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Abstract

Paternal exposures to cancer chemotherapeutics or environmental chemicals may have adverse effects on progeny
outcome that are manifested in the preimplantation embryo. The objectives of this study were to determine the impact of
paternal exposure to cyclophosphamide, an anticancer alkylating agent, on the formation, chromatin origin and function of
micronuclei in cleavage stage rat embryos. Male Sprague-Dawley rats were gavaged with saline or cyclophosphamide
(6 mg/kg/day) for 4 weeks and mated to naturally cycling females to collect pronuclear zygotes and 2 to 8 cell embryos.
Micronuclear chromatin structure was characterized using confocal microscopy to detect immunoreactivities for H3K9me3,
a marker for maternal chromatin, and lamin B, a nuclear membrane marker. DNA synthesis was monitored using EdU (5-
ethynyl-29-deoxyuridine) incorporation. Fertilization by cyclophosphamide-exposed spermatozoa led to a dramatic
elevation in micronuclei in cleavage stage embryos (control embryos: 1% to 5%; embryos sired by treated males: 70%).
The formation of micronuclei occurred during the first zygotic division and was associated with a subsequent
developmental delay. The absence of H3K9me3 indicated that these micronuclei were of paternal origin. The micronuclei
had incomplete peri-nuclear and peri-nucleolar lamin B1 membrane formation but incorporated EdU into DNA to the same
extent as the main nucleus. The formation of micronuclei in response to the presence of a damaged paternal genome may
play a role in increasing the rate of embryo loss that is associated with the use of assisted reproductive technologies,
parenthood among cancer survivors, and paternal aging.
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Introduction

The incidence of cancer in man of reproductive age has been on

the rise over the past few decades; consequently, treatment with

chemotherapeutics and radiotherapy is now common amongst the

younger male population [1]. Many of these young men survive

and experience compromised fertility; their decrease in the

likelihood of fathering a child is dependent on the treatment

regimen [2–4]. Cyclophosphamide (CPA) is a commonly used

chemotherapeutic agent that is an alkylating agent and induces

DNA double strand breaks [5]. Previous studies, from our

laboratories and others, have shown that the treatment of male

rats with CPA has dose dependent and time specific effects on

spermatogenesis with adverse effects on embryo development [6–

9]. The greatest amount of DNA damage in male germ cells

exposed to CPA was observed when elongating spermatids were

targeted; when CPA-exposed male rats were mated to untreated,

healthy females, a marked delay in the formation of blastocysts was

observed, followed by an increase in peri-implantation embryonic

loss [6,10]. Indeed, a DNA damage response was activated in the

early post-fertilization zygote [11].

Exposure of various cell types to radiation or to a wide range of

chemicals damages DNA or disrupts microtubules and spindle

assembly, resulting in chromosomal aberrations and the formation

of micronuclei [12,13]. Micronuclei are small, extranuclear, DNA

containing structures. In toxicology, the formation of micronuclei

is used as an in vitro assay to detect putative chemical mutagens or

carcinogens [14]. However, recent studies have revealed that non-

genotoxic chemicals, such as retinoic acid, may also induce the

formation of micronuclei in pluripotent stem cells, suggesting an

association between the formation of micronuclei and neural

differentiation [15]. Thus, the formation and fate of micronuclei

may have important implications for both the genomic stability

and plasticity of cells.

Studies with cancer patients and using animal models have

revealed that exposure to cancer chemotherapeutics during germ

cell formation in the testis or maturation in the epididymis may

adversely affect the quality of spermatozoa, as assessed by a variety

of sperm quality tests [16,17]. Spermatozoa with damaged

chromatin are capable of fertilizing oocytes, thus transferring this

lesion to the zygote [18]. Indeed, paternal exposure to acrylamide,

a chemical found in tobacco smoke and produced during the

cooking of starchy foods, increased the formation of micronuclei in

two cell embryos, during the first mitotic division, resulting in

chromosomal mosaicism [19]. Intracytoplasmic sperm injection

was associated with abnormal chromosome segregation and

micronuclear formation in two-cell stage mouse embryos [20].

Despite the extensive use of assisted reproductive techniques, the
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numbers of live offspring produced after intracytoplasmic sperm

injection are low [20,21]. Thus, it is important to investigate the

possible consequences of micronuclear formation on events in

early embryos. The goal of this study was to determine the impact

of paternal exposure to cyclophosphamide on early cleavage stage

embryo development and on the formation, chromatin origin and

function of micronuclei.

Materials and Methods

Drug treatment and embryo collection in vivo
Ethics Statement. This study was done in accordance with

the guidelines of the Canadian Council on Animal Care for the

ethical use and care of animals in science. The protocol (Protocol

Number: 2144) was approved by the Animal Care Committee of

McGill University.

Adult male (350–400 g) and virgin female (225–250 g) Sprague-

Dawley rats were purchased from Charles River Canada (St.

