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Abstract

Protein turnover metabolism plays important roles in cell cycle progression, signal transduction, and differentiation. Those
proteins with short half-lives are involved in various regulatory processes. To better understand the regulation of cell
process, it is important to study the key sequence-derived factors affecting short-lived protein degradation. Until now, most
of protein half-lives are still unknown due to the difficulties of traditional experimental methods in measuring protein half-
lives in human cells. To investigate the molecular determinants that affect short-lived proteins, a computational method
was proposed in this work to recognize short-lived proteins based on sequence-derived features in human cells. In this
study, we have systematically analyzed many features that perhaps correlated with short-lived protein degradation. It is
found that a large fraction of proteins with signal peptides and transmembrane regions in human cells are of short half-lives.
We have constructed an SVM-based classifier to recognize short-lived proteins, due to the fact that short-lived proteins play
pivotal roles in the control of various cellular processes. By employing the SVM model on human dataset, we achieved
80.8% average sensitivity and 79.8% average specificity, respectively, on ten testing dataset (TE1-TE10). We also obtained
89.9%, 99% and 83.9% of average accuracy on an independent validation datasets iTE1, iTE2 and iTE3 respectively. The
approach proposed in this paper provides a valuable alternative for recognizing the short-lived proteins in human cells, and
is more accurate than the traditional N-end rule. Furthermore, the web server SProtP (http://reprod.njmu.edu.cn/sprotp) has
been developed and is freely available for users.
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Introduction

Proteins are the chief actors within the cell. All proteins in

mammal cells are continually being degraded and replaced. Some

cytosolic enzymes have half-lives as short as 10 minutes, whereas

others last for days. The fluctuations in their expression are

fundamental for metabolism, cell cycle control and communica-

tion between a cell and environment. The cell’s proteolytic

machinery must be highly selective and tightly regulated, since the

accelerated destruction of an essential protein or the failure to

degrade a short-lived regulatory protein could drastically alter cell

function [1].

The continual destruction of cell proteins may appear to be

wasteful, but it serves several important homeostatic functions [2].

The rapid removal of rate-limiting enzymes and regulatory

proteins is essential for the control of growth and metabolism.

For example, the progression of cells through the mitotic cycle

requires the programmed destruction of the critical regulatory

proteins called cyclins. The rapid degradation of specific proteins

permits an adaptation to new physiologic conditions. And the

tumor suppressor protein p53 is a short-lived protein that is

maintained at low, often undetectable, levels in normal cells [3]. If

p53 was stabilized in response to an activating signal, such as DNA

damage, its expression level will rise rapidly and inhibit cell

growth.

The study of factors affecting those short-lived proteins has

begun in the last century. The amino acid sequence composition

was shown to be closely related to protein half-lives. In 1986,

Rogers et al. proposed the PEST hypothesis that proteins with

PEST sequence tend to undergo rapid intracellular degradation

[4]. In the same year, Bachmair et al. proposed the N-end rule

that certain terminal amino acid yielded proteins with very short

half-lives whereas others rendered the protein very stable [5] [14].

Other protein sequence motifs such as D-box and KEN box were

also found to be important for protein stability regulation [6–8].

Most of above studies for protein degradation were previously

performed on only a few or individual proteins due to the technical

difficulty in global profiling. While in 2006, Archana et al.

performed profiling of over 3,000 protein stability in yeast [9].

Follow-up bioinformatics analysis of this data showed that among

all the physical and sequence features of proteins considered, the

most significant feature that correlates with intracellular degrada-
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tion is disorder region in protein 3-D structure [10], but the

correlation is very weak.

Short-lived proteins are usually regulatory proteins. Most of the

studies for short-lived proteins have been performed on individual

protein in human. And there is still lack of the characteristics

profile analysis for these short-lived proteins. During our study,

Huang, et al. published a paper in which they employed Nearest

Neighbor Algorithm to identify four-type half-life protein based on

some features [11]. But they used a two-step classification strategy

to predict the four types with the accuracy of about seventy

percent for each step. The overall accuracy for prediction of each

type is relatively poor. In this paper, we will mainly investigate in

depth protein sequence and structural features to reveal some

strong factors related to those short-lived proteins in human cells.

