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Abstract

Background: InterVA is a probabilistic method for interpreting verbal autopsy (VA) data. It uses a priori approximations of
probabilities relating to diseases and symptoms to calculate the probability of specific causes of death given reported
symptoms recorded in a VA interview. The extent to which InterVA’s ability to characterise a population’s mortality
composition might be sensitive to variations in these a priori probabilities was investigated.

Methods: A priori InterVA probabilities were changed by 1, 2 or 3 steps on the logarithmic scale on which the original
probabilities were based. These changes were made to a random selection of 25% and 50% of the original probabilities,
giving six model variants. A random sample of 1,000 VAs from South Africa, were used as a basis for experimentation and
were processed using the original InterVA model and 20 random instances of each of the six InterVA model variants. Rank
order of cause of death and cause-specific mortality fractions (CSMFs) from the original InterVA model and the mean,
maximum and minimum results from the 20 randomly modified InterVA models for each of the six variants were compared.

Results: CSMFs were functionally similar between the original InterVA model and the models with modified a priori
probabilities such that even the CSMFs based on the InterVA model with the greatest degree of variation in the a priori
probabilities would not lead to substantially different public health conclusions. The rank order of causes were also similar
between all versions of InterVA.

Conclusion: InterVA is a robust model for interpreting VA data and even relatively large variations in a priori probabilities do
not affect InterVA-derived results to a great degree. The original physician-derived a priori probabilities are likely to be
sufficient for the global application of InterVA in settings without routine death certification.
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Introduction

Population-level cause-of-death data are a crucial component of

understanding health and disease and formulating effective public

health programs. Yet having one’s death counted and assigned a

cause, information critical to individual and population-level

understandings of mortality, remains confined to a privileged

minority of the world’s population. For the majority of people in

low-income settings who die at home without an attending

physician and where deaths are not routinely recorded or classified

by cause, verbal autopsy (VA) methods are the only viable means

of deriving probable cause of death.

Though specific procedures can vary, VA is essentially the

process of interviewing family, friends or carers after a death has

occurred to find out about the circumstances of death. These data

are normally gathered by lay interviewers and once gathered, the

data are interpreted to derive possible cause(s) of death [1].

Physician review of VA data to assign a cause of death is historically

the most commonly used method to derive possible causes, despite

considerable concerns over the reliability and inefficient nature of

this method. Recent advances in the development of computer-

based probabilistic methods for interpreting VA are an attractive

alternative to case-by-case physician interpretation. Such methods

have the considerable advantage of being faster, cheaper and more

internally consistent than physician review, offering new opportu-

nities for timely and comparable cause-specific mortality estimates

across time and space. High levels of agreement between

probabilistic methods and physician review have been demonstrat-

ed in a number of different contexts and have highlighted important

advantages of probabilistic methods [2–6].
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InterVA is a widely used public-domain probabilistic method

for interpreting VA data and has been applied in numerous

settings in Africa and Asia [7–10]. InterVA is based on

approximations of the probabilities of specific causes and specific

symptoms among all deaths, as well as the probabilities of specific

symptoms given that an individual has died from a specific cause.

Using Bayes’ theorem, it is then possible to calculate the

probability of specific causes given reported symptoms recorded

in a VA interview. In other words, InterVA obtains posterior

probabilities of specific causes of death given an a priori distribution

of the probabilities of causes and signs and symptoms of causes.

Designed from the outset as a tool that can be applied in any

setting where VAs are used, the a priori probabilities used to

calculate the likelihoods of specific causes of death given a

particular set of reported signs and symptoms are approximations

that were agreed upon by a physician panel that included

practitioners from a range of medical specialisations and

geographic regions [2]. However, the extent to which InterVA’s

ability to characterise a population’s mortality composition is

sensitive to variations in these a priori probabilities, as might reflect

regional differences in disease and symptom prevalences or indeed

the opinions of a different panel of physicians, is unknown.

