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Abstract

Linkage disequilibrium study represents a major issue in statistical genetics as it plays a fundamental role in gene mapping
and helps us to learn more about human history. The linkage disequilibrium complex structure makes its exploratory data
analysis essential yet challenging. Visualization methods, such as the triangular heat map implemented in Haploview,
provide simple and useful tools to help understand complex genetic patterns, but remain insufficient to fully describe them.
Probabilistic graphical models have been widely recognized as a powerful formalism allowing a concise and accurate
modeling of dependences between variables. In this paper, we propose a method for short-range, long-range and
chromosome-wide linkage disequilibrium visualization using forests of hierarchical latent class models. Thanks to its
hierarchical nature, our method is shown to provide a compact view of both pairwise and multilocus linkage disequilibrium
spatial structures for the geneticist. Besides, a multilocus linkage disequilibrium measure has been designed to evaluate
linkage disequilibrium in hierarchy clusters. To learn the proposed model, a new scalable algorithm is presented. It
constrains the dependence scope, relying on physical positions, and is able to deal with more than one hundred thousand
single nucleotide polymorphisms. The proposed algorithm is fast and does not require phase genotypic data.
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Introduction

Linkage disequilibrium (LD) refers to non-random associations

of alleles at two or more loci, over the human genome [1,2]. LD is

usually present at short-range, i.e. for distances less than 10 kb [3].

Nevertheless, long-range LD (i.e. LD with distances greater than

100 kb) [3], and LD between different chromosomes [4], are also

observed. Analyzing the extent and distribution of LD represents a

major topic in statistical genetics. For instance, LD plays a

fundamental role in gene mapping: the observation of a large

number of genetic markers over a chromosomic region ensures a

precise localization of (non-observed) causal mutations. Based on

this property, genome-wide association studies (GWASs) [5,6] aim

to systematically localize causal loci over the genome using

hundreds of thousands of single nucleotide polymorphisms (SNPs),

an abundant and useful class of genetic markers. Beside gene

mapping, LD pattern analysis offers deep insights into the

understanding of human population history. Bottlenecks, natural

selection and migrations are examples of evolutionary events

which can be inferred using coalescent models [7].

At the interface between computer science and artificial

intelligence, data mining (DM) is the process of extracting patterns

from data [8]. DM helps formulate hypotheses worth testing and is

complementary to more conventional statistics. Data visualization,

a branch of DM, aims at providing efficient and intuitive tools to

represent and summarize relevant information underlying data

[9]. Data visualization has been successfully applied to bioinfor-

matics [10].

The international HapMap project [3], and more recently the

international 1000 Genomes project [11], have made considerable

efforts to deeply characterize the genome sequence variation in

human populations. In this context, the application of visualization

methods in the analysis of LD patterns has been shown to be

essential, most notably to reveal the complex so-called LD block

structure [12]. The simplest but also the most popular method is

the triangular heat map (THM) as implemented in Haploview

[13]. The THM is the triangular matrix of pairwise dependences

between genetic markers, in which the color shading indicates the

LD strength in each matrix cell. The THM generally displays the

Lewontin D’ or the squared correlation coefficient r2. Another

dependence measure, the ratio of the D’ to the logarithm of odds

(noted LOD), is used as a standard by Haploview. In the THM,

LD blocks are visually apparent. Nevertheless, the THM has the

drawback to only display pairwise dependences, thus providing a

restricted view of multilocus patterns. Another popular approach

consists in plotting the fine-scale map of recombination rates

computed along the chromosomic sequence. For this purpose,

PHASE [14], a coalescent-based method, can be used to estimate

recombination rates between adjacent SNPs in the sequence. This

approach helps find recombination hotspots and provides insight

of the underlying block structure of LD, but leads to computa-

tional burden. More advanced techniques, such as those providing

isometric blocks and bifurcation plots [15], or textile plots [16],

can deal with multilocus LD. For instance, the algorithm used to

draw a textile plot is closely related to principal component

analysis. The textile plot strategy consists in assigning the optimal
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geometrical configuration to variables and data points in a low-

dimensional linear space.

At the interface of graph and probability theories, probabilistic

graphical models (PGMs) represent a powerful formalism to

uncover complex networks of interactions. Thanks to their ability

to capture (conditional) independences and dependences between

variables, PGMs offer an accurate modeling of relationships

between variables in an uncertain framework [17]. A PGM is a

probabilistic model that relies on a graph representing conditional

independences within a set of random variables. Essentially, this

model provides a compact and natural representation of the joint

probability distribution of the variable set. PGMs have been

successfully applied to LD modeling, in particular for haplotype

inference and association genetics [18–21]. Recently, Mourad et al.

introduced forests of hierarchical latent class models (FHLCMs) to

model genome-wide LD, together with a scalable algorithm,

named CFHLC (Construction of Forests of Hierarchical Latent

Class models), able to cope with 105 variables and 2000 indivi-

duals [22,23]. FHLCMs will be described in details in the next

section.