Constant, Quebec, Canada) and housed at the Animal Resources

Centre, McIntyre Medical Building, McGill University (Montreal,

Canada). Animals received food and water ad libitum and were

maintained on a 0700–1900hr light/dark cycle. The drug

treatment and zygote protocols previously described [6] were

followed with minor modifications. After one week of acclimati-

zation, male rats were randomly assigned to one of two treatment

groups and gavaged with saline (vehicle) or CPA (CAS 6055-19-2;

Sigma Chemical Co., St Louis, Missouri), 6 mg/kg per day, six

times per week for four weeks.

On the fifth week of treatment, proestrus control virgin females

were selected by a vaginal wash in the mid-afternoon and were

caged overnight, in groups of two, with either a control or CPA

treated male. Pregnancies were confirmed with sperm positive

vaginal smears the following morning, designated as gestation day

0. Sperm positive females were euthanized on day 0 at 1300hr, on

day 1 at 1000hr, on day 2 at 1400hr and day 3 at 1000hr to collect

pronuclear zygotes, 2 cell, 4 cell and 8 cell embryos, respectively.

Oviducts and whole uteri were isolated and cleaned in pre-

warmed (37uC) M2 culture medium (Sigma Chemical Co.),

pronuclear zygotes were collected from the ampullae in warm M2

medium, and early cell cleavage embryos were flushed with a 30

round gauge needle from the infundibulum of the oviduct with

0.2 ml of warm M2 medium.

Immunofluorescence
The immunofluorescence protocols used were described

previously [22]. To characterize micronuclei from embryos sired

by CPA exposed males, embryos were incubated with rabbit

polyclonal anti-lamin B1 (1:500 dilution; catalogue number

ab16048, Abcam, Cambridge, MA) or rabbit polyclonal anti-

trimethyl-histone H3 (Lys9) (1:200 dilution; catalogue number 07-

442, Millipore, Billerica, MA) overnight at 4uC in a humidified

chamber. Both primary and secondary antibodies were diluted in

goat blocking solution (10% goat serum, 3% BSA and 0.1%

Tween 20 in PBS). Zygotes were then washed 3615 min in goat

blocking solution, incubated for 1 hr at room temperature with the

secondary antibody, goat fluorescein anti-rabbit IgG (H+L) (1:200

dilution; catalogue number F1-1000, Vector Laboratories, Bur-

lington, Ontario, Canada), and rewashed 3615 min in goat

blocking solution. DNA was stained with propidium iodide

(catalogue number P4864, Sigma Chemical Co.) at 10 mg/mL in

goat blocking solution for 20 min, washed in 0.05% Tween 20 in

PBS for 10 min, mounted in 3 ml of VectaShield mounting

medium (Vector Laboratories) on a premarked pap pen slide and

covered with a cover slip. Slides were then stored at 4uC and

visualized with confocal microscopy within two days.

In vitro zygotic development and detection of DNA
synthesis

In vitro zygotic development was followed using the mR1ECM

milieu [23]. To detect DNA synthesis, the Click-It kit (catalogue

number C10337, Invitrogen, Burlington, Ontario, Canada) was

used. A final concentration of 100 mM EdU (5-ethynyl-29-

deoxyuridine) was supplemented to mR1ECM+BSA (pH equili-

brated to 7.4 with 10N HCl). This zygotic development milieu was

covered with light mineral oil to prevent evaporation and pre-

equilibrated for 3 h before its use in an incubator at 37uC and 5%

CO2. All solutions were prepared fresh the day of the experiment.

Embryo collection for in vitro incubation
Sperm positive females were euthanized at 1100hr on day 0 to

collect pre-pronuclear stage zygotes in prewarmed (37u) M2

culture medium (Sigma Chemical Co.). Zygotes were released

from the ampullae or flushed into a drop of prewarmed (37uC) 1%

hyaluronidase (Sigma Chemical Co.) in M2 medium to digest the

cumulus cells, washed three times in prewarmed (37uC)

mR1ECM+BSA, and incubated in pre-equilibrated (37uC and

5%CO2) mR1ECM+BSA+100 uM EdU. The embryos were

incubated overnight and analyzed under the light microscope

every 15 min between 0900 and 1030hr on day 1 to assess the

proportion of zygotes that divided to the 2 cell stage and thus

completed the first zygotic division. To assess DNA synthesis in

embryos collected on day 3 at 1000hr embryos were incubated in

vitro for three hours. All of these steps. from the time of embryo

collection to the in vitro incubation, were done within 7 min to

preserve embryonic quality. Following collection of the embryos,

EdU incorporation was detected as described below.

Click-iT EdU Immunodetection
For a more complete Click-iT protocol please refer to the

instruction manual from Invitrogen (catalogue number C10337).