And a web server was also constructed to predict short-lived

proteins in human with high accuracy.

Materials and Methods

Relevant Dataset construction
The datasets of human protein half-lives used in this paper were

downloaded from literature in Science [12] resulting from high-

throughput experiment for proteome-scale protein-turnover with-

in mammalian cells. We manually checked the sequences of ORFs

encoding proteins, and removed genes with multiple ORFs, which

can not have unambiguous protein stability information mapped

in Sherry et al’s data. And we obtained 5,818 different proteins

with unambiguous stability data, and employed them in our

analysis. In order to evaluate our method correctly, we filtered the

dataset with two ways. Firstly, we used BLAST to remove the

redundant proteins using 20% sequence identity as the cutoff.

Using such low threshold is to ensure a good prediction

generalization [13]. Because proteins secreted into extracellular

space can significantly decrease the proteins content in the cell,

only the intracellular protein degradation was investigated in this

paper, while the secreted proteins as annotated in Uniprot

database [14] were removed. After filtering, we obtained 4838

high qualified full-length human proteins. The filtered 980 (5818–

4838) sequences are denoted as ‘‘FIL_dataset’’. According to the

definition of PSI (Protein Stability Index), we found that there are

510 proteins belonged to the short half-lived (PSI,2.0, being

equivalent to 30 minutes).

The training dataset was obtained by randomly selecting 80% of

the positive samples and the same number of negative samples in

order to maintain data balance. Thus, the training dataset contains

408 positive and 408 negative samples, and the remaining proteins

including 102 positive and 3920 negative samples were employed

as the testing dataset. To better assess the variance of the

estimation, this procedure was repeated 10 times resulting in 10

training datasets (denoted as TR1-TR10) and 10 corresponding

testing datasets (denoted as TE1-TE10), respectively.

The first independent validation dataset (denoted as iTE1) were

downloaded from literature [15] in which the protocol ‘‘dynamic

SILAC’’ was employed to profile the intracellular stability of about

600 proteins from human A549 adenocarcinoma cells. The second

independent validation dataset (denoted as iTE2) were download-

ed from literature [16] in which the new proposed protocol

‘‘bleach-chase’’ in 2011 was employed to profile the intracellular

stability of about 100 proteins from human non–small cell lung

cancer cell line. The third independent validation dataset (denoted

as iTE3) were downloaded from literature [17–18] in which the

parallel metabolic pulse labelling was employed in mammalian

cells. Because many protein sequences were not uniquely

determined by mass spectrometry, and not possible to have their

sequence features accurately calculated, we considered only

proteins with unique protein sequence determined from the

dataset. Thus, we constructed the third independent validation

dataset including 1573 long-lived proteins and only one short-lived

protein in iTE3. Due to the limitation of their methods, they

mentioned that it was not possible to quantify half lives of short-

lived proteins (,30 min) accurately [17–18]. Therefore, most of

the proteins in this dataset are long-lived proteins.

Feature extraction
We have examined a number of features based on protein

sequences and structures that are possibly relevant to the

classification of short-lived proteins. Some features are involved

because they are known to be relevant to short-lived proteins,

while others are taken into account because of their statistical

relevance to our classification problem.

As we have known, the short-lived protein stability in a cell can

be somewhat determined by its structure and sequence informa-

tion, and the amino acid sequence is the basis to investigate the

protein function. Therefore, we analyzed the amino acid

components and distribution of the protein sequence. Firstly we

statistically analyzed single peptide and di-peptide composition

yielding a feature vector of 420 dimensions. Due to the

polypeptide sequences variation in evolutionary process, analyzing

the composition of classified amino acids will be more reasonable

[19–21]. We divided the 20 amino acids into 6 classes according to

physiochemical properties: class a (I, V, L, M), class b (F, Y, W),

class c (H, K, R), class d (D, E), class e (Q, N, T, P) and class f (A,

C, G, S). We then analyzed the composition (C) of each class, and

their combined dyad and triplet. Along with the descriptor of

composition (C), the transition (T) and distribution (D) were also

used to describe the global composition of amino acids classes, in

which T denotes the relative frequency of transfers from one class

to another along the protein sequence and D denotes the chain

length within which the first, 25%, 50%, 75% and 100% of the

amino acids of a particular class are located, respectively [19–21].