In this paper, we describe another attractive property of

FHLCMs (beside LD modeling) as LD visualization tools. We

advocate their use for: (i) short-range, (ii) long-range and (iii)

chromosome-wide LD visualization. Most notably, these models

provide a compact and interpretable view of LD for the geneticist,

thanks to their hierarchical graphical nature and their latent

variables (LVs). Moreover, the proposed method allows to

visualize both pairwise and multilocus LD on a single display,

and to tackle the fuzziness of LD block boundaries. Low-level LVs

represent short-range LD and are interpreted as haplotype shared

ancestry, whereas high-level LVs correspond to long-range LD

and are seen as population structure or natural selection effects.

We also define a new multilocus LD measure for the evaluation of

LD strength inside FHLCM clusters. Tested on real datasets, our

method has been shown to be a valuable tool for the geneticist,

regarding both information summary and understanding of LD

spatial structure.

A first version of CFHLC, the learning algorithm, requires the

splitting of the genome in large fixed-size windows (100{600
SNPs) in order to process genome-scale data. This represents a

severe drawback as the possible dependences between adjacent

windows are missing, which blurs the analysis of long-range LD.

Thus, for an adequate use of FHLCMs in LD visualization, we

have developed a new version of the CFHLC algorithm (named

CFHLC+). In this second version, the genome splitting is not

requested anymore to resolve the scalability issue. LD modeling is

now constrained by physical position of SNPs along the

chromosome. This constraint, less drastic than genome splitting,

actually corresponds to a sliding window approach. Fixing the

sliding window size sufficiently large (0:1{5 Mb) represents a

reasonable strategy to capture long-range LD in the GWAS

context.

This paper is organized as follows. Section Results illustrates our

LD visualization approach within three experimental contexts: (i)

short-range, (ii) long-range and (iii) chromosome-wide LD. The

next section highlights the contribution of this paper and gives

directions for future works. In the last section, Material and

Methods, we explain the forest of hierarchical latent class models

and its biological interpretation. Then, we present the new version

of CFHLC able to learn FHLCMs from genome-wide data by

constraining dependence scope using physical locations of SNPs.

We also describe the new multilocus LD measure based on

FHLCMs. Finally, we briefly explain the graph drawing- and

display- methods used to visualize the FHLCMs.

Results

Short-Range Linkage Disequilibrium
We illustrate the visualization of short-range LD using the well-

known Daly et al. dataset [12] available at http://www-genome.wi.

mit.edu/humgen/IBD5/index.html. This dataset provides a good

example of complex LD patterns with multiple degrees of LD. It

consists of 129 trios, each composed of two parents and one child.

For each individual, 103 SNPs are genotyped in the 5q31 region

and cover 617 kb.

Our FHLCM-based method is compared with: firstly two

popular approaches - the triangular heat map (THM) of D’=LOD
using Haploview v4.2 (www.broad.mit.edu/mpg/) and the fine-

scale recombination rates inferred with PHASE v2.1 (http://

stephenslab.uchicago.edu/) - and secondly the most advanced

method, the textile plot (http://www.stat.math.keio.ac.jp/). Re-

sults are presented in Figure 1. In spite of the fact that these

methods differently tackle LD visualization, common trends

emerge: most SNPs are divided into blocks which are common

between the different methods (see dotted lines). In this sequence,

Haploview inferred 11 LD blocks, which are underlined in black

color in the THM (see Figure 1a). Besides, we observe many

dependences between blocks, most notably in the large central

area SNP26–SNP76 (see bottom section of Figure 1a), between

blocks 5 and 6. The boundary between blocks 5 and 6 is not plain.

The THM also depicts strong dependences between non-

contiguous SNPs, for instance, between SNPs 26 and 28 of block

5 and between SNPs of blocks 7, 8, 9 and 10. The recombination

rate plot (RRP) indicates four recombination hotspots at positions

SNP14–SNP15, SNP24–SNP25, SNP76–SNP77 and SNP91–

SNP92, showing values beyond 10 cM=Mb (see Figure 1b). These

recombination hotspots define 4 large blocks which are partly in

adequacy with those obtained with the THM, as shown by the

dotted lines.

In the textile plot, the greater the dispersion of the genotypes

between one homozygote and the other on the vertical axis, the

more likely the SNP is in LD with all other SNPs (see Figure 1c).