Embryos were washed in 3% BSA in 16PBS (pH 7.4; Mg2+ and

Ca2+ free). Zona pellucidae were removed in prewarmed (37uC)

acid Tyrode solution (pH 2.5) by pipetting up and down for 5 sec,

and then washed in 3% BSA in 16PBS (pH 7.4; Mg2+ and Ca2+

free). During the permeabilization step, the Click-iT reaction

cocktail was prepared in the following sequence: 16Click-iT

reaction buffer, 430 ml; CuSO4, 20 ml; Alexa Fluor azide, 1.2 ml;

reaction buffer additive, 50 ml, and used within 15 min of

preparation. Following the permeabilization step, the embryos

were washed in 3% BSA in 16PBS (pH 7.4; Mg2+ and Ca2+ free)

and incubated for 30 min at room temperature with the Click-iT

reaction cocktail. DNA was stained with propidium iodide

(catalogue no. P4864, Sigma Chemical Co.) at 10 mg/ml in 3%

BSA in 16 PBS (pH 7.4; Mg2+ and Ca2+ free) for 20 min and

washed 16PBS (pH 7.4; Mg2+ and Ca2+ free) twice, mounted in

3 ml of VectaShield mounting medium (Vector Laboratories) on a

premarked pap pen slide, and covered with a cover slip. Slides

were stored at 4uC and visualized by confocal microscopy during

the next two days.

Confocal microscopy
A Zeiss LSM 510 Axiovert 100 M confocal microscope with a

Plan-Apochromat663/1.4 oil DIC objective was used to visualize

the fluorescence of early post-fertilization zygotes. The best

settings for laser scanning fluorescence imaging were determined

experimentally for all primary antibodies and maintained for all
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cell cleavage stage embryos. All zygotes were scanned at a speed of

5–7 with an optical slice of 0.6 mm, zoom factor equal to one and a

pinhole setting of 96 mm. Two scans of each optical section were

compiled and averaged by the Zeiss LSM 510 computer software

to give a final image that was 102461024 pixels in size. The

embryonic cell cleavage stage was determined by counting the

number of nuclei stained with propidium iodide and confirmed

with phase contrast images. Qualitative analysis of embryo images

was done for histone H3 trimethylated at K9 (H3K9me3)

immunoreactivity to determine the parental origin of the

chromatin (staining positive for maternal/female chromatin and

negative for paternal/male chromatin) [24]. Analysis of the

embryo images for lamin B1 reactivity, to characterize the nuclear

and micronuclear membranes [25,26], was also qualitative. The

EdU embryo images from Z-stacks were further analyzed and

quantified using the Imaris image analysis program version 7.2.3.

Quantitative analysis
Polyspermic pronuclear zygotes were excluded from this

analysis. To assess in vitro development, we counted the number

of 2 cell embryos and divided this by the total number of fertilized

oocytes, determined by propidium iodide nuclear staining, per

replicate every 15 min between 0900 and 1030hr on day 1 (in

vitro progression of the first zygotic division, SAL N = 5 to 8 males

with total of 76 to 97 embryos assessed; CPA N = 2 to 5 males,

with total of 31–75 embryos). To assess in vivo progression

through early cell cleavage stages, based on propidium iodide

nuclear staining, embryos were subdivided into four groups: 2, 3–

4, 5–8 and 9–16 cells (on day 1 we collected SAL N = 8, 115

embryos, CPA N = 5, 56 embryos, day 2 SAL N = 4, 40 embryos,

CPA N = 3, 26 embryos, day 3 SAL N = 8, 135 embryos, CPA

N = 8, 120 embryos). The same embryos were analyzed for the

incidence and average number of micronuclei per embryo and per

cell. Micronuclei were differentiated from the main nucleus based

on their smaller volume, with a similar nuclear morphology.

Quantitative analysis of the nuclear and micronuclear volumes

was done on day 0.5, with SAL N = 6, 109 embryos, CPA N = 5,

84 embryos; day 1, with SAL N = 8, 115 embryos, CPA N = 5, 64

embryos; and day 3, with SAL N = 8, 129 embryos, CPA N = 8,

120. Qualitative characterization of micronuclei with H3K9me3

and lamin B1 staining was done with SAL and CPA N = 2–3 with

15–30 embryos per group per embryonic cell cleavage stage.

Quantification of in vitro overnight incubation with EdU for

immunodetection on day 0–1 was done with SAL N = 6, 93 2 cell

embryos CPA N = 5, 29 2 cell embryos; on day 3, the analysis of

EdU after a 3 h in vitro incubation with EdU in 8 cell embryos

was done with SAL N = 5, 55 embryos CPA N = 6, 73 embryos.

The Imaris image analysis program (Bitplane Inc., South

Windsor, CT) was used to quantify the data on EdU immuno-

detection and the nuclear and micronuclear volumes. Basically, a

nuclear and micronuclear surface was created from propidium

iodide staining for each embryo to measure the average volume

and average DNA content and a second nuclear and micronuclear

surface was created from EdU staining to measure the average

EdU incorporation per embryo. The data were graphed as the

intensity mean per embryo per replicate.

