
RAxML and FastTree: Comparing Two Methods for Large-
Scale Maximum Likelihood Phylogeny Estimation
Kevin Liu1, C. Randal Linder2, Tandy Warnow1*

1 Department of Computer Science, University of Texas at Austin, Austin, Texas, United States of America, 2 Section of Integrative Biology, School of Biological Sciences,

University of Texas at Austin, Austin, Texas, United States of America

Abstract

Statistical methods for phylogeny estimation, especially maximum likelihood (ML), offer high accuracy with excellent
theoretical properties. However, RAxML, the current leading method for large-scale ML estimation, can require weeks or
longer when used on datasets with thousands of molecular sequences. Faster methods for ML estimation, among them
FastTree, have also been developed, but their relative performance to RAxML is not yet fully understood. In this study, we
explore the performance with respect to ML score, running time, and topological accuracy, of FastTree and RAxML on
thousands of alignments (based on both simulated and biological nucleotide datasets) with up to 27,634 sequences. We
find that when RAxML and FastTree are constrained to the same running time, FastTree produces topologically much more
accurate trees in almost all cases. We also find that when RAxML is allowed to run to completion, it provides an advantage
over FastTree in terms of the ML score, but does not produce substantially more accurate tree topologies. Interestingly, the
relative accuracy of trees computed using FastTree and RAxML depends in part on the accuracy of the sequence alignment
and dataset size, so that FastTree can be more accurate than RAxML on large datasets with relatively inaccurate alignments.
Finally, the running times of RAxML and FastTree are dramatically different, so that when run to completion, RAxML can take
several orders of magnitude longer than FastTree to complete. Thus, our study shows that very large phylogenies can be
estimated very quickly using FastTree, with little (and in some cases no) degradation in tree accuracy, as compared to
RAxML.
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Introduction

Phylogeny estimation is an important part of much biological

research. Methods (either Bayesian or maximum likelihood) based

upon stochastic models of sequence evolution have many desirable

statistical properties, but are also computationally the most

challenging. Bayesian MCMC methods (e.g., MrBayes [1]) offer

an advantage over maximum likelihood in that they provide a

distribution of trees rather than a single point estimate; however,

because the time needed for the MCMC analysis to converge can

be very large, these methods are generally not used on datasets

with more than a few hundred sequences. Large-scale statistical

phylogeny estimation, with many hundreds or several thousand

sequences, therefore, is performed using maximum likelihood

(ML). Of the many ML methods, RAxML [2,3] is the main

method for large-scale ML estimation because it produces the best

ML scores and does so faster than other ML methods that have

comparable accuracy with respect to ML scores. Other widely-

used ML methods include GARLI [4], Phyml [5], and PAUP* [6],

but these methods have generally not been used on very large

datasets.

Although continuous enhancements are being added to

RAxML, its computational requirements can still be prohibitive

for alignments with more than a few thousand sequences and sites

(e.g., a RAxML analysis of several alignments of a 16S dataset with

almost 28,000 sequences required approximately a month of CPU

time [7], and a RAxML bootstrap analysis of that dataset with 444

replicates required 5.6 years of CPU time [8,9]). Faster methods for

finding trees with good ML scores also exist, one of which is

FastTree [10,11]. Earlier studies comparing FastTree to RAxML

on true alignments showed that RAxML was much more

computationally intensive than FastTree, and that RAxML

produced better ML scores and topologically more accurate trees

than FastTree [11]. However, the relative performance on

estimated alignments was not evaluated, nor was any comparison

made between FastTree and RAxML when restricted to the same

amount of time.

In this paper, we compare RAxML and FastTree on nucleotide

datasets, when alignments must be estimated. We explore

performance with respect to running time, ML score, and

topological accuracy, using both biological and simulated datasets

and estimating alignments using several different methods.

Because running time is a crucial issue for large datasets, we

include a variant of RAxML (which we cal ‘‘RAxML-Limited’’), in

which we constrain RAxML’s running time so that it is not

substantially longer than FastTree’s.

Our study shows that in many cases, phylogenetic analyses of

very large nucleotide alignments can be performed using FastTree

without a substantial difference in tree accuracy, and in a small

fraction of the time needed by RAxML. Thus, FastTree represents
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an important contribution achievement in the state of the art for

ML tree estimation on nucleotide sequence alignments.

Results

Simulated Data
We compared RAxML, RAxML-Limited, and FastTree on

1800 1000-taxon alignments, previously studied in [8,9] and

available online at www.cs.utexas.edu/users/tandy/science-paper.

html. These alignment were estimated on simulated datasets

(Table S1) produced using ROSE [12] on 15 model trees (with 20

replicates produced per model tree) under different GTR+Gam-

ma+Indel models, with a range of rates of evolution, distributions

on gap lengths (short, medium, and long, indicated by S, M, and L

in the model names), and relative rates of substitutions to indels.