The results of the literature [19–21] indicated that the features of

composition (C), the transition (T) and distribution (D) are closely

related to protein function. Thus 303 feature elements are

employed to represent the three descriptors of classified amino

acids: 258 for C (6 for each class, 36 for dyad and 216 for triplet),

15 for T and 30 for D. We also take into account some general

features such as the protein length, hydrophobic value, sulfur

content, isoelectric point, and N-end amino acid.

Structure-related factors are also important for the degradation

of short-lived proteins. In this work, we considered the protein

secondary structure components such as alpha-helix, beta-strand

and coil contents, which were predicted by PSIPRED [22].

Other classical degradation motifs such as short sequence motifs

(destruction box and Ken box) are signals for a more specific

degradation mechanism that serves primarily to regulate the

function of proteins involved in the cell cycle. Destruction-box

content was estimated by the ‘‘Destruction Box Motif (D-box)

Finder’’ algorithm proposed by Dana Reichmann and his co-

workers, which is available at http://bioinfo2.weizmann.ac.il/

d̃anag/d-box/form.html. The D-box identification is implemented

by comparing the query sequence with blocks representing the D-

box motifs from cyclin A, cyclin B, securin, and geminin protein

families. We took the existence of these four kinds of blocks in the

protein as a set of features to describe the stability of short-lived

proteins. The KEN box was determined by a sequence search for

the KENxxxN/D motif. Therefore, we obtained 5 features

representing degradation motifs.

Recognizing Short-Lived Proteins
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Moreover, we took into consideration about the low complexity

region (LCR) as an important feature related to short-lived

protein. The LCR is a protein region consisting of a very small

variety of residues. We examined the numbers of LCR, the length

of maximum LCR and the total length of LCR in every sequence

by the program of ‘‘SEG’’ [23] in order to investigate the

implication with the stability of short-lived proteins.

The N-terminal residue has been expected to be significantly

correlated with the protein half-life [24,25]. The N-end rule

indicates a close relationship between a protein half-life and its N-

terminal residue, which can be roughly summarized as: destabi-

lizing residues mainly include F, L, W, Y, I, R, K, H, D, E, C, N

and Q, while stabilizing residues are mainly M, P, A, S, T, G and

V. Thus, we analyzed the N-terminal residue of short-lived and

long-lived protein sequences after retrieving the UniProt database.

A feature vector of 20 dimensions was used to represent the

occurrence of 20 amino acids at the N-terminal position.

PEST regions are generally accepted to be associated with

short-lived proteins [26]. The features we extracted from protein

sequences using ‘‘epestfind’’ method [22] include the number of

Table 1. Features derived from protein sequence.

feature terms feature for dataset abbreviation

amino acids amino acids content mono-peptide(20) AA_*

Content di-peptide(400)

(723) grouped amino acids content single(6) aa_*

dyad (36)

triplet(216)

transition(15) *_.*

distribution(30) num%*

physicochemical sequence length sequence length(1) len.

property (4) isoelectric point isoelectric point(1) isoele.

sulphur content sulphur content(1) Sulphur

hydrophobicity of protein hydrophobicity of protein(1) Hydrophobicity

structure- related disorder region the total length of disorder regions(1) disorder_len

(7) the average of scores(1) disorder_score

the number of disorder regions(1) disorder_num

length of max disorder region(1) disorder_max

protein secondary structure helix content(1) helix

sheet content(1) sheet

turn content(1) turn

degradation motif KEN box the existence of KEN box(1) KEN

(35) destruction box geminin content(1) D_g

cyclinA content(1) D_cA

cyclinB content(1) D_cB

securin content(1) D_s

PEST region number of PEST regions PEST_num

max length of PEST regions PEST_max

the average of PEST scores PEST_score

the relative position of PEST regions PEST_posi

low complexity region total length of LCRs(1) LCR_len.

the number of LCRs (1) LCR_num

length of max LCRs (1) LCR_max

N terminal animo acids of N end(20) N_*

the existence of signal peptide the existence of signal peptide(1) SP

transmembrane transmembrane enrichment(1) TM

transmembrane region length(1) TM_len.