Statistical analyses
Chi squared analysis and the Fisher exact test, with Bonferroni

correction when needed, were done to compare the proportion of

embryos progressing either in vitro or in vivo between and within

treatment groups, for the incidence of micronuclei and the

proportion of cells that were EdU positive or contained EdU

positive micronuclei during specific cell cleavage stages. Kruskal-

Wallis analysis, with Bonferroni correction when needed, was done

to determine the numbers of micronuclei per embryo and per

embryonic cell, the transient volume changes and the micronu-

clear to nuclear volume ratios; these methods were also used to

analyze EdU nuclear intensity means, DNA intensity means and

their micronuclear to nuclear intensity ratios in early cell cleavage

stage embryos between and within treatment groups. All statistical

analyses were done using Systat (program version 10.2). Values are

reported either as an average proportion or number per embryo

per replicate 6 standard error of the mean.

Results

Paternal exposure to cyclophosphamide affects the in
vitro timing of the first zygotic division

The overnight in vitro incubation of pre-pronuclear zygotes

allowed us to follow the timing of the first zygotic division. Paternal

exposure to CPA significantly delayed the appearance of 2 cell

embryos between 0900 and 1000hr on day 1 without affecting the

capacity of all embryos to divide to the 2 cell stage by 1015hr

(Fig. 1A). On day 1 at 0900hr, 100% of control versus 65% of CPA

sired embryos had divided to the 2 cell stage; the remaining CPA

sired embryos (35%) were actively undergoing mitosis, gradually

reaching the 2 cell stage (Fig. 1A).

Lagging, fragmented pieces of condensed chromatin were

clearly visible at metaphase and telophase during the first zygotic

division of in vitro incubated CPA sired embryos; in contrast,

pronuclear zygotes did not show any sign of fragmented pieces of

DNA (Fig. 1B). It is highly likely that micronuclei are formed from

this fragmented chromatin (Fig. 1B, 2 cell embryo). The

morphology of the micronuclei in interphase stage 2 cell embryos

was very similar to that of the nuclei; micronuclei were round with

a nucleolus, had a smaller volume and a lower DNA staining

intensity, compared to the main nucleus (Fig. 1B).

Effects of paternal exposure to cyclophosphamide on the
in vivo progression of early cell cleavage stage embryos

The developmental progression of cell cleavage embryos was

significantly delayed in embryos fertilized by CPA exposed males

(Fig. 2). Embryos collected on day 1 were all at the 2 cell stage

(Fig. 2A). In contrast, on collection day 2, 23% of control embryos,

compared to 55% of CPA sired embryos, were still at the 2 cell

stage (Fig. 2B, P#0.05)). On day 3 of collection, the delay in the

progression of early cell cleavage embryos was even more

significant (P#0.001); none of the control embryos were at the

3–4 cell stage as opposed to 14% of the CPA sired embryos; 71%

of both control and CPA sired embryos were at the 5–8 cell stage,

while 29% of control compared to only 15% of the CPA sired

embryos had progressed to form 9–16 cell stage embryos (Fig. 2C).

The incidence of micronuclei in control and CPA sired cell
cleavage embryos

A small increase in the proportion of control embryos with

micronuclei (from 1% to 5%, P#0.05) was observed between

collection days 1 and 3, suggesting the formation of new

micronuclei by day 3 (Fig. 3A). In contrast to this low percentage

of control embryos containing micronuclei, the incidence of

micronuclei in early cell cleavage embryos fertilized by CPA-

exposed males was dramatically increased to 70% (P#0.001,

compared to control embryos). CPA treatment did not affect the

average number of micronuclei found in micronuclei positive

embryos collected on day 1 or 3; when micronuclei were present,

there were 2–3 micronuclei per CPA sired embryo as compared to

Paternal CPA Induces Embryo Micronuclei
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1–2 micronuclei per control embryo (Fig. 3B). Furthermore,

micronuclei were distributed randomly into the two daughter cells

following the first zygotic division (Fig. 3C, P#0.05). Interestingly,

in the CPA sired embryos with micronuclei, both the incidence of

micronuclei/embryo and the average number of micronuclei/

embryonic cell were significantly increased (P#0.05) in the

embryos with a delay in progression (3–4 cells: 79%, 0.9)

compared to the normally progressing (5–8 cells: 79%, 0.4) and

Figure 1. In vitro timing of the first zygotic division. (A) The proportion of fertilized oocytes that reached the 2 cell stage as assessed by light
microscopy at 15 min intervals between 0900 and 1030hr on day 1. Paternal exposure to CPA delayed the timing of the first zygotic division without
affecting their capacity to divide. Bar graphs represent the means per replicate 6 standard errors of the mean; controls are in hatched bars and CPA-
sired embryos in black bars. (B) Immunofluorescence images of CPA-sired embryos cultured in vitro and stained with propidium iodide, in red.
Lagging pieces of chromatin are visible during the first metaphase and telophase of the zygotic cell cycle and micronuclei (MN) are clearly visible in 2
cell embryos. MN are formed during the first zygotic division in zygotes fertilized by CPA-exposed spermatozoa. Lagging chromatin and MN are
circled in white. We collected SAL N = 5–8 males, 76 to 97 embryos and CPA N = 2–5 males, 31–75 embryos. Data were statistically analyzed by Chi-
square, Fisher Exact test with Bonferroni’s correction ** P#0.01, *** P#0.001.
doi:10.1371/journal.pone.0027600.g001