Using the textile plot, similar results are observed compared to the

THM and the RRP. Dispersions of the genotypes are high inside

LD blocks and low at boundary regions. Beside the LD block view,

we can distinguish the absolute LD (r2~1 and D’~1), as observed

between SNP1 and SNP2, from the complete LD (r2
v1 and

D’~1), as observed between SNP2 and SNP3. For the former

SNP pair, there are no connecting lines between a homozygote

and the opposite side of a homozygote (e.g. GG to AA between

SNP1 and SNP2), whereas there are connecting lines for the latter

SNP pair. Furthermore, the textile plot offers another functionality

absent in the THM and the RRP. The textile plot allows to

visualize the frequencies of multilocus genotypes: the thicker the

segment connecting two elementary genotypes, the higher the

frequency for the corresponding two-locus genotype. For example,

we observe the most frequent multilocus genotypes at the bottom

section of the textile plot.

The FHLCM graph provides another view of LD (see

Figure 1d). This is very similar to the THM because the method

also focuses on variable dependences. In the graph, leaf nodes are

SNPs (blue nodes), while the other nodes are LVs (red nodes)

capturing multilocus patterns. Note that the use of other nodes

(white and green nodes) will be described in the second next

paragraph. An edge between two nodes (latent or observed)

represents the dependence between them. Thanks to the concept

of lowest common ancestor for any pair of SNPs, it is possible to

gain an insight of the pairwise LD strength. In graph theory, the

lowest common ancestor (LCA) is defined between two nodes

Visualization of Multilocus Linkage Disequilibrium
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v and w as the lowest node in the tree (or in the forest) that has

both v and w as descendants. It has to be noted that LCA is

specific to graph theory and should not be confused with the most

recent common ancestor used in phylogeny. In the forest, the level

of the LCA related to two SNPs represents the pairwise LD

strength between them. The LCA levels of SNP pairs correspond

to different pairwise LD degrees and distances between the SNPs

(see Figure 2). In the first layer of Figure 2, there are 27 LCAs

showing r2 and SNP-SNP distance medians of 0:91 and 5:5kb,

respectively. In the second layer, there are 8 LCAs, showing r2 and

distance medians of 0:76 and 26 kb, respectively. In the last two

layers, r2 and distance medians are lower and around 0:5 and

60 kb. Thus, the level of an LCA in the graph brings important

information on a pair of SNPs: the higher the level, the lower the

pairwise LD, and the higher the distance between SNPs. Low-level

LCAs represent short-range and tight pairwise LD, whereas high-

level LCAs correspond to long-range and weak pairwise LD. Thus

pairwise LD degrees are hierarchically displayed through LCA

levels.

In addition to pairwise LD, the FHLCM graph displays

multilocus LD, a complementary measure. In the graph, an LD

cluster (group of non-necessarily contiguous SNPs) is easily

visualized, because it is simply represented by an LV (red node)

subsuming leaf nodes (blue nodes corresponding to SNPs). For

each cluster, the LV color shade is proportional to the multilocus

LD strength C’. As in the THM, this representation provides a

global view of LD on a single display. We observe that the

distributions of pairwise LD and multilocus LD are not necessarily

connected. We recall that the distribution of multilocus LD

strengths corresponds to the distribution of LV shades, whereas

the distribution of pairwise LD strengths can be apprehended

through the levels of LCA nodes related to pairs of nodes, in the

forest. Most notably, the multilocus LD strength does not depend

on the LV level, contrary to pairwise LD. The multilocus LD

distribution of the FHLCM is similar to the one of the textile plot,

which also computes multilocus LD. For instance, the first LD

block inferred with Haploview (see Figure 1a) is composed of two

smaller blocks of tighter LD (C’~0:83 and 0:73, respectively).

These two small blocks can easily be visualized in the textile plot

and the FHLCM. The first small block shows the strongest

multilocus LD in both the textile plot and the FHLCM. One asset

of the FHLCM over the textile plot is that we can easily see the

strong LD remaining between these two small blocks (which are

both represented by an LV in layer 1), because the two small

blocks are connected by an additional LV in layer 2. More

complex dependences are observed for the large central area

SNP26–SNP76, with the presence of LVs in layers 3 and 4. This

illustrates the fact that the hierarchical nature of FHLCMs allows

to easily deal with the fuzzy nature of LD cluster boundaries.

Association information can also be visualized in our plot (see

Figure 1d). An association signal is represented by an edge linking

a SNP node to an additional node. The length of the

corresponding edge shows the strength of the signal (i.e. p-value).

