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Abstract

Infants with severe primary combined immunodeficiency (SCID) and children post-allogeneic hematopoietic stem cell
transplantation (HSCT) are extremely susceptible to unusual infections. The lack of generic tools to detect disease-causing
viruses among more than 200 potential human viral pathogens represents a major challenge to clinicians and virologists.
We investigated retrospectively the causes of a fatal disseminated viral infection with meningoencephalitis in an infant with
gamma C-SCID and of chronic gastroenteritis in 2 other infants admitted for HSCT during the same time period. Analysis
was undertaken by combining cell culture, electron microscopy and sequence-independent single primer amplification
(SISPA) techniques. Caco-2 cells inoculated with fecal samples developed a cytopathic effect and non-enveloped viral
particles in infected cells were detected by electron microscopy. SISPA led to the identification of astrovirus as the
pathogen. Both sequencing of the capsid gene and the pattern of infection suggested nosocomial transmission from a
chronically excreting index case to 2 other patients leading to fatal infection in 1 and to transient disease in the others.
Virus-specific, real-time reverse transcription polymerase chain reaction was then performed on different stored samples to
assess the extent of infection. Infection was associated with viremia in 2 cases and contributed to death in 1. At autopsy,
viral RNA was detected in the brain and different other organs, while immunochemistry confirmed infection of
gastrointestinal tissues. This report illustrates the usefulness of the combined use of classical virology procedures and
modern molecular tools for the diagnosis of unexpected infections. It illustrates that astrovirus has the potential to cause
severe disseminated lethal infection in highly immunocompromised pediatric patients.
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Introduction

Infants with severe combined immunodeficiency (SCID) and

children after allogeneic hematopoietic stem cell transplantation

(HSCT) are exceptionally susceptible to viral infections and viral

reactivations. The lack of functional cytotoxic T- and NK-cells prior

to and for a certain time after HSCT opens the door to infections by

unexpected pathogens either community acquired or nosocomial.

Viral infections, including those that commonly cause self-limited

childhood diseases, can lead to protracted infections with chronic

viral shedding, but also to disseminated disease with infection of

organs rarely affected in immunocompetent hosts [1]. When highly

immunocompromised infants present prolonged illness despite

broad spectrum antimicrobial therapy, extended microbiological

investigations should be considered. Routine viral screening is

limited to the most frequent groups of viruses including herpes-,

hepatitis-, respiratory-, adeno-, polyoma- and selected gastrointes-

tinal viruses. However, the number of different viruses potentially

pathogenic in humans is estimated to be more than 200 [2].

Therefore, when standard investigations remain negative despite

clinical suspicion for viral disease, screening has to be extended and

depends on the availability of in-house assays. Under certain

circumstances research techniques should be considered. Unfortu-

nately, the clinical features presented by transplanted infants or

patients with SCID are not always typical and often misleading.

Generic molecular tools, such as microarrays [3], ultra-deep

sequencing [4], sequence-independent single primer amplification

(SISPA) [5], virus discovery based on cDNA-amplified fragment

length polymorphism [6], or any other similar procedures, offer

potentially attractive alternatives although the sensitivity is limited.
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We describe here the retrospective analysis of a cluster of 3

infants prior to or after allogeneic HCST infected with an initially

unrecognized enteric virus. It was first detected by cell culture of

fecal specimens and identified as an astrovirus using a modified

SISPA protocol. Subsequent screening with a specific real-time

reverse transcription polymerase chain reaction (RT-PCR) assay

of different patients from the same time period revealed a cluster of

3 cases that remained undetected by standard investigation. In 1

fatal case, the infection involved multiple organs, including the

central nervous system. Viral genome sequencing revealed that all

cases were infected with the same astrovirus type 4 strain.