Figure 2. In vivo progression of early cell cleavage stage embryos. Early cell cleavage embryos were collected following in vivo fertilization
on (A) day 1 at 1000hr; (B) day 2 at 1400hr; (C) day 3 at 1000hr. Embryonic stages were determined by counting the number of nuclei and cells using
confocal microscopy, grouped within developmental stages (refer to the figure legend) and are reported as an average percent per replicate; error
bars represent the standard errors of the mean. Paternal exposure to CPA delayed the progression of early cleavage stage embryos on day 2 and day
3 of collection. We collected: (A) day 1, SAL N = 8 males, 115 2-cell embryos, CPA N = 5 males, 56 2-cell embryos; (B) day 2, SAL N = 4 males, 43
embryos, CPA N = 3 males, 36 embryos; (C) day 3, SAL N = 8 males, 135 embryos, CPA N = 8 males, 120 embryos. Data were statistically analyzed with
Chi-square, Fisher exact test for statistical analysis * P#0.05, *** P#0.001.
doi:10.1371/journal.pone.0027600.g002
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rapidly dividing (9–16 cells: 46%, 0.2) embryos (Fig. 3D & E).

Thus, micronuclear formation during the first zygotic division was

associated with a developmental delay in early cell cleavage

embryos.

Chromatin compaction in the nuclei and micronuclei of
early cleavage stage embryos sired by CPA exposed
males

The volumes of the female and male pronuclei (day 0.5) did

not differ (Fig. 4A); however, the nuclear volumes were doubled

in the progression from pronuclear zygote (1440 mm3) to 2 cell

embryo (2750 mm3) (P#0.05). A decrease in nuclear volume was

observed as embryos progressed from 2 cell to 8 cell (1070 mm3)

(P#0.05), returning to the volume in pronuclear zygotes.

Paternal exposure to CPA did not affect these transient nuclear

volume changes (Fig. 4A). The volume ratios as well as the

chromatin compaction of the nuclei and micronuclei were

assessed only in embryos sired by CPA exposed males since the

incidence of micronuclei in control embryos was very low. The

volume of micronuclei in CPA sired embryos, as a ratio of the

nuclear volume, did not change from day 1 to day 3 (0.05 to

0.07, respectively) (Fig. 4B). In addition, the compaction state of

the chromatin in micronuclei was similar to that of the main

nucleus within each cell, i.e. condensed during mitosis and

decondensed during interphase (Fig. 4C), suggesting that the

micronuclei were responding to signals from the main nucleus

or the cytoplasm.

Micronuclear characterization in early cell cleavage
embryos fertilized by CPA exposed males

H3K9me3 is a female specific epigenetic mark. In both control

and CPA sired embryos, only the female pronucleus in the zygote

and the chromatin of female origin (half of the nucleus) in 2 cell

embryos contained this epigenetic mark (Fig. 5); the male

pronucleus and the remaining half of the nucleus in 2 cell

embryos were negative for H3K9me3 (Fig. 5). The micronuclear

chromatin of day 1 embryos fertilized by CPA exposed

spermatozoa was always negative for H3K9me3, suggesting that

the micronuclei are of paternal origin (Fig. 5, bottom panel).

Since lamin proteins are thought to be involved in nuclear

stability, chromatin structure and gene expression, we visualized

lamin B1 immunoreactivity in control and CPA sired pronuclear,

2 cell and 8 cell embryos. In control pronuclear and 2 cell

embryos, a clear peri-nuclear ring was observed (Fig. 6). By the 8

cell stage, lamim B1 immunoreactivity was redistributed, forming

an intense peri-nucleolar ring with a much fainter peri-nuclear

ring. While the lamin B1 reactivity of the main nucleus in CPA

sired embryos was similar to that in the control embryos, the CPA

induced micronuclei had much fainter or even absent lamin B1

membrane staining (Fig. 6, bottom panel), suggesting incomplete

formation of the micronuclear and their associated micronucleolar

membranes.

