s, respectively. Continuous lines show how attractors change versus s while dashed lines show how
unstable fixed points change versus s.
doi:10.1371/journal.pone.0028300.g002
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corresponds to one model: the first column (i.e., panels A and E)

corresponds to model 2, the second column (i.e., panels B and F)

corresponds to model 3, the third column (i.e., panels C and G)

corresponds to model 4a, and the fourth column (i.e., panels D

and H) corresponds to model 4b. Panels A–D represent the model

maps M2,3,4a,4b(p; 0:7) (thick black line) and M2,3,4a,4b(p; 0:1)
(thick red line) versus p, respectively. Panels D–H represent

bifurcation diagrams of the maps M2,3,4a,4b(:; s) versus s,

respectively. Several comments are in order.

1. The fixed points p̂p2,3,4a,4b are less than pc (Fig. 2A–D) and

remain constant for changing values of s (Fig. 2E–H).

2. The bifurcation structure of M2(:; s) is not generic because

M2(:; s) is not generic. In fact, since q(p) is piecewise linear,

M2(:; s) is piecewise linear, as well (Fig. 2A). The fixed point p̂p2

does not undergo a generic period doubling bifurcation

(Proposition 2) because a period two critical orbit becomes

an attractor at the same parameter value where p̂p2 loses

stability, S2~½q(0)=pc{1�=½q(0)=pcz1� (Fig. 2E). This bifur-

cation structure does not survive smooth arbitrary small

perturbations (Proposition 2).

3. The fixed points p̂p3 and p̂p4a do not lose stability for s[½0,1�
because S3 and S4a are negative.

4. The fixed point p̂p4b loses stability through a direct period

doubling bifurcation.

5. The relations p̂p4awp̂p2,3 and p̂p2,3wp̂p4b hold, as expected from

the general theory.

6. Although p̂p2vp̂p3, this is not generally true; it is due to the fact

that q(:) is piecewise linear; see Fig. 1.

Figure 3 presents numerical results for the parameter space

f(pc,q(0)); pc[½0,1�,q(0)[½0,1�g. Many features in Fig. 3 can be

addressed analytically; we leave the details to the reader. As in

Fig. 2, each column of panels corresponds to one model: the first

column (i.e., panels A, E, and I) corresponds to model 2, the

second column (i.e., panels B, F, J) corresponds to model 3, the

third column (i.e., panels C, G and K) corresponds to model 4a, and

the fourth column (i.e., panels D, H and L) corresponds to model 4b.

Panels A–D show how far the fixed point of each model (i.e.,

p̂p2,3,4a,4b) is from the critical vaccination coverage pc. We note that

p4a is closest to pc, p3,2 come next (in order) and p4b last. Panels E–

H plot colormaps for the lower bounds of the intervals of s such that

p̂p2,3,4a,4b are stable (denoted by S2,3,4a,4b), respectively. We remark

that S4avS3vS2vS4b; therefore the stability interval is largest for

model 4a, then model 3, model 2 and last, model 4b. Finally, panels

I–L represent how the sizes of the intervals S2,3,4a,4b vary with pc

and q(0), respectively. We notice that S4a is the largest across all of

the domain, followed (in order) by S3, S2 and S4b.

A model describing a convenient scenario would have the fixed

point coverage close to the critical level, a low value of S so fixed

point stability is achieved even though individuals do not

remember many past vaccination outcomes, and a broad S-

interval for model robustness. Among the models presented here,

model 4a performs best, then model 3, model 2 and last model 4b.

Discussion

Field studies provide evidence of free-riding on influenza herd

immunity. For example, ‘‘self-other’’ optimistic bias about influenza

risk was demonstrated in a sample of New Jersey adults where

three out of four individuals estimated their risk of infection below

average [27]. Using game theory, it was previously shown that, in

the case where individuals know only whether an epidemic takes

place every influenza season, free-riding on herd immunity may

cause severe drops in the vaccination coverage, leading to major

epidemics [17,18]. Furthermore, these major epidemics could be

suppressed by a public health program offering free vaccination

Figure 3. Numerical comparison between the fixed point structure of the example models 2, 3, 4a and 4b with the choice of q-
function given by Eq. (32). We explored the parameter space f(pc,q(0)); pc[½0,1�,q(0)[½0,1�g. Panels A, E and I refer to model 2; panels B, F and J
refer to model 3; panels C, G and K refer to model 4a; and panels D, H and L refer to model 4b. Panels A–D represent how far is the fixed point of each
model from the critical vaccination coverage; i.e., jp̂p2,3,4a,4b{pcj, respectively. Panels E–H represent the lower bound of the memory parameter s such
that the fixed point of the corresponding model is stable; i.e., S2,3,4a,4b , respectively. Panels I–L represent the width of the s-interval where the fixed
point dynamics has coverage above spc ; i.e., (p̂p2,3,4a,4b=pc{S2,3,4a,4b), respectively.
doi:10.1371/journal.pone.0028300.g003
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for a number of years to every individual, every time the individual