For each dataset, we produced six alignments: the true alignment

(known to us because of the simulation process), and using

MAFFT, SATé, ClustalW, QuickTree and PartTree, each in their

default settings, to estimate alignments. For each of the 1800

resulting alignments, we used RAxML, FastTree, and RAxML-

Limited to estimate ML trees. We compared each estimated tree

to the true tree (known to us due to the simulation process), with

zero-event edges contracted (these are called ‘‘potentially inferable

model trees’’, or PIMTs). We measured topological accuracy using

the missing branch rate, which is the proportion of branches (as

defined by the bipartitions they induce on the taxon set) present in

the PIMT but missing in the estimated tree. When the PIMT is

fully resolved, then the missing branch rate is identical to the

Figure 1. Missing branch rates of ML methods on the simulated 1000-taxon datasets. The 1000-taxon model conditions are arranged
along each x-axis from left to right in order of increasing difficulty. Standard error bars are shown. n~20 for each average value. Statistical tests were
performed using one-tailed pairwise t-tests with Benjamini-Hochberg [13] correction for multiple tests. Model conditions marked with an asterisk
(‘‘*’’) indicate that RAxML’s missing branch rate was a statistically significant improvement over FastTree’s missing branch rate. Model conditions
marked with a dollar sign (‘‘$’’) indicate that FastTree’s missing branch rate was a statistically significant improvement over RAxML’s missing branch
rate. a~0:05 and n~40 for each statistical test.
doi:10.1371/journal.pone.0027731.g001

RAxML and FastTree
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bipartition distance (also known as the Robinson-Foulds rate), the

standard metric used in phylogenetic studies. However, when the

PIMT tree is not binary, the missing branch rate is preferable. The

missing branch and Robinson-Foulds rates treat all missing

branches equally, and hence does not reveal where within the

PIMT the missing branches are located.

Throughout these experiments we observed the following. First,

for almost all model conditions and alignment methods, RAxML-

Limited produces the least accurate ML scores and tree topologies

of all three methods, with results that are generally statistically

significant (Figure 1 and Table S2 and S3 for tree error, and

Figure S1 and Table S4 and S5 for ML score, Benjamini-

Hochberg-corrected [13] one-tailed pairwise t-tests, n~40 and

a~0:05 for each statistical test).

Figure 1 presents a comparison with respect to topological

accuracy (the more accurate alignments are on the left, and less

accurate on the right). Note that RAxML produced more accurate

trees than RAxML-Limited for all easy model conditions (1000S5,

1000L5, 1000M5, 1000S4, and 1000L4), on which, irrespective of

the alignment, RAxML produced trees with accuracy very close to

that of RAxML on the true alignment. On the harder model

conditions, RAxML gave a substantial improvement over

RAxML-Limited for the more accurate alignments, and a smaller

but still distinct improvement on the less accurate alignments.

Figure 2. Runtimes (h) of ML methods on the ClustalW and PartTree alignments of the simulated 1000-taxon datasets. Runtimes of
ML methods on other alignments are similar to runtimes on the ClustalW alignment (data not shown). The 1000-taxon model conditions are arranged
along each x-axis from left to right in order of increasing difficulty. Standard error bars are shown. n~20 for each reported value.
doi:10.1371/journal.pone.0027731.g002

Table 1. ML scores (as log likelihoods) of the solutions obtained by the ML methods on the three largest biological datasets.

Alignment ML Method 16S.B.ALL 16S.T 16S.3

TrueAln RAxML 21,589,345 21,727,411 21,376,372

FastTree 21,607,277 21,731,963 21,380,308

RAxML-Limited 21,601,407 21,733,148 21,380,946

SATé RAxML n.d. 21,650,778 21,316,340

FastTree n.d. 21,654,334 21,319,623

RAxML-Limited n.d. 21,655,854 21,317,604

MAFFT RAxML n.d. 21,645,509 n.d.

FastTree n.d. 21,649,615 n.d.

RAxML-Limited n.d. 21,647,176 n.d.

PartTree RAxML 21,973,592 21,760,582 21,346,922

FastTree 22,032,424 21,766,371 21,350,858

RAxML-Limited 22,013,115 21,762,611 21,351,822

ClustalW RAxML n.d. 21,716,012 21,365,614

FastTree n.d. 21,719,138 21,369,027

RAxML-Limited n.d. 21,720,420 21,368,776

Quicktree RAxML 21,878,299 23,439,265 22,451,782

FastTree 21,903,840 23,449,574 22,459,658

RAxML-Limited 21,891,570 23,448,084 22,460,095

Some alignments were missing due to high memory requirements of an alignment method on datasets of this size, preventing ML methods from running;
these entries are marked ‘‘n.d.’’. n = 1 for each reported value.
doi:10.1371/journal.pone.0027731.t001

RAxML and FastTree
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A comparison between RAxML and FastTree (Fig. 1) with

respect to tree topology accuracy shows that RAxML and

FastTree had very close accuracy on the easy model conditions

for all alignments (differing by at most 0.3%). On the harder

models, RAxML produced more accurate trees than FastTree for

highly accurate alignments (true, SATé, and MAFFT alignments),

and FastTree was able to produce more accurate trees on the less

accurate alignments. Thus, the relative accuracy of RAxML and

FastTree depended upon the accuracy of the alignment, with

RAxML performing better on the more accurate alignments and

FastTree giving better results on the less accurate alignments.