Therefore, using a sample of deaths from the Agincourt Health

and Socio-demographic Surveillance Site in rural South Africa as

a test dataset for modelling, this study aims to test the sensitivity of

InterVA to variations in the a priori probabilities that it uses. This

has implications for the fundamental assumptions of InterVA and

its use in a wide variety of settings with differing underlying

mortality profiles. It is important to note that, as a methodological

investigation, this paper does not set out to characterise the

epidemiology or cause of death distribution of the Agincourt

population.

Methods

InterVA
Applying Bayes’ theorem, the computer-based InterVA ap-

proach calculates the probability of each of a finite list of causes (C)

given the presence of specific signs, symptoms or indicators (I), for

which the probability of reporting each indicator given a specific

cause (P(I|C)) and the population-level probability of each cause

among all deaths (P(C)) has been estimated [11]. In mathematical

terms:

P(CjI)~
P(I Cj )xP(C)

P(I Cj )xP(C)zP(I !j C)xP(!C)

where P(!C) is the probability of not (C).

The prior probabilities P(I|C) and P(C) are derived from an

expert physician consensus process whereby probabilities were

estimated based on a range of thirteen approximate quantitative

probabilities associated with semi-qualitative descriptors that

included ‘impossible’ (P = 0), ‘uncommon’ (P = 0.001, P = 0.002

or P = 0.005), ‘moderately often’ (P = 0.01, P = 0.02 or P = 0.05),

‘frequently’ (P = 0.1, P = 0.2 or P = 0.5) and ‘inevitable’ (P = 1).

Thus, each step increase on the scale results in an approximate

doubling of the probability. The physicians involved in this process

were selected from a range of settings and clinical backgrounds,

thus minimising the risk of developing InterVA based too closely to

the disease prevalence of any one geographical region or medical

discipline [2].

Conceptually, InterVA is based on a matrix of a priori

probabilities. The current InterVA model (version 3.2) is based

on 35 possible causes of death, which can be considered as

columns in the matrix, and 106 signs or symptoms (collectively

referred to as ‘indicators’), which can be considered as rows in the

matrix. The set of indicators and causes included in the model was

influenced by established VA questionnaires and the expert

consensus process described above, and can be viewed elsewhere

[2] and online (www.interva.net). The matrix also includes one

additional row and one additional column for the independent,

baseline probabilities of causes (P(C)) and indicators (P(I)) among

all deaths in a population. The cells in the matrix must then be

populated with the probabilities of specific indicators given specific

causes (P(I|C) (Table 1). As such the InterVA probability matrix is

comprised of 3,852 cells (36 columns by 107 rows) each with a

physician-consensus probability value.

Using the above equation, the probability of each cause can be

determined based on the indicators reported in a VA. Symptoms,

histories and circumstances of death reported in either the open

narrative or closed questions in VA interviews can be utilised.

InterVA displays up to three most likely causes of death with

corresponding likelihoods and an overall certainty factor for each

death. Fewer than three causes will be displayed if the probability

of the third (or second) cause is less than 50% of the probability of

the preceding cause. Cases with insufficient VA data to decisively

determine the cause probabilities are identified by InterVA as

‘indeterminate’. Each assigned cause is associated with a

likelihood, and the sum of likelihoods of assigned causes has a

maximum value of 1.00. If the sum of likelihoods of assigned

causes is less than 1.00, then the difference reflects a lack of

certainty about the overall cause, which can be considered as an

indeterminate component of the case [9].

Random modifications to a priori probabilities
To assess the robustness of InterVA to variations in the a priori

probabilities, routines were written using Microsoft Visual FoxPro

software to select random samples of 25% and 50% of the matrix

cells and change the a priori probabilities. Approximately half of the

randomly selected cells had their probability increased and half

had their probability decreased. Three different degrees of

modification were used independently, i.e. up to 1, 2 and 3 steps

on the logarithmic scale on which the original probabilities were

based. Table 2 illustrates the procedure for each level of

modification. No probabilities were made to equal 1 (inevitable)

or 0 (impossible) and if probabilities could not be increased or

decreased by the specified number of steps because they were

already at or close to the maximum or minimum, they were

increased or decreased by the maximum number of steps possible.