Protein phosphorylation the content of modification site(3) Phos

Modification (7) C-glycosylation the content of modification site(1) Cglyc

N-glycosylation the content of modification site(1) Nglyc

O-glycosylation the content of modification site(2) Oglyc

totally 776

doi:10.1371/journal.pone.0027836.t001

Recognizing Short-Lived Proteins
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potential PEST, the length of maximum potential PEST, the score

of maximum PEST region, and the occurrence position of each

PEST region in a sequence.

Disordered region in a protein is another important signal for

short-lived protein degradation. Some degradation motifs such as

D-box tend to fall into the locally disordered regions [27].

Moreover, disordered proteins are more widespread in eukaryotic

proteomes. Therefore, 4 disorder-related features extracted by

IUPred [28] were taken into consideration including the number

of disordered regions, the total length of disordered regions, the

length of maximum disordered region, and the average score of

disordered regions.

In this study, signal peptides and transmembrane regions are

found to be highly related to protein stability, thus we took the

existence of signal peptides, the existence of transmembrane

regions and the total length of transmembrane regions in a protein

as three features in the initial feature list.

Post-translational modification (PTM), which is the chemical

modification of a protein after its translation, is closely correlated

with the protein function. Thus we investigated possible

relationships between kinds of PTMs and protein degradation.

In general, PTMs includes phosphorylation, glycosylation, N-

acetylation, ubiquitination, and so on. In this study, features

focusing on protein phosphorylation and glycosylation were

considered including the number of phosphorylation site in serine

and threonine respectively, the number of C-glycosylation site, N-

glycosylation site and G-glycosylation site.

In the end, we totally obtained 776 features as displayed in

Table 1(details see Table S2), which can be roughly grouped into

four categories: (1) amino acid composition, (2) physicochemical

properties, (3) structure-related characteristics, and (4) degrada-

tion-related motifs.

Feature evaluation and classification
We employed F-value [29] as a feature selection criterion to

assess the actual discriminating performance of each feature on the

recognition of short-lived proteins, which can be calculated as:

F (i)~
mz

i {m{
i

sz
i {s{

i

����

���� ð1Þ

where mz
i and m{

i denote the mean values of the ith feature on

positive and negative samples, respectively, while sz
i and s{

i

denote the standard deviations of the ith feature on positive and

negative samples, respectively.

We defined the propensity score of feature in short-lived or

long-lived proteins as follows,

Pr opensity Score (j) ~

1

n

Xn

i~1

F
j
i

1

t

Xt

i~1

F
j
i

ð2Þ

In which F
j
i is represented as the value of jth feature in the ith

protein; n is represented as the number of short-lived proteins or long-

lived proteins; t is represented as the number of all proteins. All F
j
i

should be scaled to the range 0–1 before using formula (2). Thus the

propensity score of .1 indicated that the feature is tend to be higher

enriched either in short-lived proteins or in long-lived proteins.

To screen out discriminative features and remove the irrelevant

ones, we first removed the redundant features based on Pearson

correlation coefficient. We found that 160 pairs of attributes are

strongly and positively correlated ranging 0.50–0.99 with P,0.001

in the human training datasets. Therefore, we removed attributes

with lower F-values among these correlated features, and obtained

616 features to construct the SVM model. Then we ranked the

initial features based on their F-values and selected the ones with

F-value not less than 0.1. After that, we applied analysis of

variance (ANOVA) to evaluate their discriminative power, and

further removed the features with p-value more than 0.001.

Finally, we obtained the 211,254 distinctive features in 10 human

training dataset (TR1-TR10) respectively to construct the SVM

calssifier [30,31] (see Table S3). As expected, SVM classifiers with

selected features show consistent and comparable classification

accuracies on human datasets.