Materials and Methods

Cultivation of astrovirus, preparation for electron
microscopy (EM), and immunofluorescence (IF)

Caco-2 cells (ATCC # HTB 37) were cultivated in M199

medium containing 10% fetal calf serum, glutamine and a mixture

of penicillin/streptomycin. Confluent cells in culture tubes were

used for the inoculation of specimens. Stool samples were

suspended in PBS (10% v/v) and centrifuged at 2000 g for

20 min. The supernatant was then removed and penicillin,

streptomycin, and fungizone were added. Culture tubes were

inoculated with 200 ml of the suspension in 2 ml culture medium

without the addition of trypsin (Tables S1,S2,S3). Cultures were

screened periodically for cytophathic changes for up 10 days and

compared with a non-infected cell-culture control. If rounding up

of cells started to appear (usually after 24–72 h), they were scraped

off and used to prepare cytospin slides for IF staining. After drying

and fixation of the slides, cells were incubated with monoclonal

antibodies directed against enteroviruses (pan-enterovirus blend,

Chemicon International). Of note, the antigen specificity of these

antibodies is not specified by the company and potential cross-

reaction with hepatitis A, reovirus 3, and some rhinovirus and

astrovirus strains is indicated in the data sheet. Some samples

(Tables S1,S2,S3) were analyzed retrospectively by IF after Caco-2

cell infection with the pan-enterovirus blend kit and, in parallel,

with anti-astrovirus-specific monoclonal antibody (Argene 11-301)

diluted 1/100 in PBS---1% BSA before addition of the anti-mouse

IgG AB/FITC (Light Diagnostics).

For EM, Caco-2 cells were infected with a 10% stool suspension

of a positive sample from patient 1 (sample no.12869; Table S1).

After adsorption for 2 h, the medium was changed and cells were

further incubated at 37uC with 5% CO2 for 2 days. Cells were

removed by trypsination and centrifuged at 900 g for 5 min. The

supernatant was removed and the cell pellet was fixed in

glutaraldehyde. After dehydration, the cell pellet was embedded

in epoxy resin and thin cuts were processed for standard EM

investigation. This procedure was performed by the Central EM

Service Unit of the University of Zurich.

Screening of patient material for the presence of
infectious agents

Written informed consent was obtained from the children’s

parents and covered all investigations on patient samples. The

study was approved by the institutional ethics committee of the

University of Zurich Childreǹs Hospital, Zurich, Switzerland.

Standard histopathology was done on 5 mm-formalin-fixed,

paraffin-embedded tissue sections stained with hematoxylin-eosin,

Giemsa, and periodic acid Schiff (PAS). Additional staining

(according to Brown-Brenn, Ziehl-Neelsen and Grocott) as well

as immunohistochemistry for toxoplasmosis, herpes simplex virus

(HSV), varicella zoster virus (VZV), cytomegalovirus (CMV),

human herpes virus 8, parvovirus, and adenovirus (ADV) were

conducted, including PCR for mycobacterium tuberculosis-complex

and atypical nontuberculous mycobacteria.

Clinical specimens were screened for the presence of the

following viruses by real-time PCR or real-time RT-PCR as

previously described: influenza-, respiratory syncytial-, parainflu-

enza-, rhino-, entero-, metapneumo-, corona-, boca-, ADV,

CMV, Epstein-Barr -, HSV 1 and 2, noro-, parvovirus B19, and

VZV [7–14]. Only results from tests requested by the clinicians for

the detection of viruses are summarized in Tables S1,S2,S3. Other

tests were performed when the retrospective analysis on stored

samples was done to exclude other infections. Screening for

rotavirus was done by a latex agglutination kit (Orion Diagnostics,

Finland).

Identification of astrovirus and retrospective screening of
stored specimen

Astrovirus cloning and sequencing were performed on inocu-

lated infected Caco-2 cell supernatant (Table S1). For SISPA [5],

RNA was extracted with TRIzol (Invitrogen) from 200 ul of

infected Caco-2 cell supernatant and eluted in 20 ul of water. 9 ul

of RNA were reverse transcribed with primer FR20RV-N

(59GCCGGAGCTCTGCAGATATNNNNNN39) with Super-

script II (Invitrogen) according to the manufacturer’s instructions.

The cDNA was then treated for 1h with 2.5 units of Klenow (New

England Biolabs) before inactivation (10 min at 75uC). The

resulting double-stranded DNA was then PCR-amplified with

Taq Hifi polymerase (Invitrogen) with primer FR20RV

(59GCCGGAGCTCTGCAGATAT39) according to the manu-

facturer’s instructions. Amplification products were separated by

electrophoresis on agarose gel and fragments (0.6–2.5 kb) were

extracted with the QIAquick Gel Extraction kit (QIAGEN).