If the original a priori probabilities could not increase or decrease at

all, the direction of change was reversed. For example, a selected

Table 1. Illustration of the InterVA probability matrix of a
priori probabilities.

Causes

C1 C2 ... C36

P(C1) P(C2) ... P(C36)

I1 P(I1) P(I1|C1) P(I1|C2) ... P(I1|C36)

I2 P(I2) P(I2|C1) P(I2|C2) ... P(I2|C36)

Indicators I3 P(I3) P(I3|C1) P(I3|C2) ... P(I3|C36)

... ... ... ... ... ...

In P(I106) P(I106|C1) P(I106|C2) ... P(I106|C36)

doi:10.1371/journal.pone.0027200.t001

InterVA Robustness
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cell that already has a top probability (1.00 or 0.5) and is supposed

to be increased by three steps will be decreased by 3 steps instead.

This process was repeated twenty times for each degree of

modification of the probability matrix thus generating 120 new

matrices (i.e.20 matrices with 25% of the cells modified by 1 step,

20 matrices with 50% of the cells modified by 1 step, 20 matrices

with 25% of the cells modified by 2 steps, and so on).

The test dataset
The original and modified InterVA models were applied to a

random sample of 1000 all-age, all-sex deaths occurring between

1992 and 2006 in the Agincourt Health and Socio-demographic

Surveillance System (HDSS) in South Africa and for which VA

data were available. The Agincourt HDSS is part of the

INDEPTH network (www.indepth-network.org) and has moni-

tored a contiguous population of around 70,000 since 1992. The

background to this work as well as several cause-specific mortality

analyses are described in detail elsewhere [9,12–14]. The sample

of 1,000 completed VAs represents approximately 17% of the

available VA data, which is considered likely to provide an

adequate representation of the range of VA-derived symptom

profiles and major causes of death within this population.

Sensitivity assessment
Population cause-specific mortality fractions (CSMFs) were

derived for the same 1,000 VA cases for each randomised instance

of the six InterVA model variants. To derive population level

CSMFs, the sum of likelihoods for each cause category (including

indeterminate) was divided by the sum of the likelihoods for all

causes, thus splitting individual deaths between multiple causes

weighted by the specific cause probabilities. The sum of all

fractions in each cause category divided by the total number of

deaths represents the population CSMF. The mean CSMFs and

the rank order of causes from the 20 samples for each variation of

the InterVA probability matrix were compared against each other

and the results derived from the original, physician-consensus

based model to assess functional (non-statistical) similarities.

Ethical Approval
Within the Agincourt Health and Socio-demographic Surveil-

lance project, informed consent is obtained verbally at the

individual and household levels at every follow-up visit. Commu-

nity consent from civic and traditional leadership was secured

verbally at the start of surveillance and is reaffirmed during annual

information feedback meetings. Written consent is not sought due

to issues relating to literacy, the impracticalities of seeking repeated

signed consent in a long running, prospective surveillance project,

and a degree of local reluctance to signing forms, which relates to

historical political experiences in South Africa’s recent past. This

process of informed consent and all surveillance-based studies in

the Agincourt sub-district were reviewed and approved by the

Committee for Research on Human Subjects (Medical) of the

University of the Witwatersrand, Johannesburg, South Africa

(protocol M960720).

Results

Detailed CSMFs based on the original InterVA model using

physician-derived a priori probabilities and the mean, minimum

and maximum of twenty analyses of each of the modified

probability model variants are shown in Table S1. Mean CSMFs

were functionally similar between the original InterVA and each of

the modified versions of it.

When aggregated into broad cause categories, for which public

health interventions and health service implications would not

differ greatly, it was clear that any conclusions or understandings

of cause-distributions based on any of the probability matrices

would not differ greatly (Figures 1 & 2).

The rank order of the top ten causes of death according to each

permutation of the probability matrix is shown in Figure 3. There

was good overall agreement between all variations of InterVA; in

all but one model, 9 out of 10 causes were common between the

modified models and the original. The lowest level of agreement

was for 50% variation at a maximum of 2 steps, but the agreement

was still high, with 8 out of 10 causes common between the

modified InterVA and the original.