In addition, when the signal is significant (e.g. p-valuev0:05), the

additional node is shaded in green. In the graph, we observe a

complicated pattern of multiple associations. Globally, associations

are not found between contiguous SNPs, but instead they are

scattered along the sequence. This is correlated with the LD

structure found, which highlights numerous dependences between

non-contiguous SNPs. Despite the complicated pattern, we found

that the most significantly associated SNPs, i.e. SNP26, SNP27 and

SNP28, share the same LCA in layer 1 (circled in red).

Finally, we compare the number of graphical elements (NGE)

between the four displays, in order to evaluate the information

compactness. In the THM, the NGE equals (n(n{1))=2, with n
the number of SNPs. For the RRP, the NGE is n{1, i.e. the

number of recombination rate values (which are computed for

each pair of contiguous SNPs). Regarding the textile plot, the

NGE is comprised between (n{1)|3 and (n{1)|3|3, because

there are n{1 pairs of contiguous SNPs and 3|3 possible lines

connecting genotypes (AA, AB and BB) for each pair. In the

FHLCM graph, NGE equals snzse, which is the sum of the

Figure 2. Information of the level of SNP lowest common ancestors. Relation between the level of SNP lowest common ancestors and a) the
median of r2 values and b) the median of distances computed over the corresponding SNP pairs. For instance, the left boxplot in a) concerns all pairs
of SNPs with lowest common ancestors belonging to layer 1. Over these SNP pairs, the median of r2 values is 0:91.
doi:10.1371/journal.pone.0027320.g002

Figure 1. Comparison of linkage disequilibrium visualization methods applied to the Daly et al. dataset [12]. a) triangular heat map of
D9 = LOD with LD blocks computed using Haploview v4.2, b) recombination rates inferred with PHASE v2.1, c) textile plot and d) forest of hierarchical
latent class models displayed using Tulip. For each layer l, the median of r2 values (resp. distances) is computed over all pairs of variables having their
lowest common ancestor in layer l. The magnified node in subfigured) shows the multilocus linkage disequilibrium measure relative to the latent
variable thus highlighted. Dotted lines highlight common trends between the four methods. Association signal is visualized through the length of an
edge linking a SNP to an additional node.
doi:10.1371/journal.pone.0027320.g001
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number of nodes and of the number of edges. NGE varies in

function of the FHLCM structure complexity. It is comprised

between n (sn~n, se~0) and 4n{3 (sn~2n{1, se~2n{2).

Obviously, this comparison is simplistic because it does not take

into account the fact that the different methods do not provide the

same amount of information. Nevertheless, it clearly demonstrates

that, apart from the RRP, the FHLCM graph offers the best

information compactness. Most notably, the comparison of the

FHLCM graph with the most similar method, the THM, indicates

that information compactness is much higher in the former (linear

complexity) than in the latter (quadratic complexity).

Long-Range Linkage Disequilibrium
Effects Of Natural Selection. To illustrate visualization of

long-range LD due to natural selection, we have chosen the major

histocompatibility complex (MHC), a large chromosomic region

harboring a gene family which encodes MHC molecules. MHC

molecules play an important role in the immune system and

autoimmunity. Long-range LD has been reported in the MHC

region [16,24]. This can be explained by selective sweeps and

population history (genetic drift), but there is also evidence

indicating strong influence of recombination activity. To study

long-range LD, we focused on the region ½22Mb{40Mb� present

on chromosome 6 and which surrounds the MHC. Although this

region contains 14292 SNPs, we preferred to select only 358 of them

in the context of an off-line demonstration. It is possible to analyze

all 14292 SNPs covering the MHC region but the visualization of

such a large FHLCM graph requires to navigate inside the graph

using software such as Tulip. We used 234 phased genotypes

coming from the HapMap phase III and relative to U.S. residents of

northern and western European ancestry (CEU), available at

https://mathgen.stats.ox.ac.uk/impute/impute_v1.html.

The chromosome map, the triangular heat map, the textile plot

and the FHLCM graph are presented in Figure 3. The three

visualization methods indicate the presence of strong LD spanning

several megabases on the central area (within dotted lines),

surrounded by low LD regions. In the textile plot, the large strong

LD region is revealed by high dispersions of genotypes at most

SNPs. In the FHLCM graph, we observe several large trees and

multiple layers in the central area. Compared to the textile plot,

the FHLCM graph provides additional information: its multiple

layers allow to distinguish between short-range LD and long-range

LD. The former is displayed through low-level LCAs while the

latter is highlighted by high-level LCAs. In the FHLCM,

dependences between distant SNPs are easily observed. It is not

the case with the textile plot where SNPs are ordered along the

chromosome. To overcome this restriction, Kumasaka et al. use a

hierarchical clustering variable algorithm which rearranges SNP

positions along the horizontal axis, allowing to show LD between

distant SNPs. Nevertheless, the drawback is that physical ordering

of SNPs is lost.