Purified products were cloned using the TOPO TA cloning kit

(Invitrogen). Minipreps were prepared and clones with the largest

inserts were selected for sequencing with the ABI Prism 3130XL

DNA Sequencer (Applied Biosystems). Chromatograms were

imported for proofreading and assembly with the Geneious Pro

5.0.3 software (Biomatters Ltd). Blast analysis was done with

http://blast.ncbi.nlm.nih.gov/Blast.cgi. Specific forward and

reverse primers (astro4 FwdA: 59CGTGCATCCTCCTTAAT-

CC39, astro4 FwdB: 59ATCTTGAATCACTCCATGGG39, as-

tro4 RevA: 59GAAGCATTATCATTTGTGTTTGTTAA39 and

Astro4 RevB: 59CGGCCATTGTTATTGACC39) were then

designed to amplify and sequence the related regions of additional

specimens collected from patients 1, 2 and 3 (Tables S1,S2,S3).

Resulting sequences (GenBank accession # HQ396880 to

HQ396890) were aligned with human astrovirus serotypes 1 to

8, as well as bat astrovirus sequences and cut to 543 nt. Alignments

were constructed using MUSCLE [15] with default parameters.

Multiple FastA was converted into PHYLIP format with the

EMBOSS program seqret [16]. Trees were built with PhyML [17]

using the GTR model, BIONJ for the initial tree, and optimized

tree topology and branch lengths. The transition/transversion

ratio was set to 4, and relative substitution rate categories were set

to 16. The gamma shape parameter alpha was set to 1. The

proportions of invariant sites were estimated from the data.

Astrovirus real-time RT-PCR was adapted from Logan et al

[18] with 600nM of Hast.fwd, 900nM of HastV.rev, and 150nM

Hast.Vpro (59-FAM-CAACTCAGGAAACARG-MGB) and run

under previously described experimental conditions [13] to

retrospectively screen clinical samples and paraffin-embedded

tissues. RNA was extracted with Easymag (Biomérieux) for clinical

specimens, and with the Absolutely RNA(R) FFPE Kit (Strata-

gene) for paraffin-embedded autopsy samples. As an internal

control, 10 ml of standardized canine distemper virus (CDV) of
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known concentration were added to each sample before extraction

to monitor for the RNA isolation and amplification procedures.

Immunohistochemistry for astrovirus detection was performed

on 3–5 mm autopsy tissue sections. The primary mouse anti-

astrovirus monoclonal antibody (Argene 11-301) and the second-

ary antibody (Envision Flex, Dako, K 8010) were used at 1:50 and

undiluted, respectively. An irrelevant isotype IgG1 diluted 1:10

was used as a negative control on the gut biopsy that was then

revealed by the same secondary antibody. Anti-keratin II (Dako,

M 3515) and anti-Glial Fibrillary Acidic Protein (GFAP) (Dako, Z

0334) antibodies were used as positive controls for small intestine

and brain tissue staining, respectively. A senior pathologist,

blinded to any viral real-time RT-PCR results, reviewed all slides.

Results

Identification of the infecting virus
Three infants (patients 1-3) suffering from severe congenital

immunodeficiency were admitted for allogeneic HSCT at the

University of Zurich Children’s Hospital during the same time

period (Figure 1). Upon presentation of gastrointestinal symptoms

with or without fever during hospitalization, body fluids and

secretions were screened for the detection of the causative agent.

None of these investigations allowed precise identification of the

underlying disease (results not shown). However, a stool sample

from patient 1 inoculated on Caco-2 cells showed an unexplained

cytopathic effect (Tables S1) and prompted a closer investigation

of routine samples from this ward. Stool samples from patients 1

and 2 gave a reproducible cytopathic effect, which consisted in

rounding up and subsequent detachment of cells. A positive signal

by IF was observed with the pan-enterovirus blend antibody

(Chemicon International). Enteroviral real-time RT-PCR was

negative (Tables S1,S2,S3) in all samples. According to the

manufacturer’s instructions, this antibody is known to cross-react

with other viruses, such as hepatitis A, reovirus 3, astro- and

rhinovirus. Cells from a positive culture from a stool sample from

patient 1 were embedded and prepared for EM. Aggregates of

typical spherical structures from non-enveloped viruses with

icosahedral capsids of approximately 30 nm diameter (Figures 2A

and 2B) were found in the cytoplasm of the infected cells.