However, even on the harder models, the differences were

small, and not all models show statistically significant differences.

On the more accurate alignments (i.e., the true, SATé, and

MAFFT alignments), all the model conditions showing statistically

significant differences between RAxML and FastTree favored

RAxML. The average improvement on these model conditions

was 0.5% on the true alignment, 0.5% on the SATé alignment,

and 1.1% on the MAFFT alignment. Thus, although there were

statistically significant differences, their magnitudes were small.

On the less accurate alignments, we see some interesting

differences. On the ClustalW alignments, nine of the ten harder

model conditions showed statistically significant differences between

RAxML and FastTree: two showed RAxML having an advantage

over FastTree (but with the average improvement only 0.4%), and

seven showed FastTree having an advantage over RAxML (average

improvement 2.1%). On the Quicktree alignments, eight of the ten

model conditions showed statistically significant differences, with

three in favor of FastTree (average improvement 1.2%) and five in

favor of RAxML (average improvement 1.1%). Finally, on the

PartTree alignments, eight of the ten harder model conditions

showed statistically significant improvements, all in favor of

FastTree (average improvement 0.6%).

Thus, with respect to tree topology accuracy, the relative

performance of RAxML and FastTree depended upon both the

model parameters and alignment accuracy, RAxML tending to

have an advantage on alignments that were highly accurate (easy

model conditions or very good alignments on harder model

conditions), and FastTree tending to have an advantage otherwise.

Furthermore, although many of the differences were statistically

significant (see Tables S3 and S6), the differences in tree accuracy

were small on average, and differences on individual model

conditions were at most 3.4%.

A comparison of running times shows dramatic differences

among these three methods (Fig. 2). Note that both FastTree and

RAxML-Limited finished in at most ten minutes on all the datasets

we studied, while RAxML’s running time was much larger,

ranging from about 2 hours to almost 100 hours. Furthermore,

RAxML’s running time was impacted by the alignment choice, so

that RAxML took much longer on the PartTree alignments for the

difficult model conditions. The increase in running time for the

PartTree alignments on these hard model conditions suggests that

RAxML’s running time may be due to poor phylogenetic signal in

the PartTree alignments, which were the least accurate in our

collection for the simulated data.

Biological datasets
We studied performance on ten ribosomal RNA datasets with

117 to 27,643 sequences from CRW (the Comparative Ribosomal

Website produced by Robin Gutell [14]), which have highly

reliable curated alignments based upon secondary structure. These

datasets had been previously used as benchmarks for alignment

and phylogeny estimation [7], and so have curated alignments and

reference trees (based upon RAxML bootstrapping analyses with

only the highly supported branches included) available. See Table

S7 for empirical statistics for these datasets and reference trees.

Table 2. ML scores obtained by the ML methods on the six smallest biological datasets.

Alignment ML Method 16S.M.aa_ag 16S.M 23S.M 23S.M.aa_ag 23S.E.aa_ag 23S.E

Reference RAxML 2279,440 2288,263 2241,190 2226,619 2194,711 2190,752

FastTree 2279,848 2288,626 2241,419 2226,796 2194,856 2191,304

RAxML-Limited 2280,385 2289,222 2241,759 2226,921 2195,182 2191,029

SATé RAxML 2262,698 2265,706 2229,241 2215,823 2178,413 2179,482

FastTree 2263,142 2265,951 2229,322 2215,864 2178,634 2179,712

RAxML-Limited 2263,631 2266,457 2229,670 2216,059 2178,597 2179,622

MAFFT RAxML 2264,947 2266,519 2233,776 2219,249 2182,246 2181,039

FastTree 2265,463 2266,798 2233,867 2219,310 2182,446 2181,251

RAxML-Limited 2265,663 2267,217 2234,113 2219,620 2182,466 2181,404

PartTree RAxML 2270,834 2262,794 2232,272 2216,530 2174,603 2176,671

FastTree 2271,496 2263,032 2232,517 2216,628 2174,739 2176,809

RAxML-Limited 2271,642 2263,569 2232,691 2216,881 2174,817 2177,006

ClustalW RAxML 2279,144 2276,110 2233,343 2220,541 2187,819 2197,246

FastTree 2279,994 2276,424 2233,357 2220,596 2187,882 2197,296

RAxML-Limited 2279,925 2276,859 2233,544 2220,750 2187,972 2197,373

Quicktree RAxML 2275,718 2274,076 2235,199 2220,745 2185,701 2188,468

FastTree 2276,428 2274,407 2235,246 2220,845 2185,846 2188,597

RAxML-Limited 2276,645 2274,878 2235,385 2221,000 2185,966 2188,615

ML scores given as log likelihoods; n~1 for each reported value.
doi:10.1371/journal.pone.0027731.t002

RAxML and FastTree
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For each of the datasets, we computed several alignments: the

Quicktree and PartTree alignments only on the three largest

datasets, and MAFFT, ClustalW, and SATé on the smaller

biological datasets. We ran RAxML, RAxML-Limited, and

FastTree on these alignments, and compared the resultant trees

to the reference tree for each dataset.