Effects Of Population Admixture. We also studied the

presence of long-range LD due to population admixture. For this

purpose, we chose the example of the African ancestry in

Southwest USA (ASW) population from the HapMap phase III.

ASW is a well-known admixed population [25]. This data sample

consists of 106 phased haplotypes. We focus on chromosome 1 for

which we selected 2819 regularly spaced SNPs, in the context of

an off-line demonstration. A sliding window of 20 Mb has been

used.

The FHLCM graph is plotted in Figure 4. The graph presents 4
layers of LVs. LD varies from median(r2)~0:053 in the first layer

to 0:012 in the fourth layer. In the first layer, the median distance

between SNPs is around 100 kb, while it is 2:66 Mb in the last

layer. As observed with CMH, dependences between distant SNPs

are easily observed. We are able to localize regions showing long-

range LD, such as the region at the beginning of the chromosome

(circled in red).

Chromosome-Wide Linkage Disequilibrium
Chromosome-wide LD visualization can be performed by

learning FHLCMs with CFHLC+ and by navigating through

the corresponding graphs with Tulip. We illustrate the LD

visualization of chromosome 1 for CEU population. The dataset

consists of 234 phased genotypes and 101100 SNPs. FHLCM

learning was constrained by a maximum physical distance

between SNPs (or LVs) of 100 kb. CFHLC was run on a standard

PC (3:8 GHz, 3:3 GB of RAM). Only 9 hours and 1:1 GB were

necessary to compute the FHLCM for the entire chromosome.

In Figure 5, the FHLCM graph is depicted. Navigation in the

graph through successive zooms allows to change the resolution for

the visualization. When no zooming function is active, the

chromosome is simply represented by a blue line. Nevertheless,

if we zoom a first time on the graph, the global structure of LD

becomes apparent. In the second view, long-range LD between

SNPs spaced by 50{100 kb is easily visualized. In the third

display, it is possible to distinguish each LD cluster in the graph

(i.e. each FHLCM subtree), to see the number of FHLCM layers

and the degree of connectivity. The degree of multilocus LD is

shown by the color shade of LVs. Finally, if we zoom again, we

can see the position of SNPs and the precise multilocus LD

strength measure, which are written inside blue nodes (SNPs) and

red nodes (LVs), respectively.

Discussion

Our FHLCM-based method for visualization of LD spatial

structure has been shown to provide a compact view of LD spatial

structure in the three main contexts: short-range, long-range and

chromosome-wide LD analyses. Our approach focuses on variable

dependences, and thus is very similar to the THM. Beside plotting

pairwise LD, the FHLCM can also show multilocus LD, which

represents the most important asset. Moreover, pairwise LD

degrees are hierarchically displayed by LCA levels. Compared to

the textile plot, our visualization tool shows several drawbacks, but

also multiple advantages. Although FHLCM graphs do not allow

to distinguish between complete and absolute LD, or to show

genotype frequencies, it clearly reveals long-range LD without

necessitating any rearrangement of the SNP order in the sequence,

such as required for the textile plot. In fact, the textile plot and

the FHLCM graph are complementary approaches to study LD

structure.

Future researches will focus on two main aspects. First,

important information provided by FHLCMs has not been used

in our visualization approach. Conditional and a priori probability

distributions learned by CFHLC could provide insights of the

frequencies of genotypes, and above all, of the frequencies of

genotype clusters. Finally, the next step is providing the geneticist

an integrated software tool equipped with a user-friendly interface,

such as provided by Haploview or the Textile Plot software, to

construct FHLCMs, display them and launch off-line genetic

association analyses.

Materials and Methods

The Model And Its Biological Interpretation
From now on, we will restrain the study to discrete and finite

variables (either observed or latent).

Visualization of Multilocus Linkage Disequilibrium
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FHLCMs are forests whose trees are hierarchical latent class

models (HLCMs). An HLCM is defined as a tree whose leaves are

observed variables while internal nodes are latent variables

organized in multiple layers. An FHLCM is illustrated in

Figure 6. The meaning of specific key terms is clarified in

Figure 7. Most notably, the benefits of using FHLCMs rely on the

ability of latent layers to account for multiple degrees of SNP

dependences and to naturally deal with the fuzzy nature of LD

block boundaries [26]. Moreover, FHLCMs offer a generalization

of the block-like structure. Inside blocks, SNPs are necessarily

contiguous. For some genomic regions, the block-like structure can

be irrelevant [27]. Instead of modeling blocks, FHLCMs describe

clusters for which the contiguity constraint is relaxed.