Therefore, we established 10 SVM-based classifier models with

10 human training datasets (TR1-TR10) to distinguish the

positive(short-lived proteins) from the negative training data

(long-lived proteins), using the program of libsvm-2.88. with

RBF kernel function.

To obtain the best model, there are two parameters c and g to

be optimized. Using the automatic parameter selection script

grid.py supplied by LIBSVM [32], the optimized parameters c and

g in each classifier can be seen in Table S1.

Results and Discussion

Predicting short-lived proteins with different cutoff
By using the feature selection method described in [30],

criterion of F-value proposed by Golub et al. [29], and redundancy

removal, 211,254 non-redundant features calculated from

protein sequences were left for training and prediction. Using all

the filtered features components, we evaluated the performance of

three different classifiers: ‘‘short’’-‘‘medium/long/extra-long’’

classifier, ‘‘short/medium’’-‘‘long/extra-long’’ classifier, and

‘‘short/medium/long’’-‘‘extra-long’’ SVM-based classifier by ten-

fold cross-validation and on corresponding testing dataset. The

comparison of three AUC areas showed that ‘‘short’’-‘‘medium/

long/extra-long’’ classifier performs best (see Fig. 1).

Protein degradation is a regulated process, and it may involve

recognition of certain motif or degradation signal in short-lived

proteins [33]. Thus, short-lived proteins can be better predicted

Figure 1. ROC curves of the proposed SProtP using different
cutoff.
doi:10.1371/journal.pone.0027836.g001
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from features derived from protein protein sequences. It is known

that some short-lived proteins have important regulatory roles

such as p53 [3]. Thus we analyzed classifier to predict short-lived

proteins in advance.

Prediction performance of short-lived proteins
Employing the selected features which would have strong

relevance to protein degradation (see Table S3), we established the

10 classification model based on SVM with 10 human training

datasets (TR1-TR10). Each model was obtained by optimizing

model parameters to achieve the best ten-fold cross-validation

performance on each training dataset, and then tested on

corresponding testing dataset. The prediction performances of

the 10 classifiers on 10 human testing datasets (TE1-TE10) are

generally consistent, ranging from 77.5% to 83.3% for the

sensitivity and from 78.8% to 81.2% for specificity, which are

provided in detail in Table S1. We also applied 10 classifier models

in human filetered dataset (FIL_dataset), we achieved average

sensitivity of 81.5% and specificity of 71.1% respectively. The

AUC value of prediction results on human filtered datasets

(FIL_dataset) using human model is 0.819, which indicated that

the classifier proposed in this study generalized very well.

Analysis of reduced optimal feature set
To obtain an optimal set of features, we further reduced the

number of features for the ‘‘short’’-‘‘medium/long/extra-long’’

classifier, and evaluated the prediction performance of each

classifier. We found that the number of features can be further

reduced from 616 to 11 without decrease the performance (see

Fig. 2). Using the 11 feature components the classifer can obtain

an AUC of 0.831.

Analysis of the 11 feature components showed four classes of

features: hydrophobic features (LL - two continuous hydropho-

bic aromatic amino acid, ba/aab/bb – two or three continuous

amino acids with one hydrophobic aromatic amino acid

and one or two hydrophobic aliphatic amino acids, TM -

transmembrane region, and Hydrophobicity), signal peptide,

protein length, and an acidic amino acid or short sequence motif

containing an charged amino acid (see Table 2). The propensity

score of 6 distinct features for short-lived and long-lived proteins

were shown in Fig. 3. It has already been known that protein

length affects the half life [10,12]. Thus, in our analysis, we

normalized all the quantitative features against protein sequence

length.