With respect to ML score optimization, RAxML produced the

best ML scores for all the alignment/dataset combinations

(Tables 1 and 2). However, RAxML-Limited produced better

ML scores than FastTree on the alignments with at least 1000

sequences, and FastTree produced better ML scores on almost all

of the alignments with fewer than 1000 sequences.

Since the relative performance with respect to tree error to some

extent depended upon the size of the datasets, we discuss results start-

ing with the three largest datasets before discussing the smaller datasets.

Since the reference tree for all the biological datasets is RAxML on

the curated alignment, we expect RAxML to have lower tree error on

the reference alignment than RAxML-Limited and FastTree.

Figure 3. Comparison of ML methods on the 16S.B.ALL dataset. GTRGAMMA ML scores, missing branch rates, runtimes in hours, and
alignment SP-FN errors are shown. n~1 for each reported value.
doi:10.1371/journal.pone.0027731.g003

RAxML and FastTree
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The three largest datasets, 16S.B.ALL, 16S.T, and

16S.3. On the largest dataset, 16S.B.ALL (27,643 sequences),

only the Quicktree and PartTree alignment methods could be run

[7]. The other alignment methods aborted due to excessive

memory usage, even when provided with 256 GB of main

memory. Our comparisons for this dataset are therefore based

upon only three alignments. On the true alignment, RAxML had

the lowest error (0.0%), FastTree had 3.9% missing branch rate,

and RAxML-Limited had 13.8% (Fig. 3). The relative

performance on the QuickTree alignment showed similar trends,

with RAxML having 13.2% missing branch rate, followed closely

by FastTree at 13.5%, and then by RAxML-Limited at 21.8%.

Interestingly, on the PartTree alignment, RAxML was no longer

in first place: it had 31.8% error, FastTree had 29.1%, and

RAxML-Limited had 38.4%. Overall, on this dataset, RAxML-

Limited had the worst accuracy by far, and RAxML and FastTree

were closer (only 4% apart for each alignment, with FastTree

better on one relatively inaccurate alignment). A running time

comparison shows a huge difference among these methods (see

Fig. 3): RAxML was the slowest, taking between 647 and

2150 hours to produce trees, FastTree the fastest, taking

between 2 and 6.3 hours, and RAxML-Limited in between,

taking between 10 and 50 hours.

The next two largest datasets, 16S.3 and 16S.T, have 6323 and

7350 sequences, respectively, and represent comparable challeng-

es. For these datasets we were able to obtain alignments from all

five alignment methods, the sole exception being MAFFT on the

16S.3 dataset, which failed due to memory requirements on a

machine with 32 GB of main memory.

RAxML produced more accurate trees than RAxML-Limited

on all alignments, with differences ranging from small (about

1.5%) to large (about 6%) (Table 3). RAxML produced more

accurate trees than FastTree on all but two alignments, FastTree

was better than RAxML on one alignment (the PartTree

alignment of the 16S.T dataset), and they were tied on one

alignment (Quicktree on 16S.T). The difference in tree error was

never more than 3.2% for the curated alignment of the 16S.3

dataset. Furthermore, differences on the estimated alignments

were always less than 1%. Running times differed here as well (see

Table 4): RAxML took 73–305 hours, FastTree took at most

4.1 hours, and RAxML-Limited took at most 5.1 hours on each

alignment.

Table 3. Missing branch rates (%) and alignment SP-FN errors of ML methods on alignments the three largest biological datasets.

Missing branch rate (%)

Alignment ML Method 16S.B.ALL 16S.T 16S.3 Average

TrueAln RAxML 0.0 0.0 0.0 0.0

FastTree 3.9 2.8 3.2 3.3

RAxML-Limited 13.8 5.5 6.1 8.4

SATé RAxML n.d. 7.5 6.8 n.a.

FastTree n.d. 8.2 7.7 n.a.

RAxML-Limited n.d. 11.0 8.4 n.a.

MAFFT RAxML n.d. 7.3 n.d. n.a.

FastTree n.d. 8.2 n.d. n.a.

RAxML-Limited n.d. 8.9 n.d. n.a.

PartTree RAxML 31.8 17.1 12.0 20.3

FastTree 29.1 16.3 12.5 19.3

RAxML-Limited 38.4 18.6 15.4 24.1

ClustalW RAxML n.d. 9.7 9.9 n.a.

FastTree n.d. 10.5 10.4 n.a.

RAxML-Limited n.d. 12.9 13.3 n.a.