DNA replication in the micronuclei of CPA sired embryos
In vitro incubation of early cell cleavage stage embryos with the

EdU click-it kit allowed the visualization of DNA synthesis as a

Figure 3. The incidence of micronuclei in cell cleavage embryos. (A) The incidence of micronuclei (MN) in cell cleavage embryos. (B) The
average number of MN per embryo with MN. Paternal exposure to CPA significantly increased the incidence of MN in early cell cleavage embryos
with an average of 2–3 MN per embryo compared to control. C) MN distribution following the first zygotic division in 2 cell embryos containing at
least 2 MN. MN induced by paternal exposure to CPA were distributed randomly into the two cells during the first zygotic division. (D) The incidence
of MN and (E) the average number of MN per embryonic cell in day 3 embryos sired by CPA treated males. The incidence of MN and number of MN
per cell were significantly greater in delayed 3–4c embryos compared to normally dividing 5–8c and rapidly dividing 9–16c embryos. Line graphs are
the average per replicate and error bars are standard errors of the means; the gray line represents SAL and black line CPA-sired embryos. We
collected: day 1 SAL N = 8 males, 115 2 cell embryos, CPA N = 5 males, 56 2 cell embryos; day 3 SAL N = 8 males, 135 embryos, CPA N = 8 males, 120
embryos. The incidence of MN and average number of MN were analyzed by Chi-square Fisher Exact test and Kruskal Wallis, respectively. * P#0.05,
*** P#0.001.
doi:10.1371/journal.pone.0027600.g003
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marker of function. EdU was incorporated into all embryonic cells

independently of the treatment group, thus the capacity of CPA

sired embryos to synthesize DNA as they progressed from the pre-

pronuclear zygote to the 2 cell stage did not differ from control

(Fig. 7A, top panel). Again, at the 8 cell stage, DNA synthesis in

control and CPA sired embryos did not differ significantly,

although in control embryos 81% of the embryonic cells

incorporated EdU, whereas in CPA sired embryos 65% of the

cells incorporated EdU (Fig. 7A, bottom panel). The observation

that all cells did not incorporate EdU within the 3 hr incubation

time is not surprising since mitosis is asynchronous between cells.

EdU incorporation in the micronuclei of CPA sired 2 cell

embryos (collected on day 1) was the same as that of the main

nucleus since the ratio of micronuclear to nuclear EdU reactivity

(0.77) was the same as that for the DNA content (0.79) (Fig. 7B, left

graph). The ratio of EdU reactivity (0.74) to DNA content (0.68) in

micronuclei versus the main nucleus in CPA sired 8 cell embryos

was also similar (Fig. 7B, right graph). However, the proportion of

micronuclei in EdU positive cells that were capable of synthesizing

DNA decreased significantly, from 100% to 78%, between the 2

and 8 cell stages (Fig. 7C, P#0.001).

Discussion

Lagging, fragmented pieces of DNA at metaphase and telophase

during the first zygotic division are a visible mark of DNA damage

as a consequence of paternal exposure to CPA; these fragments

form micronuclei in 2 cell embryos. Thus, damaged DNA is

released from the main nucleus to form micronuclei at the time of

the first zygotic division, during chromatin decondensation and

removal of the pronuclear membrane. Using an epigenetic mark,

we confirmed that these micronuclei represent paternal chroma-

tin. Within an embryo that had micronuclei, it was not unusual to

observe some blastomeres with micronuclei and others without;

even those blastomeres that did not have micronuclei may have

DNA damage.

The presence of micronuclei was associated with a delay in

progression through the early cell cleavage stages of development.

This delay in progression of the CPA sired embryos was seen as

early as the first zygotic division but did not affect the ability of the

zygote to reach the 2 cell stage. This initial delay may become

greater in later cleavage divisions since a greater proportion of

delayed embryos was observed among the CPA treated group on

collection day 3 compared to the controls. Interestingly, we have

reported that paternal exposure to CPA led to an enhanced rate of

sperm DNA decondensation and chromatin remodelling in the

pre-pronuclear zygote [22] and an acceleration in progression

through the stages of pronuclear zygote development [9]. Thus,

damage to the male genome may initially speed up unpackaging of

the paternal chromatin after fertilization but subsequently the

damage, if it is extensive and is not repaired by embryonic DNA

repair processes, has adverse effects on early cell divisions.

Previous studies have reported a decrease in cell numbers in

preimplantation embryos sired by CPA treated males [8,27].