It is interesting that signal peptide can affect protein half life (see

Fig. 3 and Fig. 4). Of the total 510 proteins having shorter half-

lives with PSI less than 2, 229 proteins (45%) contain signal

peptides. However, of the total 1288 proteins having longer half

lives with PSI greater than 4, only 37 proteins (3%) have signal

peptides. SignalP predicts signal peptides cleaved by signal

peptidase I [34]. Proteins with such signal peptide can be secreted

to the extracellular space, and they can also directed to specific

organelles in the cell if they have other specific signals, e.g. the

protein will be retended in the ER if it holds an ‘‘ER retention

signal’’ [34]. We assigned the proteins to subcellular localizations

using annotations from UniProt database [35]. Fisher’s exact test

showed that the proteins with short half lives are significantly

enriched in extracellular proteins (p value ,0.0001). These

proteins are secreted immediately after synthesis, they are

expected to have shorter intracellular half lives. In addtion, we

found the proteins with short half lives are also significantly

enriched in ER proteins (p value = 1.49E-6).

Figure 2. The AUC value of SProtP model varies as feature
number in human dataset.
doi:10.1371/journal.pone.0027836.g002

Table 2. Reduced optimal 11 feature set information.

No. features Feature description F-value

1 TM transmembrane enrichment 0.4653

2 Hydrophobicity hydrophobicity of protein 0.4162

3 SP Signal peptide 0.4114

4 aa_ba composition of amino acid class b and a combined dyad 0.2950

5 aa_aab composition of amino acid class a, a, and b combined triplet 0.2875

6 len. sequence length 0.2827

7 aa_da composition of amino acid class d and a combined dyad 0.2722

8 AA_D composition of amino acid ‘‘ aspartic acid’’ 0.2682

9 aa_cd composition of amino acid class c and d combined dyad 0.2430

10 AA_LL composition of amino acid ‘‘leucine’’ 0.2408

11 aa_bb composition of amino acid class b and b combined dyad 0.2255

doi:10.1371/journal.pone.0027836.t002

Recognizing Short-Lived Proteins
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Hydrophobic features are strongly enriched in short-lived

proteins (see Fig. 3 and Fig. 4). In contrast, proteins with

hydrophilic characters, such as positively-charged amino acids

(glutamic acid and aspartic acid), have reversed distributions.

It is possible that hydrophobic interactions are an important

mechanism for regulated degradation. It has been known that

hydrophobic character of the tyrosine in IkBa is important for its

rapid turnover [36]. And addition of hydrophobic carboxy-

terminal residues to smRS-GFP protein could dramatically reduce

protein levels in the haloarchaeon Haloferax volcanii possibly

through proteasome pathway. [37].

Transmembrane proteins can be degraded by specific pathways.

In our localization analysis, we also found significant enrichment

of fast degrading proteins in cytoplasmic membrane (Fisher’s exact

test: p = 1.78E-14). Cytoplasmic membrane is not in a static state,

accompanied with cyclic generation and membrane movement.

Endocytosis is the degradative rout to lysosomes followed by

extracellular material and also by certain plasma membrane

proteins which will not be recycled to the plasma membrane for

re-usage [38]. The endosomal sorting complex required for

transport-I (ESCRT-I) complex, which is conserved from yeast

to humans, directs the lysosomal degradation of ubiquitinated

transmembrane proteins [39]. And an E3 ligases, RSP5, has been

found to ubiquinate membrane proteins, and regulate their

turnover [40,41]. The continuous degradation of membrane

proteins by lysosome may be the cause of fast turnover of

cytoplasmic membrane proteins. This may also cause the

phenomenon that transmembrane proteins tend to undergo fast

turnover because many transmembrane proteins are located on

cytoplasmic membrane.

SProtP evaluation
In addition, an independent datasets (iTE1, iTE2 and iTE3) as

introduced in Method section was used to reevaluate the

effectiveness of the proposed SProtP in this paper. Because global

mass spectrometry–based proteomics [15], the new proposed

‘‘bleach-chase’’ [16], and parallel metabolic pulse labeling [17–18]

in mammalian cells were not suitable for detecting low abundance

and rapidly turned over proteins [42], these datasets (iTE1, iTE2

and iTE3) mainly contains stable proteins. Owning to the deletion

and replacement of some protein accession numbers in the most

recent version of UniProt database, 526 negative samples were

finally used as the independent dataset iTE1. We obtained 89.9% of

average accuracy using the SVM model constructed in human Hela

cells. There are about 100 long-lived proteins as negative samples in

Figure 3. The propensity score of each features for short-lived
and long-lived proteins.
doi:10.1371/journal.pone.0027836.g003

Figure 4. Features varies as protein half-lives.
doi:10.1371/journal.pone.0027836.g004

Recognizing Short-Lived Proteins
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iTE2 [16], We even obtained 99% of average accuracy when

implementing the SProtP model in iTE2. The iTE3 included 1573

long-lived proteins and only one short-lived protein [17–18], we

obtained 83.9% of average accuracy on iTE3 using our proposed

SProtP. These results indicated that the SProtP model proposed in

this paper has good generalization, and can recognize those short-

lived proteins and long-lived proteins accurately.