In the FHLCM, LVs bring a biological meaning for the

geneticist. For instance, in the case of haplotype data analysis

(phased genotypes), LVs are likely to represent the haplotype

Figure 3. Long-range linkage disequilibrium visualization for the region [22 Mb–40 Mb], chromosome 6, surrounding the major
histocompatibility complex. a) chromosome map view built with UCSC Genome Browser, b) triangular heat map of D9 = LOD built by Haploview
v4.2, c) textile plot and d) forest of hierarchical latent class models displayed using Tulip. For each layer l, the median of r2 values (resp. distances) is
computed over all pairs of variables having their lowest common ancestor in layer l.
doi:10.1371/journal.pone.0027320.g003
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cluster structure of LD. To a certain extent, an LV might be

interpreted as the shared ancestry of the haplotypes defined by the

observed variables, namely, the contemporary haplotypes of the

tree rooted in the LV. Each state of an LV may represent a group

of similar haplotypes. In the situation of limited ancestral

recombination, similar haplotypes tend to share recent common

ancestry [5]. Although this situation is not guaranteed along the

genome, it is very likely for low-level LVs, since they are expected

to cover very small genomic regions showing strong LD. Besides,

when the latent variables capture dependences between distant

SNPs (or distant groups of markers), they can be viewed as

population structure or natural selection effects. Thus the

interpretation of LVs depends on their level in the graph. Low-

level LVs covering small genomic regions in strong LD represent

haplotype shared ancestry. In contrast, high-level LVs which

capture weak dependences between distant SNPs correspond to

population structure or natural selection effects. This distinction

between multiple levels allows an easy and interpretable view of

LD for the geneticist.

FHLCM Learning
In the CFHLC+ algorithm, the learning is performed

through an adapted agglomerative hierarchical clustering pro-

cedure: (i) at each agglomerative step, a clique partitioning me-

thod is used to identify cliques of dependent variables (i.e. LD

clusters); (ii) each such clique is subsumed into an LV, through a

latent class model (LCM). An LCM is an HLCM which only

contains one LV. For each LCM, parameter learning using the

expectation-maximization (EM) algorithm and missing data

imputation through probabilistic inference (for the latent variable)

are performed. Iterating these two steps yields a hierarchical

structure. In other words, latent variables capture the information

borne by underlying observed variables (e.g. genetic markers). In

their turn, these latent variables, now playing the role of observed

variables, are summarized through additional latent variables, and

so on. Details about clique partitioning, LCM-based data

imputation for latent variables and LCM-based parameter

learning of the hierarchical structure are described in the

following.

Clique Partitioning Algorithm. A clique partition is a set of

non-overlapping cliques of variables (cliques of variables can be

seen as clusters of variables). The set of variables constituting the

clique is likely to be subsumed into an LV. Overlapping clusters

are proscribed since, in an HLCM, two latent nodes cannot share

the same child. We applied clique partitioning to the complete

graph of pairwise dependences. We used CAST [28], a clique

partitioning method, and pairwise mutual information as a

measure of pairwise dependence.

To deal with genome-scale data, a simple idea is implemented:

pairwise dependences are only computed between variables (SNPs

or LVs) which are separated by a maximum physical distance on

the chromosome. Unlike SNPs, LVs do not have a physical

location on the chromosome. To tackle this issue, for an LV, the

average of the subsumed SNPs’ locations is used. The physical

constraint leads to calculate a sparse matrix of pairwise de-

pendences, where only computed values are stored. The clique

partitioning algorithm CAST has been reimplemented to handle

large sparse matrices.

LD modeling is constrained by the physical positions of the

SNPs along the chromosome. This constraint, less drastic than

genome splitting (previously proposed in Ref. [22,23]), actually

corresponds to a sliding window approach. Fixing the sliding

window size sufficiently large (0:1{5 Mb) represents a reasonable

strategy to capture long-range LD in the GWAS context.

LCM-Based Data Imputation For Latent Variables.

Locally, the data imputation is achieved relying on one of the

simplest Bayesian networks: we consider the LCM rooted in the

latent variable and whose leaves are the variables in the clique.