Quicktree RAxML 13.2 33.9 31.8 26.3

FastTree 13.5 33.9 32.5 26.6

RAxML-Limited 21.8 35.0 35.6 30.8

Alignment SP-FN error (%)

Alignment 16S.B.ALL 16S.T 16S.3

SATé n.d. 37.0 24.9 30.9

MAFFT n.d. 31.0 n.d. 31.0

Quicktree 54.4 63.0 52.8 56.7

ClustalW n.d. 56.3 52.0 54.2

PartTree 41.7 34.3 22.6 32.9

Only three alignment methods succeeded on the three largest biological datasets. For the other alignments that could not be successfully
computed due to excessive memory requirements, topological accuracy of the ML methods were not available and thus not reported. ‘‘Average’’
refers to the average across the datasets. Entries for which no data was available because the alignment method failed to complete are marked ‘‘n.d.’’. Averages that
were not computed due to missing alignments for some datasets are marked ‘‘n.a.’’. n~1 for each reported value other than the average.
doi:10.1371/journal.pone.0027731.t003

RAxML and FastTree
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Results on the seven smaller biological datasets (117–

1028 sequences). As before, RAxML produced more accurate

trees than RAxML-Limited, and RAxML-Limited produced the

least accurate trees (Table 5). The relative performance between

FastTree and RAxML changed for these data, however. FastTree

produced topologically more accurate trees on several of the

alignments of these datasets, including one in which the difference

in tree error was almost 10% (Quicktree on the 23S.E.aa_ag

dataset). The largest differences in tree error were on the smallest

datasets, where they were as large as 10%. However, the difference

in tree error between FastTree and RAxML was at most 3% on

the alignments of the two largest of these datasets with 901 and

1028 sequences. Running time differences were substantial here as

well (Table 6). On the two largest datasets in this collection,

16S.M.aa_ag and 16S.M, each with around 1000 sequences,

RAxML used between 3.4 and 10 hours, compared to at most

10 minutes for FastTree and 20 minutes for RAxML-Limited. On

the other datasets, each of which has at most 300 sequences,

RAxML used up to 2.7 hours, compared to at most 5 minutes for

FastTree and 17 minutes for RAxML-Limited.

Summary for results. The study showed that RAxML

produced better ML scores than both FastTree and RAxML-

Limited, and topologically more accurate trees than RAxML-

Limited, in almost all cases. However, the relative performance of

FastTree and RAxML depended upon the alignment and dataset,

so that RAxML typically produced slightly more accurate trees

than FastTree on the large datasets. Results on smaller datasets

showed larger differences in tree error, and also showed FastTree

sometimes producing more accurate trees than RAxML (typically

on inaccurate alignments). Running time differences were

particularly pronounced on the larger datasets, but FastTree was

faster than RAxML on all datasets by at least two orders of

magnitude.

Comparison to the Price et al. study [10]
We now compare our study to Price et al.’s study [10], in which

RAxML was observed to consistently produce better ML scores and

more accurate trees than FastTree (with error rates that differed by

at least 3.6%), and to be 100–1000 times slower than FastTree.

Our results are in agreement with [10] with respect to running

time and ML scores, but made somewhat different observations

about tree error differences. For example, Price et al. always found

RAxML to produce topologically more accurate trees than

FastTree, and we found that FastTree was sometimes more

accurate than RAxML. The most likely explanation for this

difference is that Price et al. only used true alignments to perform

this evaluation (a condition in which our study also showed

RAxML to be more accurate), and we used both true and

estimated alignments. Another difference between these two

studies is that the difference in tree error was somewhat larger

for Price et al. (where the error rate difference ranged from 3.6%

to 4.7%), while we generally saw smaller differences. This

difference between our studies is interesting, and raises the

question of whether FastTree’s simplifying heuristics are not as

well suited to amino-acid phylogeny (which is what the Price et al.

study examined) as nucleotide phylogeny (which is what we

examined). Since our study did not examine protein-coding

nucleotide sequences, it is also possible that the differences might

be due to the kind of nucleotide sequences we examined (i.e., non-

coding), and that RAxML and FastTree might differ substantially

on coding sequences.

Discussion

Our study examined the relative performance of two variants of

RAxML and FastTree on nucleotide datasets, including several

very large biological datasets (one with almost 28,000 sequences)

Table 4. Runtime (h) of ML methods on alignments of the three largest biological datasets.

Alignment ML Method 16S.B.ALL 16S.T 16S.3 Average

TrueAln RAxML 647.3 305.3 322.1 424.9

FastTree 5.2 1.0 1.1 2.4

RAxML-Limited 10.3 3.7 3.1 5.7

SATé RAxML n.d. 123.6 123.1 n.a.

FastTree n.d. 1.7 0.8 n.a.

RAxML-Limited n.d. 2.7 1.0 n.a.

MAFFT RAxML n.d. 188.3 n.d. n.a.

FastTree n.d. 1.3 n.d. n.a.