A similar relationship between the formation of micronuclei and

a delay in embryonic progression was reported following parental

exposure to irradiation, other alkylating chemicals and pesticides

[28–30]. The proportion of embryos with micronuclei is the same

from the 2 to 8 cell stage, so all micronuclei are formed during the

first zygotic division. Since no new micronuclei are generated in

the next two cleavage divisions, the average number of

micronuclei per cell decreases as the cell number increases. This

suggests that replicated micronuclei segregate randomly into the

daughter cells during mitosis, as plasmids do in bacteria. Thus,

genetic material is lost to the embryo. This probably contributes to

embryo death. Indeed, previous studies established that the CPA

treatment regimen used here induced approximately an 80%

Figure 4. Nuclear and micronuclear (MN) chromatin compac-
tion in early cleavage stage embryos. (A) The nuclear volumes in
early cleavage stage control and CPA-sired embryos and the (B) relative
ratio of MN to nuclear volumes on collection days 1 and 3 in CPA-sired
embryos. Paternal exposure to CPA did not affect the transient nuclear
volume changes in early cell cleavage stage embryos and the volume of
CPA-induced MN remained comparable to the main nucleus on days 1
and 3 of collection. Line graphs represent the average per replicate and
error bars the standard errors of the means; the gray line with diamond
symbols designates control and the black line with squares the CPA-
sired embryos. (C) Immunofluorescence images of CPA embryos with
MN stained with propidium iodide in red to compare the chromatin
compaction of MN and nuclei within the same embryonic cell at
different mitotic phases. Within the same cell, the MN and nuclear
chromatin was condensed during mitosis and decondensed during
interphase, suggesting communication. Arrows point towards decon-
densed MN chromatin while condensed MN chromatin is circled in
white. We collected: day 0.5 SAL N = 6 males, 109 embryos, CPA N = 5
males, 84 embryos; day 1 SAL N = 8 males, 115 embryos, CPA N = 5
males, 64 embryos; day 3 SAL N = 8males, 129 embryos, CPA N = 8
males, 120. The Kruskal Wallis test with Bonferroni’s correction was
performed for statistical analysis * P#0.05, ** P#0.01.
doi:10.1371/journal.pone.0027600.g004
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incidence of peri-implantation loss [6]. The 2 cell embryos that are

free of micronuclei may have a reasonable chance to survive while

the CPA sired embryos with micronuclei display progressive delays

in cell division.

Our data indicate that the extent of DNA damage caused by

paternal exposure to CPA, as assessed by the number of

micronuclei per embryo, has a direct impact on fate of the

embryo. It is likely that CPA sired early cleavage stage embryos

have the capacity to undergo a certain number of cell cycles but

die around the time of implantation from damage accumulation. It

has been suggested that embryonic cell death pathways may be

triggered by the activation of DNA damage-sensing checkpoint

kinases [31], spindle associated checkpoints [32], an inadequate

DNA damage repair response [33], or energy depletion [34] and

that at least some of these pathways are p53-dependent [35].

Micronuclear formation and function may differ depending on

the type of chemical exposure and the cell type [13]. The

micronuclei that are induced in CPA sired embryos during the first

zygotic division were very similar to the main nuclei: during

interphase, the micronuclear chromatin was decondensed and round

with a single nucleolus, while during mitosis the micronuclear

chromatin was condensed. In cleavage stage embryos, the

micronuclei followed the same transient nuclear volume change

exerted on the main nucleus, suggesting that micronuclei are in

communication with the main nucleus and cytoplasm within the cell.

The characterization of CPA induced micronuclear chromatin

structure was initially done using H3K9me3, a female specific

epigenetic mark, in early pronuclear and 2 cell embryos. As

anticipated based on previous studies with mouse embryos [36], a

clear delineation between the female chromatin and male

chromatin was observed in both control and CPA sired 2 cell

embryos. H3K9me3, was absent from all of the micronuclei

observed in CPA-sired embryos. Thus, the genetic material in the

micronuclei is of paternal origin.

Lamin B1 immunoreactivity was localized to the peri-nuclear

(pronuclear and 2 cell) and both the peri-nuclear and peri-

nucleolar membranes (4 and 8 cell stages) in control and CPA

sired embryos. While there was no effect of paternal CPA

treatment on the localization of lamin B1, the micronuclei that

were induced had incomplete peri-micronuclear and peri-micro-

Figure 5. Parental origin of micronuclear chromatin in early cell cleavage embryos fertilized by CPA exposed males. Pronuclear
zygotes and 2 cell embryos were stained for the maternal epigenetic chromatin specific mark H3K9me3 (in green), DNA (counterstained with
propidium iodide in red) with the merged image in yellow. The top panels are control and the bottom panels are CPA-sired embryos. Only the female
pronucleus and polar body stained with H3K9me3 in zygotes; in 2 cell embryos half of each nucleus stained with H3K9me3, representing the
chromatin of female origin. Paternal CPA treatment did not affect this parental chromatin mark. The absence of H3K9me3 in MN in CPA-sired
embryos indicates that these MN are of paternal chromatin origin in 2 cell embryos. The immunofluorescence images were acquired with a confocal
microscope. Arrows point to the Female (F) and Male (M) pronuclei, MN are circled in white, dashed white lines delineate the female (positive signal
for H3K9me3) from the male (negative signal for H3K9me3) chromatin in 2 cell embryos; a magnified image of MN is presented on the right side of
the CPA-sired 2 cell embryos. We collected SAL and CPA, N = 2–3 males with 15–30 embryos per group per embryonic cell cleavage stage for
qualitative analysis.
doi:10.1371/journal.pone.0027600.g005
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nucleolar lamin B1 membrane formation. Since lamins play a

central role in formation of the nuclear pore complex in cells [37],

these data may indicate a disturbance in the communication or

exchange processes between the nucleus, micronucleus and

cytoplasm within the embryos. Despite this indication of altered

structure, the function of micronuclei, as indicated by their ability

to incorporate EdU into newly synthesized DNA, was maintained.