Then, parameter learning yields the marginal distribution of the

latent variable and the conditional distributions of the child

variables. Parameter learning is implemented through the

expectation-maximization (EM) algorithm. Subsequently, given

an individual ‘ and the vector of its values x‘ (x‘~fx‘1,:::,x‘ng)
corresponding to the vector of the variables in the clique

fX1,:::,Xng, a value c is assigned to the latent variable H
through (linear) probabilistic inference:

P(H~cjx‘)~ Pn
i~1 P(x‘i jH~c) P(H~c)

Pk

c~1

Pn
i~1 P(x‘i jH~c) P(H~c)

,

with k the number of classes of LV H. Therefore, throughout the

bottom-up procedure, after the current step’s completion, the

newly created latent variables will, in their turn, play the role of

observed variables to seed the next step.

LCM-Based Parameter Learning. The role of the

aforementioned local LCMs is central to the FHLCM learning

algorithm. Not only do they allow data imputation for the

corresponding LVs but, in parallel with the structure growing, the

FHLCM parameters are also learned as follows: at rth step, in

addition to previously created LVs and initial OVs not already

included in the hierarchy, all LVs created at r{1th step play the

role of OVs. For any such former variable shown to be a leaf node

in an LCM (corresponding to a clique), the current marginal

distribution is replaced with the conditional distribution learned in

Figure 4. Long-range linkage disequilibrium visualization of 2819 regularly spaced SNPs of chromosome 1, for the African ancestry
in Southwest USA (ASW) HapMap population. A long-range LD region is circled in red.
doi:10.1371/journal.pone.0027320.g004
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the LCM. Thus, during the bottom-up construction of the

FHLCM, marginal distributions are successively replaced with

conditional distributions.

Implementation. CFHLC+ can process both phased and

unphased genetic data. Our algorithm has been developed in C++,

relying on the ProBT library dedicated to Bayesian networks (http://

bayesian-programming.org). CFHLC+ is available for Windows

32 bits at https://sites.google.com/site/raphaelmouradeng/home/

programs.

Multilocus Linkage Disequilibrium
Since FHLCMs represent multilocus LD, it is possible to

compute a multilocus LD value from the joint probability

distribution. Perhaps most interestingly, multilocus LD can be

calculated for each FHLCM subtree (i.e. for each LD cluster).

Total correlation is a generalization of mutual information for

multiple variables [29]. It quantifies the redundancy or dependence

among a set of n random variables X~fX1,:::,Xng. It is defined as

the Kullback-Leibler divergence [30] between the joint distribution

P(X ) and the independent distribution P(X1) ::: P(Xn):

C(X )~DKL(P(X )jjP(X1) ::: P(Xn)):

To assess multilocus LD, total correlation over SNPs is a relevant

measure to evaluate the difference between the distribution assuming

linkage disequilibrium (joint distribution) and the distribution

assuming linkage equilibrium (independent distribution).

Figure 5. Chromosome-wide linkage disequilibrium visualization of chromosome 1. Navigation through zooming inside the FHLCM
graph. Positions of SNPs are displayed inside blue nodes. The multilocus LD strengths relative to the subtrees rooted in the latent variables can be
viewed inside red nodes.
doi:10.1371/journal.pone.0027320.g005
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Total correlation is reduced to the simpler difference of

entropies:

C(X )~
Xn

i~1

H(Xi){H(X ),

where the first term is the sum of entropies of individual variables

and the last term is the entropy of the joint distribution of

variables. The entropy H is a proper measure to assess disorder in

a system S and is defined as:

H(S)~{
X

s

ps log ps,

where ps denotes the probability of each state s in the system S,

and the sum includes all possible states.

Based on total correlation, we designed a multilocus LD

measure relying on the learned FHLCMs. First, we need to

introduce how to compute the joint probability distribution (JPD)

in general Bayesian networks (BNs). Let us consider a BN

modeling a set of nodes X~fX1,:::,Xng, representing n random

variables. The JPD is calculated using the recursive factorization

formula:

P(X )~Pn
i~1P(XijPa(Xi)),

where Pa(Xi) denotes the parents of node Xi, and P(XijPa(Xi)) is

the conditional probability distribution of Xi knowing Pa(Xi).
Now we describe the computation of the multilocus LD

measure in an FHLCM subtree. In the following, we only

consider subtrees composed of an LV and of all its descendants,

which actually corresponds to HLCMs (e.g. the subtree rooted in

node 18 in Figure 7). Let us take for example an FHLCM subtree

defined on a set of n observed and latent nodes X~fX1,:::,Xng. X
is composed of a set of m observed nodes O~fO1,:::,Omg and a

set of p latent nodes H~fH1,:::,Hpg. H can also be divided into

two subsets N and R: in the former, N~fN1,:::,Nqg, there are q
non-root nodes, whereas in the latter, R~fRqz1,:::,Rpg, there are

p{q root nodes.