ROC curve of the proposed SProtP was also plotted in Fig. 1.

The AUC value of prediction results on human testing datasets

using human model is 0.848, which is acceptable. The above

results are summarized in Table 3.

Till now, the N-end rule has been studied in many proteins

sequences and it is employed to predict protein half-lives by the

ProtParam tool (http://www.expasy.ch/tools/protparam.html).

To compare our approach with ProtParam tool, we predicted

short-lived proteins in human testing datasets (TE1-TE10). The

results showed that ProtParam achieved an overall prediction

accuracy 57.0% in human (see Table 3). Thus, our approach

outperforms the N-end rule based method ProtParam.

It should be noted that the prediction performance can be

improved if there is accurate measure of protein half-lives. Sherry

et al’s data are subject to noise inherent in the technology used

[43]. The microarray was used to measure protein half-lives, but it

is already known that microarray is subject to noise [44].

The web server construction
Based on the ‘‘short’’-‘‘medium/long/extra-long’’ classifier

using 11 feature components from protein sequence, we developed

software Short-lived Protein Prediction in Human (SProtP

Human). And it was made freely accessable academically via

http://reprod.njmu.edu.cn/sprotp. SProtP Human doesn’t re-

quire any data other from sequence. Huang et al incorporated

seven characters to achieve less than 70% accuracy. These seven

characters are (1) KEGG enrichment scores of the protein and its

neighbors in network, (2) subcellular locations, (3) polarity, (4)

amino acids composition, (5) hydrophobicity, (6) secondary

structure propensity, and (7) the number of protein complexes

the protein involved. Some of the characters such as KEGG

enrichment scores and the number of protein complexes the

protein involved are difficult to accurately calculate for less studied

proteins. But SProtP Human does not involve this problem, and is

easier to be implemented. It can achieve an accuracy of 79.8%. It

will provide a rich resource for biologists the study of protein

turnover, evaluation of the efficiency of RNAi on protein level.

Recognizing short-lived proteins.
With the availability of the human protein half-life data, we

found that sequence-derived features of protein could globally

influence their half-lives in mammalian cells. The approach

presented in this paper provide a valuable alternative for

recognizing short-lived proteins at proteome scale in human cells.

However, its accuracy may be affected by many factors such as cell

types or stress conditions. It should be noted that protein

degradation is very complex in eukaryotic cells. For example, E3

ubiquitin protein ligase family, which provide selectivity to the

proteasome-ubiquitin degradation pathway, may number in

hundreds in humans [45]. They function under a controlled

spatial and temporal regulation. Moreover, some proteins may

have variable half-lives in different cell types under different

conditions. More experimental studies are required for better

understanding protein degradation regulation.

Conclusion
By investigating the sequence-based features related to protein

degradation, a new approach was developed to recognize the

short-lived proteins in human cells which are important for cell

cycle progression, signal transduction, and differentiation. The

average sensitivity and specificity on 10 human testing dataset

were 80.8% and 79.8%, respectively. We also obtained 89.9%,

99% and 83.9% of accuracy in an independent datasets iTE1,

iTE2 and iTE3, respectively.

As a conventional prediction method for protein half-lives, N-

end rule has been employed by researchers for a long time [46] for

its simpleness. However, the N-end rule-based methods are far

from satisfactory, the new approach proposed in this paper

provides a more accurate predictor for short-lived proteins in

mammalian cells, and it is provided as a free online tool, SProtP

Human, at http://reprod.njmu.edu.cn/sprotp.
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