Application of the SISPA method allowed the identification of an

astrovirus. 5 of 13 clones sequenced thanks to this method

represented astroviral sequences (1 clone covered nt 2540 to 2948

of the reference astrovirus 4 genome [GenBank DQ344027]); the

second, nt 3140 to 3795; and the 3 remaining clones overlapped

over nt 4101 to 5094. The 8 remaining clones contained human

sequences. IF performed with a specific anti-astrovirus monoclonal

antibody retrospectively confirmed the cross-reactivity of the pan-

enterovirus blend antibody with astrovirus-infected cells (Figure 3).

To investigate when and how the astrovirus infection was

introduced, stored, frozen clinical samples of a total of 5 suspected

cases were retrospectively screened. This was primarily done since

patient 1 who had a T-B+NK-(gamma-C) SCID was hospitalized

5 months earlier than the deceased patient with chronic diarrhea

and suspected viral disease. In fact, besides patient 1, 2 other

patients were identified positive for astrovirus. Since patient 1 had

stayed on the ward for a cumulative period of 9 months

with ongoing gastrointestinal symptoms until he became T-cell

engrafted, he was suspected to be the index case responsible for the

other infections (Figure 1). The first sample, which retrospectively

tested positive in patient 1, was from 11 July 2008 (Table S1), a

few months before patients 2 and 3 were hospitalized (Tables S2

and S3).

Clinical description of the 3 cases
Patient 1 (index case). A 7-month-old boy was hospitalized

in a reduced general condition with frequent stools, chronic cough,

and fever. Following pneumocystis jirovecii pneumonia, he was

diagnosed with an X-linked (gamma-C deficient) T-B+NK- form

of SCID. At the age of 10 months (September 2008), he

underwent allogeneic unrelated HLA-identical HSCT after

pretreatment with rabbit anti-T-cell antibody (ATG) to prevent

graft-versus host disease (GvHD), but without chemotherapeutic

conditioning since he was critically ill. Despite laminar-airflow

conditions, regular administration of intravenous immunoglobulins

(virus inactivated by cold ethanol fractionation, solvent/detergent

treatment, pH 4 inactivation, and ultra filtration; 0,4 g/kg every 2

weeks), and the strict use of masks and hand hygiene antisepsis

measures, he developed a protracted respiratory parainfluenza virus

type 3 infection, as well as a transient rhinovirus infection (Table

S1), and was treated with oral ribavirin. At week 4 post-

transplantation, persistent diarrhea increased and prompted a

stool culture that revealed a positive cytopathic effect and was the

index specimen used for astrovirus identification. Gastrointestinal

symptoms deteriorated with bloody diarrhea without evidence for

GvHD. Stool specimens collected before and after transplantation

Figure 1. Timeline for the detection of astrovirus in samples of the 3 patients. Sample screening listed in Tables S1,S2,S3 is summarized as
follows. Grey circles indicate positive detection of astrovirus in any type of samples (stools, serum, plasma, nasopharyngeal swabs, and vesicle swabs)
by real-time RT-PCR and/or cell culture confirmed by immunofluorescence. Black diamonds indicate negative astrovirus detection by real-time RT-
PCR. Black star represents the end of hospitalization. T: bone marrow transplantation; {: death.
doi:10.1371/journal.pone.0027483.g001
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revealed retrospectively that the infection was acquired very early or

even before hospitalization. Viral shedding persisted for almost 9

months until immune reconstitution (Figure 1; Table S1). Patient

history revealed that the whole family, including patient 1, had

suffered from a gastroenteritis infection of unknown cause in May

2008. Astrovirus RNA could also be detected in nasopharyngeal

secretions and serum (Table 1). The patient was thus secreting large

amounts of astrovirus when patients 2 and 3 were hospitalized in the

same ward (Figure 1). Concomitant to T-cell immune reconstitution

4 months after HSCT, chronic diarrhea and respiratory symptoms

stopped and both astrovirus and parainfluenza 3 infections

disappeared.