RAxML-Limited n.d. 1.4 n.d. n.a.

PartTree RAxML 1418.1 176.2 118.3 570.9

FastTree 6.3 4.1 2.4 4.3

RAxML-Limited 50.3 5.1 2.9 19.4

ClustalW RAxML n.d. 73.0 64.3 n.a.

FastTree n.d. 0.7 0.6 n.a.

RAxML-Limited n.d. 1.0 0.8 n.a.

Quicktree RAxML 2149.9 247.3 120.7 839.3

FastTree 2.1 0.9 0.7 1.2

RAxML-Limited 33.3 1.6 1.3 12.1

‘‘Average’’ refers to the average across datasets. Some alignments were missing due to the inability of an alignment method to successfully align a
dataset due to excessive memory requirements on datasets of this size, preventing ML methods from running; these entries are marked ‘‘n.d.’’. ‘‘n.a.’’
denotes averages that were not computed due to missing entries. n~1 for values in columns other than the ‘‘Average’’ column. n~3 for the ‘‘Average’’ column.
doi:10.1371/journal.pone.0027731.t004

RAxML and FastTree
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and simulated datasets with 1000 sequences. The results of our

study establish the following. First, RAxML clearly produces better

ML scores compared to RAxML-Limited and FastTree, and

topologically more accurate trees than RAxML-Limited, in almost

all cases. When used with highly accurate alignments, RAxML

also tends to produce topologically more accurate trees than

FastTree, but the differences tend to be small on large datasets.

When used with less accurate alignments (such as might be

estimated on very large datasets, on which the most accurate

alignment methods cannot run [7]), FastTree is competitive with

RAxML with respect to tree topology accuracy, and can

sometimes be more accurate. However, as has been observed

before [10], RAxML is computationally much more expensive,

taking from 100–1000 times as much time as FastTree. Thus,

while RAxML produces better ML scores, and more accurate

trees than FastTree in many cases, whether RAxML should be

used on large datasets must be considered in the light of its

increased computational requirements.

Our study is limited to nucleotide sequences, and therefore the

relative performance between RAxML and FastTree could be different

on amino-acid sequences. Furthermore, phylogenetic ML methods

provide estimations of branch lengths and other numeric model

parameters, and it is possible that the improved ML scores obtained by

RAxML reflect improved estimations in these other model parameters.

For applications such as detecting selection in which the other model

parameters are important, improved model parameter estimation,

such as might be enabled by using RAxML, may be necessary.

Future studies should investigate whether RAxML produces

improved estimations of other model parameters, and the impact

of these improved estimations. It would also be beneficial to

evaluate whether RAxML and FastTree differ when amino-acid

alignments must be estimated, since Price et al. only considered

true alignments.

Materials and Methods

All datasets used in this study are previously published, and are

available (along with the reference tree and alignment) at http://

www.cs.utexas.edu/users/phylo/datasets, in the Dryad Digital

Repository, doi:10.5061/dryad.n9r3h, or in TreeBASE [15]. The

simulated datasets and biological datasets, other than 16S.B.ALL,

were studied in [8]. The 16S.B.ALL dataset was studied in [7,9].

Method commands and version numbers
Multiple sequence alignments were produced using MAFFT

(using its L-INS-i and PartTree algorithms) version 6.240 [16–18],

ClustalW (using its default and Quicktree options) version 2.0.4,

Table 5. Missing branch rates (%) and alignment SP-FN errors ML methods on alignments of the six smallest biological datasets.

Missing branch rate (%)

Alignment ML Method 16S.M.aa_ag 16S.M 23S.M 23S.M.aa_ag 23S.E.aa_ag 23S.E Average

TrueAln RAxML 0.7 0.0 0.0 0.0 0.0 0.0 0.1

FastTree 1.6 0.7 5.4 3.2 3.3 9.3 3.9

RAxML-Limited 3.7 3.8 11.9 5.1 12.1 10.7 7.9

SATé RAxML 4.8 6.9 10.7 11.5 9.9 4.0 8.0

FastTree 6.7 6.2 10.7 12.8 9.9 10.7 9.5

RAxML-Limited 9.0 9.3 14.3 15.4 12.1 13.3 12.2

MAFFT RAxML 4.4 5.5 11.3 10.3 8.8 8.0 8.0

FastTree 7.4 5.7 10.7 9.6 13.2 12.0 9.8

RAxML-Limited 8.8 6.2 16.7 13.5 13.2 20.0 13.0

PartTree RAxML 12.7 8.8 22.0 19.9 14.3 6.7 14.1

FastTree 12.9 8.6 22.6 18.6 17.6 12.0 15.4

RAxML-Limited 12.9 10.0 22.6 19.9 19.8 17.3 17.1

ClustalW RAxML 13.9 11.2 16.7 16.0 22.0 17.3 16.2

FastTree 12.7 8.6 16.7 14.7 23.1 20.0 16.0

RAxML-Limited 11.3 11.4 16.7 15.4 23.1 22.7 16.8

Quicktree RAxML 10.4 10.2 20.8 19.9 28.6 24.0 19.0

FastTree 11.5 9.3 19.6 17.9 18.7 20.0 16.2

RAxML-Limited 10.6 10.0 20.2 17.9 25.3 20.0 17.3

Alignment SP-FN error (%)