In addition, we did not observe any correlation between EdU

incorporation and development delay in CPA sired embryos.

Micronuclear formation may result from a number of different

causes. These include: DNA damage that is either not repaired or

misrepaired, hypomethylation of repeat sequences in centromeric

and pericentromeric DNA, defects in kinetochore proteins or

assembly, or dysfunctional spindle and defective anaphase

checkpoint genes [38]. In this context, it is interesting to note

that the extensive DNA methylation reprogramming that is crucial

for embryogenesis is disrupted in zygotes sired by cyclophospha-

mide-treated males [9]; the male pronuclei in zygotes fertilized by

drug-exposed spermatozoa were dramatically hypomethylated in

pronuclear stage 3 embryos. Protein modifications may also play a

role since the H3K9me3 methylation mark may be necessary for

the connection of microtubules to the kinetochores during mitosis

[38]. However, since microtubule and spindle assembly compo-

nents are of maternal origin, it is most likely that DNA damage,

genetic or epigenetic, is responsible for driving the process by

which micronuclei are formed in these experiments.

It has been reported that in human embryos generated by assisted

reproductive technologies, nearly 60% exhibit chromosomal mosa-

icism and aneuploidy by the 4 cell stage and over 90% by the

blastocyst stage [39,40]. It is clear that spermatozoa from men who

are sub-fertile have an increased likelihood of containing DNA

damage [41] as do those from cancer survivors who have received

treatment with radiation or DNA damaging chemotherapeutics

[3,42]. Advances in our understanding of the molecular mechanisms

involved in the formation of micronuclei and the consequences in

terms of changes in the genome, epigenome, transcriptome, and

proteome of the early embryo will help to elucidate biomarkers that

may indicate the health of the paternal genome.

Figure 6. Micronuclear membrane characterization in early cell cleavage embryos fertilized by CPA exposed spermatozoa.
Pronuclear zygotes and 2 and 8 cell CPA-sired embryos were collected on days 0.5, 1 and 3 and stained for nuclear membrane lamin B1 (in green),
DNA (propidium iodide, in red) with the merged image in yellow. We observed a clear nuclear to peri-nucleolar membrane redistribution of lamin B1
in early 2 and 8 cell embryos, respectively; this was not affected by paternal CPA treatment. MN in CPA-sired embryos showed the formation of
incomplete nuclear and peri-nucleolar membranes at both embryonic collection time points. These images were acquired with a confocal
microscope. Arrows point to Female (F) and Male (M) pronuclei, MN are circled in white, with a magnified image on the left of each respective
embryonic stage. We collected N = 2–3 males, 15–30 embryos per group per embryonic cell cleavage stage for both SAL and CPA for qualitative
analysis.
doi:10.1371/journal.pone.0027600.g006
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Figure 7. DNA replication in the micronuclei of CPA sired embryos. Immunofluorescence images of embryos stained with EdU Click-it (in
green) and DNA (propidium iodide in red) with the merged images in yellow. MN are circled in white, the arrows point to the polar body (PB) (internal
negative control for EdU). (A) top panel: overnight in vitro incubation during the first zygotic division; bottom panel: 3 h in vitro incubation of day 3
embryos with EdU to assess DNA replication in early cell cleavage embryos. Paternal exposure to CPA did not affect on the proportion of cells
incorporating EdU in early cell cleavage embryos. (B) Comparison of the MN to nuclear ratios of EdU incorporation relative to DNA content in day 1
and 3 embryos sired by CPA exposed males. We observed that MN synthesized DNA to the same extent as the nuclei in both 2 and 8 cell embryos. (C)
Comparison of the proportion of EdU positive MN in EdU positive cells in day 1 and day 3 embryos sired by CPA exposed males. A decrease in the
proportion of functional MN incorporating EdU was observed in 8 cell embryos compared to 2 cell embryos. Bar graphs are the average ratio or
proportion per replicate; error bars represent the standard errors of the means. We collected on day 1 SAL N = 6 males, 93 embryos CPA N = 5 males,
29 embryos and on day 3 SAL N = 5 males, 55 embryos CPA N = 6 males, 73 embryos. The ratio comparisons were analyzed statistically by Kruskal-
Wallis and the proportions of embryos were analyzed statistically by Chi-square, Fisher Exact test and: *** P#0.001.
doi:10.1371/journal.pone.0027600.g007
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