Figure 2. Electron microscopy of Caco-2 cells infected with a suspension of stool sample # 12869 from patient 1 (Table S1). A.
25,000-fold magnification of a portion of the infected Caco-2 cell containing both nucleus and cytoplasm. Dark staining in the nucleus (white arrow)
is linked to chromatin condensation and granulation, whereas staining in the cytoplasm (black arrows) is due to aggregates of viral capsids. B. 66,000-
fold magnification of viral capsid aggregates (black arrow) present in the cell cytoplasm.
doi:10.1371/journal.pone.0027483.g002

Figure 3. Immunofluorescence staining of non-infected (A,C) and infected (B,D) Caco-2 cells incubated with anti-astrovirus (A,B)
and pan-enterovirus blend (C,D) monoclonal antibodies; magnification 63x (oil).
doi:10.1371/journal.pone.0027483.g003
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Patient 2. A male infant and first-degree cousin of patient 1

was screened immediately after birth for SCID and was found to

be also gamma C-deficient. Regular intravenous immunoglobulin

infusions and cotrimoxazole and itraconazole prophylaxis were

initiated and the patient remained at home until transplantation.

An unrelated matched donor was identified and he received

HSCT at the age of 3 months (5 December 2008). Since he had no

clinical or laboratory hints for viral or other opportunistic infection

prior to transplantation, he received conditioning with intravenous

busulfan with therapeutic drug monitoring and rabbit ATG.

Respiratory and intestinal virus screening cultures were negative

prior to HSCT. Two days after infusion of the bone marrow, he

developed high grade fever that remained persistent and of

unknown origin, despite extensive microbiological and radiological

investigations and broad spectrum antibiotic and antifungal

treatment. Information from the donor center revealed that the

donor had not suffered from fever or gastrointestinal disease

prior to or following bone marrow sampling, thus excluding

transmission by the graft itself. Cultures from two stool samples

taken on 11 and 15 December revealed the same cytopathic effect

observed in patient 1. However, no virus could be detected by

standard screening procedures applied at that time, which did not

include screening by the astrovirus-specific real-time RT-PCR

(Table S2). Multiorgan dysfunction developed, including hepatic

dysfunction and pulmonary infiltrates with respiratory distress and

seizures, which required patient admission to the intensive care

unit. Blood culture and other usual bacterial, mycobacterial, and

fungal screening remained negative. Molecular screening for

respiratory viruses in nasopharyngeal swabs was negative (Table

S2) and none of the viruses tested could be detected in plasma.

Cerebrospinal fluid real-time RT-PCR was negative for

enterovirus. Cerebral magnetic resonance imaging revealed signs

suggesting a severe meningoencephalitis and the patient died on

day 17 post-transplantation. At autopsy, the heart, lungs, liver,

bone marrow, spleen, and testicles showed a severe necrotizing

inflammatory process. Neuropathological investigations revealed

distinct inflammatory leptomeningeal and ventricular infiltrates

consisting mainly of macrophages and granulocytes (Figure S1). In

addition, fresh necrosis was detected in the hippocampus, basal

ganglia, brain stem, and cerebellum. No infectious agent was

found by special staining and immunohistochemistry. Retrospec-

tive screening of specimens by culture and/or real-time RT-PCR

revealed that the first astrovirus-positive sample was collected at

day 13 post-hospitalization (Figure 1; Table S2). Subsequent stool,

plasma. and vesicle swab specimens revealed positive (Table 1).

RNA was extracted from paraffin-embedded autopsy samples and

tested by real-time RT-PCR. The small intestine was clearly

astrovirus-positive (consistent with high viral loads [CT values of

22; Table S2]; bone marrow and brain were also positive, but with

a lower viral load (CT around 30); kidney, spleen, lung and heart

tissues were weakly positive (CT values over 36), whereas the liver

was negative (Table 1; Table S2). Immunohistochemistry was

performed on the same autopsy tissue after a preliminary valida-

tion on paraffin-embedded, astrovirus-infected Caco-2 cells (data

not shown). The small intestine autopsy tissue section stained

positive (Figure 4), but no signals were detected in the brain and

bone marrow tissues although an anti-GFAP control antibody

resulted in the expected positive signals (data not shown). Positive

staining likely correlates with high viral load.

Patient 3. A 13-month-old boy with a profound T cell

deficiency and hypogammaglobulinemia (presumed ZAP 70

defect) had suffered from several episodes of bacterial infections

and pneumocystis jirovecii pneumonia. At the age of 16 months

(January 2009), he underwent an allogeneic HSCT from an

unrelated donor after reduced intensity conditioning. After 1 week,

the patient developed gastrointestinal symptoms with recurrent

diarrhea, nausea and vomiting without clinical evidence of GvHD.