Alignment 16S.M.aa_ag 16S.M 23S.M 23S.M.aa_ag 23S.E.aa_ag 23S.E Average

SATé 22.7 22.0 29.3 28.4 22.2 21.2 24.3

MAFFT 22.6 21.8 28.6 28.3 19.5 18.5 23.2

Quicktree 37.5 41.0 48.4 43.8 26.6 28.1 37.6

ClustalW 38.2 42.6 46.2 47.6 30.0 38.5 40.5

PartTree 23.1 27.5 32.1 33.8 20.7 19.7 26.1

‘‘Average’’ refers to the average across the six datasets. n~1 for each reported value other than the average.
doi:10.1371/journal.pone.0027731.t005
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and SATé version 1.1 alpha [7,8] (available from www.cs.utexas.

edu/users/phylo/datasets/tol/tol.html). We used the following

commands with these programs:

N MAFFT L-ins-i default:

mafft –localpair –maxiterate 1000

–quiet ,input..,output.

N MAFFT PartTree:

mafft –parttree –retree 2

–partsize 1000 ,input..,output.

N ClustalW default:

clustalw2 -align -infile = ,input.

-outfile = ,output. -output = fasta

N ClustalW Quicktree:

clustalw2 -align -infile = ,input.

-outfile = ,output. -output = fasta

-quicktree

N SATé :

./sate_basic.pl -r ,name of run.

-w ,empty temporary work directory with full path.

-d ,input unaligned sequences file with full path.

-l 1 -s 1 -a 5

To perform ML analyses, we used RAxML version 7.2.6 and

FastTree version 2.1.3. The following commands were used to run

these programs:

N RAxML (and RAxML-Limited):

raxmlHPC -m GTRCAT -w ,work dir.

-n ,identifying suffix. -s ,input. -j

N FastTree:

FastTree -nt -gtr -nosupport

-log ,log file. ,input alignment..,output tree.

Where necessary, we parallelized the RAxML analyses by either

recompiling with PTHREADS and using the flag -T ,number of

threads. or by recompiling with MPI; the parallelization did not

otherwise affect the RAxML commands. RAxML’s outputs were

unaffected by parallelization, and all reported runtimes are for

serialized execution.

Computational Resources
For all datasets except the three largest biological datasets, SATé

and two-phase analyses were performed using a heterogeneous

Condor [19] computing cluster at the University of Texas at Austin.

This cluster had computers with between 1 and 8 cores running at

speeds between 1.86 GHz and 3.16 GHz. All programs were run as

32-bit serial executables on a single dedicated core with dedicated

access to at least 512 MB and at most 4 GB of main memory.

To run SATé and the two-phase methods on the 16S.T and

16S.3 datasets, we used a 64-bit computing cluster at the

University of Texas at Austin, consisting of machines with 8-core

2.83 GHz Intel Xeon 64-bit CPUs with 32 GB main memory per

CPU. Due to the memory requirements of SATé and the two-

phase methods on the 16S.B.ALL dataset, we used two machines

with very large shared memory, each having a 16-core 64-bit

AMD Opteron CPU running at 2.5 GHz, and with either 128 GB

or 256 GB main memory.

Table 6. Runtime (h) of the ML methods on the six smallest biological datasets.

Alignment Method 16S.M.aa_ag 16S.M 23S.M 23S.M.aa_ag 23S.E.aa_ag 23S.E Average

Reference RAxML 7.54 5.90 2.33 2.25 0.99 0.78 3.30

FastTree 0.08 0.06 0.04 0.03 0.02 0.02 0.04

RAxML-Limited 0.24 0.22 0.10 0.10 0.04 0.03 0.12

SATé RAxML 6.26 4.51 1.57 1.37 0.67 0.62 2.50

FastTree 0.14 0.06 0.03 0.03 0.02 0.02 0.05

RAxML-Limited 0.21 0.18 0.07 0.07 0.03 0.03 0.10

MAFFT RAxML 4.27 3.99 1.56 2.28 0.88 0.53 2.25

FastTree 0.07 0.06 0.03 0.03 0.02 0.01 0.04

RAxML-Limited 0.16 0.16 0.08 0.29 0.03 0.03 0.12

PartTree RAxML 10.05 7.19 2.71 1.86 0.85 0.76 3.90

FastTree 0.16 0.11 0.05 0.08 0.02 0.02 0.07

RAxML-Limited 0.33 0.28 0.09 0.08 0.03 0.03 0.14

ClustalW RAxML 5.99 3.73 1.64 2.10 0.66 0.51 2.44

FastTree 0.05 0.04 0.02 0.02 0.01 0.01 0.03

RAxML-Limited 0.14 0.11 0.06 0.06 0.02 0.02 0.07

Quicktree RAxML 5.46 3.37 1.48 1.38 0.90 0.58 2.19

FastTree 0.05 0.04 0.02 0.02 0.01 0.01 0.03

RAxML-Limited 0.19 0.12 0.05 0.05 0.03 0.02 0.08

‘‘Average’’ refers to the average across the datasets. n = 1 for values in columns other than the ‘‘Average’’ column. n = 6 for the ‘‘Average’’ column.
doi:10.1371/journal.pone.0027731.t006
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Supporting Information