decided to get vaccinated [17]. However, other means of epidemic

control may be investigated. In a society where vaccines are rarely

in short supply, the success of voluntary vaccination programs

depends very much on the perceived benefit of vaccination. Mass

media is an important factor in shaping social trends and its reach

has never been broader. In this work we investigated the potential

impact of epidemiological newscasts on the dynamics of voluntary

vaccination coverage against seasonal influenza infections.

Our first result addresses the possibility of eliminating

influenza epidemics by increasing the vaccination coverage.

Recently, the seasonal influenza vaccination coverage has

steadily increased in the developed world. The average in five

European countries reached 25.9% in 2007–2008 [25], while in

the US the coverage reached 41.1% in 2009–2010 [26]. Still,

these figures fall short of the critical vaccination coverage,

estimated to be in the range of 50–70%; see [17] and references

therein. Will the vaccination trend continue such that the

coverage exceeds the critical level year after year, eliminating

influenza epidemics? The answer is most likely no. If the

coverage approached the critical value, epidemic severity would

decline and individuals would no longer perceive the same

benefit in vaccination, instead attempting to free-ride on herd

immunity. Hence, epidemics would persist. Furthermore, our

study suggests that mass media would not be able to change this

course of events, no matter what epidemiological information

were released to the public to change its perceived benefit of

vaccination (Proposition 1).

Our second result shows that newscasts providing the

individuals with more epidemiological information (e.g., inci-

dence, coverage, or both) may lead to a stable coverage

dynamics, suppressing severe epidemics caused by free-riding of

herd immunity (Proposition 2). Hence, mass media could

effectively be used for public health just as incentives providing

free vaccination [17]. The practical implications of this result

may be profound as newscasts require no compliance from

participants and less logistics than implementation of vaccination

incentives.

Our third and last result states that the stabilized level of the

vaccination coverage follows the trend of the perceived

vaccination benefits (Proposition 3). Still, as they learn more

about seasonal influenza epidemiology, individuals have two

major choices in changing their vaccination strategies. First,

they may assign more utility to vaccination, increasing the

overall vaccination coverage. Second, they may take even more

risk to free-ride on herd immunity, causing a decrease in the

vaccination coverage. Which of these two choices would likely

be realized is a difficult question. Using reasonable assumptions,

our example models and numerics show that the vaccination

coverage in the general population could become better or

worse when disclosing both vaccination coverage and disease

incidence than when disclosing either piece of information

separately.

A significant body of literature in cognitive psychology addresses

perception biases of clinical risk (see Refs. [27–29] and references

therein); however, applications to influenza are limited. Data to

characterize the public perception of the benefits of vaccination

and its potential trends when epidemiological information is

broadcast are currently insufficient. A comprehensive study [25] of

seasonal influenza vaccination in the general population was

conducted in five European countries over seven influenza

seasons, identifying reasons invoked pro and contra vaccination.

The chief reasons invoked for getting vaccinated were advice from

a family doctor (58.6%) and the perception of influenza as a

serious illness (51.9%). The two major reasons for not getting

vaccinated were the feeling of not being likely to catch influenza

(39.5%) and never having considered the option of being

vaccinated (35.8%). More field investigations are needed to

explicate these reasons in terms of epidemic variables (e.g.,

prevalence, coverage, etc.) and build realistic models for the score

function F (:). Still, to provide a broad understanding of possible

modeling outcomes, here we investigated several examples of how

mass media may influence individuals’ perceptions of the benefits

of vaccination, by reporting infection incidence and vaccination

coverage. We note that game theory was particularly suited for our

study as it explicitly models risk taking, adaptability and decision

making.

In conclusion, the impact of mass-media on social behavior and,

implicitly, vaccination coverage is complex. Our game theoretic

approach allows for illuminating some of the underlying

mechanisms, proposing new perspectives for public health.
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