Fecal and respiratory specimens revealed retrospectively to be

astrovirus-positive with the first positive sample detected 28 days

post-hospitalization (Table 1; Figure 1; Table S3). No blood

sample was available and viremia could not be documented.

Gastrointestinal symptoms improved simultaneous to emerging T

cells and moderate reduction of immunosuppression. The patient

was discharged on day 70 in good general condition.

Astrovirus transmission
It is very likely that patient 1 was the index case for the following

reasons. 1) In May 2008, the patient’s family reported an episode of

virally transmitted gastrointestinal disease where patient 1 was also

infected. We could not document this hypothesis as his severe

immunodeficiency had not yet been detected at hospital admission

and, therefore, no stool samples had been analyzed from the patient

and his family. As he suffered from respiratory symptoms related to

pneumocystis jirovecii pneumonia, his concomitant diarrhea was not

further investigated. However, due to the absence of T- and NK-

cells in gamma SCID, a successful elimination of his acquired viral

gastrointestinal infection is not probable. 2) Stool samples were only

tested by standard cell culture at the beginning of hospitalization.

Because no cytopathic effect was observed, no IF test was done and

samples were eliminated after 2 months. For this reason, no real-

time RT-PCR could be done. The first strong positive sample was

on day 23 (11 July 2008; Table S1) of hospitalization. Virus

secretion in patient 1 could be documented on different samples

until 9 March 2009. 3) He had been secreting large amounts of

astrovirus (CT values: 15.3 and 12.23, respectively) when patients 2

and 3 were hospitalized in the same ward and was the very likely

source of contamination for the 2 other cases (Figure 1).

Table 1. Detection of astrovirus in different samples from the
3 patients.

Duration (in days) of astrovirus
identification in different samples
from the 3 patients

Type of specimen Patient 1 Patient 2 Patient 3

Stool 302 4 82

Serum 1 - -

Plasma - 8 -

Nasopharyngeal swab 71 - 1

Pharyngeal swab 167 - 1

Vesicle swab - 1 -

Brain - PM -

Heart - PM * -

Lung - PM * -

Spleen - PM * -

Bone marrow - PM -

Kidney - PM * -

Small intestine - PM -

Duration of hospitalization 180 17 70

-, not tested or negative; PM, post mortem autopsy tissue tested positive (CT
values,36); PM*, post mortem autopsy tissue tested weakly positive (CT values
. 36). See Tables S1,S2,S3 for detailed results.
doi:10.1371/journal.pone.0027483.t001
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When the 3 cases were hospitalized, standard precautions for

hospitalized (according to US Centers for Disease Prevention and

Control guidelines) and immunocompromised patients in the bone

marrow transplantation (BMT) unit (e.g. care in single-patient,

positive-pressure, laminar airflow boxes, introduction of disinfect-

ed material only, the wear of coats and masks for staff and parents

entering the box) were applied. However, subsequent investigation

by the infection control team revealed gaps and negligence in

some aspects of standard precautions, such as handling and

delivery of meals, hand hygiene of healthcare workers, and

insufficient information provided to parents. This is of particular

importance as the families of 2 patients were related. In addition,

the BMT unit was overcrowded both inside and outside the boxes,

thus preventing efficient environmental cleaning. In addition,

disinfection studies showed that the products used for standard

BMT procedures in our ward were insufficient in completely

inactivating enteroviruses (data not shown).

Stool specimens from the 3 patients were sequenced over 543 nt

of the capsid gene. A phylogenetic tree revealed that the patients

were infected with a unique astrovirus type 4 strain (Figure 5).

Furthermore, samples collected from patient 1 96 days post-

hospitalization had acquired a non synonymous change also

present in patients 2 and 3 (Table 2). As expected for protracted

RNA virus infections, viral populations sequenced from patient 1

between days 145 (sample no. 11196) and 250 (sample no. 1898)

post-hospitalization (the period where patients 2 and 3 were

infected) evolved. The exact sequence composition at the time of

transmission is not known, but the sequences of sample no. 12428

(patient 2) and 1391 (patient 3) are both present in the quasispecies

populations observed in sample no. 1898 (patient 1).