Figure S1 ML scores of ML methods on alignments of
simulated 1000-taxon datasets. ML scores are computed

using RAxML, and then normalized by the ML score obtained on

the RAxML(MAFFT) topology. Standard error bars are shown.

n = 20 for each reported value. Using one-tailed pairwise t-tests

with Benjamini-Hochberg correction [13], RAxML’s ML score is

a statistically significant improvement over FastTree’s ML score

for all alignments of all model conditions except SAT’e on 1000L5

(a = 0.05 and n = 40 for each test). Using similar tests, FastTree’s

ML score is a statistically significant improvement over RAxML-

Limited’s ML score for all alignments of all model conditions

(a = 0.05 and n = 40 for each test).

(EPS)

Table S1 Simulation parameters and empirical statis-
tics for the 1000-taxon datasets. The model conditions varied

the gap length distribution, the probability of a gap event, and the

model tree height according to the simulation procedure described in

[8] and [9]. Definitions for the empirical statistics are given in Table S7.

(TIF)

Table S2 Q-values from statistical tests comparing the
missing branch rates of FastTree and RAxML-Limited.
One-tailed pairwise t-tests were used to check if FastTree’s missing

branch rate was a significant improvement over RAxML-Limit-

ed’s missing branch rate. x2 tests were used to test if the proportion

of datasets showing improvement in FastTree’s missing branch

rate over RAxML-Limited’s missing branch rate differed from the

proportion of datasets not showing such an improvement. All q-

values were corrected for multiple comparisons using the

Benjamini-Hochberg method [13]. n = 40 for each test.

(TIF)

Table S3 Q-values from one-tailed pairwise t-tests
comparing the missing branch rates of RAxML and
FastTree. One-tailed pairwise t-tests were used to check if

RAxML’s missing branch rate was a significant improvement over

FastTree’s missing branch rate. Similar tests were used to check if

FastTree’s missing branch rate was a significant improvement over

RAxML’s missing branch rate. All q-values were corrected for

multiple comparisons using the Benjamini-Hochberg method [13].

n = 40 for each test.

(TIF)

Table S4 Q-values from statistical tests comparing the
ML scores of RAxML and FastTree. One-tailed pairwise t-

tests were used to check if RAxML’s ML score was a significant

improvement over FastTree’s ML score. x2 tests were used to test

if the proportion of datasets showing improvement in RAxML’s

ML score over FastTree’s ML score differed from the proportion

of datasets not showing such an improvement. All q-values were

corrected for multiple comparisons using the Benjamini-Hochberg

method [13]. n = 40 for each test.

(TIF)

Table S5 Q-values from statistical tests comparing the
ML scores of FastTree and RAxML-Limited. One-tailed

pairwise t-tests were used to check if FastTree’s ML score was a

significant improvement over RAxML-Limited’s ML score. x2 tests

were used to test if the proportion of datasets showing improvement

in FastTree’s ML score over RAxML-Limited’s ML score differed

from the proportion of datasets not showing such an improvement.

All q-values were corrected for multiple comparisons using the

Benjamini-Hochberg method [13]. n = 40 for each test.

(TIF)

Table S6 Q-values from x2 tests comparing the missing
branch rates of RAxML and FastTree. x2 tests were used to

test if the proportion of datasets showing improvement in RAxML’s

missing branch rate over FastTree’s missing branch rate differed

from the proportion of datasets not showing such an improvement.

All q-values were corrected for multiple comparisons using the

Benjamini-Hochberg method [13]. n = 40 for each test.

(TIF)

Table S7 Empirical statistics for the biological data-
sets. From left to right, the dataset name, number of taxa, number

of aligned sites in the reference alignment, resolution of the reference

tree, average and maximum p-distance of the reference alignment,

percentage of the reference alignment consisting of indels, and

average gap length of the reference alignment are shown. The

resolution of the reference tree is the number of internal edges in the

reference tree divided by the maximum possible number of internal

edges in the reference tree (which is n (3, for n the number of taxa).

The p-distance between two aligned sequences is defined as the

percentage of sites for which the two sequences have differing

nucleotides. The average p-distance in an alignment is the average p-

distance for all pairs of aligned sequences in the alignment, and the

maximum p-distance in an alignment is the maximum p-distance for

any pair of aligned sequences in the alignment.

(TIF)
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