To compute total correlation, we replace the entropy H(X ),
assuming linkage disequilibrium, by the entropy of the joint

distribution modeled by the FHLCM subtree which is the

following:

Figure 6. The forest of hierarchical latent class models. The light shade (blue) indicates the observed variables whereas the dark shade (red)
points out the latent variables.
doi:10.1371/journal.pone.0027320.g006

Figure 7. Illustration of specific key terms: subtree, tree, forest, parent, descendant, ancestor and lowest common ancestor. See
Figure 6 for node nomenclature.
doi:10.1371/journal.pone.0027320.g007
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H(O,N,R)~
Xm

j~1

H(Oj jPa(Oj))

z
Xq

k~1

H(NkjPa(Nk))z
Xp

l~qz1

H(Rl):

Thus, the total correlation C(X ) writes as:

C(X ) ~
Pm

j~1

H(Oj){
Pm

j~1

H(Oj jPa(Oj))

{
Pq

k~1

H(NkjPa(Nk)){
Pp

l~qz1

H(Rl):

ð1Þ

We recall that mutual information, a well-known quantity to assess

the dependence between two variables, can be expressed for two

variables A and B as:

I(A,B)~H(A){H(AjB)~H(B){H(BjA):

Using the mutual information formula, Equation 1 is reformulated:

C(X ) ~
Pm

j~1

(H(Oj){H(Oj jPa(Oj)))

{
Pq

k~1

(H(Nk){I (Nk,Pa(Nk)))

{
Pp

l~qz1

H(Rl)

~
Pm

j~1

I (Oj ,Pa(Oj))z
Pq

k~1

I (Nk,Pa(Nk))

{
Pq

k~1

H(Nk){
Pp

l~qz1

H(Rl)

~
P
X \R

I (Xi,Pa(Xi)){
Pp

j~1

H(Hj):

We observe that the total correlation C(X ) is composed of two

terms: the former is often used to evaluate the fitness of a BN tree, or

forest, without LVs (i.e. a score), whereas the latter can be seen as a

penalization term specific to latent models. This penalization term is

the sum of LV entropies, thus allowing to take into account the

complexity increase due to the incorporation of LVs in the model.

The entropy of an LV increases with both the number of its classes

(i.e. states) and the uniformity of its distribution.

Finally, we scale C(X ):

C’(X )~

Pn

i~1

I (Xi,Pa(Xi)){
Pp

j~1

H(Hj)

Pm

k~1

H(Ok)

:

In rare situations, C’(X ) can be slightly below 0 (due to the

penalization term). In this case, its value is set to 0. Efficient

computations of C’(X ) can be done starting from the bottom layer

and ending at the top layer of the FHLCM. The generalization of

the computation of the C’(X ) measure to a whole forest is

straightforward.

The interpretation of normalized total correlation C’(X ) is

similar to that of the r2 coefficient, which is used for pairwise LD.

C’(X )~0 means perfect equilibrium among SNPs, whereas

C’(X )1 means that SNPs are in absolute LD (the SNPs provide

exactly the same information). Note that because of the

penalization term, the value of C’(X ) cannot be equal to 1.

Values between 0 and 1 corresponds to different degrees of

multilocus LD.

Graph Drawing And Visualization
Graph drawing (i.e. node placement) and visualization (i.e.

display) of FHLCMs represent an important step. For this

purpose, we propose a simple method which offers a clear and

interpretable view of LD spatial structure. Thanks to the

hierarchical nature of FHLCMs, it is possible to implement an

easy and intuitive drawing: nodes are placed along the

chromosome, and layer by layer. SNPs are placed along the

chromosome using their physical order on the sequence. LVs are

placed using physical orders computed by averaging over the

orders of the subsumed SNPs. Each layer is positioned along a line

parallel to the chromosome.

Regarding graph visualization, only a few software programs

have been developed to handle large graphs, such as required for

genome-wide LD modeling using FHLCMs. Among others, the

software Tulip (http://tulip.labri.fr/TulipDrupal/) is a user-friend-

ly tool able to deal with about one million nodes. Together with the

navigation in such large-scale graphs, including zooming in

narrower and narrower regions, Tulip allows the extraction of

subgraphs and the enhancement of the results thus obtained by

filtering. To visualize multilocus LD for each FHLCM subtree, we

propose to shade the LV node subsuming the subtree, proportion-

ally to the LD strength (C’). The precise value of LD is also

displayed inside this LV. Association information can also be

visualized. For this purpose, the association signal is represented by

an edge linking a SNP node to an additional node. The length of the

edge is a linear function of the {log10(p{value) value, computed

between the SNP and the phenotype. The additional node is green

when the association is significant and white otherwise.
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