Discussion

We describe 3 young children with SCID in a pediatric BMT

unit who developed protracted astrovirus infection with dissem-

inated disease, which was finally fatal in one infant. Viral infection

was initially suspected, but routine diagnostic molecular investi-

gations remained negative. Generic viral discovery tools [5,19]

were then applied and led to the identification of astrovirus.

Subsequent screening by specific real-time RT-PCR confirmed

the presence of astrovirus RNA in multiple body sites in at least 2

of the 3 infected cases. Retrospective screening revealed that

patient 1 was already infected before transplantation, possibly even

before hospitalization, and secreting large amounts of virus when

patients 2 and 3 were hospitalized in the same ward. We cannot

completely exclude that patients 2 and 3 were infected from

another source, such as external visitors, but this seems very

unlikely due to the strict isolation measures applied to HSCT

recipients. The most probable scenario is that patient 1 was the

source of the infection to cases 2 and 3 and the virus was

transmitted by healthcare staff or the children’s parents due to

their close contact outside the laminar airflow cabins.

The hypothesis of nosocomial infection is further reinforced by

retrospective screening of samples, which revealed that astrovirus

was continuously detectable in patient 1 until immune reconsti-

tution (Figure 1; Table S1), and capsid sequence analysis of

different positive samples that confirmed the presence of a unique

astrovirus type 4 strain. One unlikely hypothesis is that cases 2 and

3 were infected in the community before hospitalization with low-

level replicating viruses that were not detected upon hospital

admission. Of note, investigation of the donor history of patients 1

and 2 showed no signs of diarrhea one month before donation.

Following the suspicion of nosocomial infection, preventive

measures were taken. The hand hygiene antisepsis agent was

replaced by a more virucidal product, the BMT unit was cleaned

room-by-room with highly virucidal surface disinfectant, and the

admission of visitors to these children was restricted to their

parents only.

This sequence of events illustrates the numerous challenges

facing clinicians, clinical virologists, and microbiologists caring for

highly immunocompromised infants. Astrovirus real-time RT-

PCR could have provided an early and simple diagnosis for these

patients. However, diarrhea observed in our index case could have

also been caused by many other viruses and a large panel of real-

time assays targeting all possible viral agents would have been

necessary. Due to the diversity of potentially involved viral agents

in humans [2], as well as emerging new viruses or variants, the

spectrum covered by such a panel would always be an issue. In the

present investigation, classical cell culture in combination with

modern generic molecular detection tools provided the diagnosis.

Traditional diagnosis by cell culture has technical limitations, such

as low sensitivity and existence of non-cultivable viruses, and has

been progressively abandoned. In this case, cell culture was the

first indication for the presence of a virus. This strongly supports

the notion that it is advantageous to preserve classical viral culture

in centers caring for immunocompromised hosts. Of note, negative

staining EM from stool suspensions or from a supernatant from

positive cell culture could also have given very fast, first indications

of the presence of an unexpected virus. However this technique is

not available as a routine tool in our institution. Nevertheless,

microarray-based assays [3], mass spectrometry [20], ultra-deep

sequencing [4], and other alternative advanced technologies will

likely change the diagnostic landscape once validated for clinical

use.

Astrovirus is a non-enveloped, positive-strand RNA virus that

infects mammalian as well as avian hosts [21]. The virus is

Figure 4. Immunohistochemistry of the small intestine autopsy tissue sections of patient 2. Immunohistochemistry with an anti-
astrovirus antibody performed on non-infected (A) and infected (B) regions of the small intestine autopsy tissue sections.
doi:10.1371/journal.pone.0027483.g004
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Figure 5. Phylogenetic analysis of the transmitted astrovirus strains. A. A maximum-likelihood-based phylogenetic tree was computed
using capsid gene sequences (corresponding to nt 4325 to 4867 of the astrovirus 4 complete genome [GenBank DQ344027] or nt 1 to 543 of the
capsid gene) obtained from 8 samples collected from patient 1, one from patient 2, and two from patient 3 (Table 2). Corresponding sequences from
representatives of the 8 human astrovirus serotypes (HAstV) and the divergent VMLB1 human astrovirus (HastVMLB1) were included to show a
comparison of evolutionary distances and relationships. Bat astrovirus (BatAstV, in light gray) was used as an outgroup. All virus strains are shown
with the corresponding GenBank accession number. The numbers of substitutions per site are indicated below the tree. Because of long branches,
the outgroup BatAstV, as well as the strain HAstVMLB1, are shown with annotated branch lengths. B. Blow-up of a sub-tree from panel A marked with
an asterisk showing relatively short branch lengths compared to the full tree.
doi:10.1371/journal.pone.0027483.g005

Table 2. Genetic variability of the astrovirus genome in the 3 investigated cases.

Sample N6

Days post hospitalisation
of patient 1 Patient Material Nucleotide (amino acid)

*4411 *4678 *4752 *4762 *4802

7125 24 1 Stool culture T(S) G(G) G(R) T(S) A(I)

8136 56 1 stool T(S) G(G) G(R) T(S) A(I)

8280 62 1 stool T(S) G(G) G(R) T(S) A(I)

9442 96 1 stool T(S) G(G) G(R) T(S) R(I/V)

9972 110 1 stool T(S) G(G) G(R) T(S) G(V)

10477 124 1 stool T(S) G(G) G(R) T(S) G(V)

11196 145 1 stool T(S) R (G) G(R) T(S) G(V))

1898 250 1 Stool culture Y(S) G(G) R (R/K) T(S) R(I/V)

12428 #180 2 Stool culture C (S) G(G) G(R) T(S) G(V)

1391 &237 3 stool C (S) G(G) G(R) T(S) G(V)

2619 272 3 stool Y (S) R (G) G(R) Y (S) G(V)

The astrovirus genome was sequenced over a 651 nt portion (corresponding to nt 4216 to 4867 of the astrovirus 4 complete genome (GenBank DQ344027) covering nt
1 to 543 of the capsid gene). Sequences are available in GenBank under accession # HQ396880 to HQ396890.
*Positions relative to astrovirus 4 genome (GenBank DQ344027). Capital letters outside brackets indicate nucleotides (A,T,G,C). Brackets indicate amino acids at their
respective position. Synonymous changes are indicated in italic and non synonymous changes are indicated in bold.
#4 days after detection of 1st astrovirus positive sample in patient 2.
&time of detection of 1st astrovirus positive sample in patient 3.
doi:10.1371/journal.pone.0027483.t002
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transmitted mainly by the oro-fecal route, circulates worldwide,

and is the cause of outbreaks in the community and healthcare

facilities [22]. After rotavirus, it is one of the most frequent causes

of viral gastroenteritis in young children [23,24]. The infection is

characterized by a gastrointestinal disease with nausea, vomiting,

diarrhoea, and sometimes fever, mostly self-limited to a few days.

The inflammatory response of the gastrointestinal mucosa is often

minimal [1], but there is a possible association with necrotizing

enterocolitis in newborns [25].

Atypical clinical presentations, such as prolonged viral shedding,

have been described in immunocompromised hosts [1,26] and this

was observed in all 3 patients reported in this study. We detected

also astrovirus RNA in unexpected body sites, such as the

respiratory tract, blood, bone marrow, skin, and brain. Recently, a

similar investigation in a child with primary immunodeficiency

and progressive encephalitis proved the ability of astrovirus to

infect the brain and likely cause progressive encephalitis [4]. The

authors of this study could not identify astrovirus in other sites,

probably due to the retrospective nature of their investigation and

a limited access to specimens. By demonstrating RNA in multiple

sites, our investigation supports their observation that astrovirus

can reach other organs, including the central nervous system. The

ability of astrovirus to cause viremia is probably due to high and

protracted replication in the gastrointestinal tract. Prolonged

shedding in immunocompromised hosts has been described for

other gastrointestinal RNA viruses, such as rotavirus [27], ADV

[28], and norovirus [29,30], as well as respiratory viruses [31], and

highlights the need for an efficient immune response to prevent

dissemination and to clear these usually self-limited infections. In

our cases, prolonged shedding and deficient environmental

disinfection procedures could have offered opportunities for

inter-individual transmission and has to be considered as the most

likely cause of the observed outbreak.

In conclusion, astrovirus needs to be considered as a potential

cause of protracted disease and disseminated infection in severely

immunocompromised infants with primary immunodeficiency

prior to and after allogeneic HSCT.
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