Table 2. Probability scale and qualitative descriptors on which a priori InterVA probabilities are based and a demonstration of how
original probabilities were modified to varying degrees.

Qualitative
Descriptor

Original Quantitative
Probability

Increase by 1
Step

Decrease by 1
Step

Increase by 2
Steps

Decrease by 2
Step

Increase by 3
Steps

Decrease by 3
Step

Inevitable* 0.99 0.5a 0.5 0.2a 0.2 0.1a 0.1

Frequently 0.5 0.2a 0.2 0.1a 0.1 0.05a 0.05

0.2 0.5 0.1 0.5c 0.05 0.5c 0.02

0.1 0.2 0.05 0.5 0.02 0.5c 0.01

Moderately Often 0.05 0.1 0.02 0.2 0.01 0.5 0.005

0.02 0.05 0.01 0.1 0.005 0.2 0.002

0.01 0.02 0.005 0.05 0.002 0.1 0.001

Uncommon 0.005 0.01 0.002 0.02 0.001 0.05 0.001d

0.002 0.005 0.001 0.01 0.001d 0.02 0.001d

0.001 0.002 0.002b 0.005 0.005b 0.01 0.01b

Impossible* 0 0.001 0.001b 0.002 0.002b 0.005 0.005b

*No probabilities were made to be ‘‘inevitable’’ or ‘‘impossible’’.
aWhere probabilities could not be increased they were decreased by an equivalent amount.
bWhere probabilities could not be decreased they were increased by an equivalent amount.
cWhere probabilities could not be increased by the full amount they were increased by as much as possible without violating *.
dWhere probabilities could not be decreased by the full amount they were decreased by as much as possible without violating *.
doi:10.1371/journal.pone.0027200.t002

InterVA Robustness
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Discussion

From the outset, InterVA was designed to be a generic tool and

not context-dependent. However, the extent to which a generic

probability tool can be developed when underlying likelihoods of

certain symptoms and causes inevitably vary across populations is

yet to be established. With some important exceptions, large

modifications to the a priori probabilities on which InterVA derives

likely causes of death, resulting CSMFs, broad cause distributions

and the rank order of causes did not generally differ to such an

extent that one’s overall impression of the major mortality burdens

and public health priorities in the population would be likely to

differ. This empirical study thus demonstrates a high degree of

robustness of InterVA to variations in the a priori probability

matrix, with important implications for the global application of

the method.

Some important outliers were observed in the results. The

maximum relative difference in a proportion attributed to a

specific cause category compared to the original InterVA model

was 215 times for malaria deaths (Figure 3, 50% of a priori

probabilities changed by up to 3 steps). The extent to which such a

large relative difference matter, however, depends on the original,

or baseline, CSMF to which it relates and this 215-fold increase in

the proportion of malaria deaths equates to an absolute increase of

just over 2% compared to the original malaria mortality fraction.

Conversely, absolute differences can be large and of public health

importance if relative differences are small and the original CSMF

is large. For example, the largest absolute difference observed was

a 23% increase in the HIV-related mortality fraction (50% of a

priori probabilities changed by up to 3 steps), representing an

approximately 4-fold increase in this cause, with obvious public

health implications. These results support the idea that it may be

necessary to set InterVA a priori cause probabilities (P(C)) to

account for local variations in cause prevalences only for those

causes that are have a high baseline prevalence in some settings

but a low prevalence in others.

Based on this reasoning the current InterVA model (version 3.2)

expects inputs of ‘‘high’’ and ‘‘low’’ settings for HIV and malaria

and adjusts the baseline probabilities accordingly. Although other

causes of death included in InterVA are also likely to vary by at

least an order of magnitude between populations, such as

haemoglobinopathies or homicide, these causes are associated

with such specific signs, symptoms and demographics that the

need to allow for population differences is likely to be minimal.

This study limited the degree of variation in a priori probabilities

at a maximum of three steps on the probability scale – equivalent

to an order of magnitude. Though a greater degree of

modification was possible, it is unlikely that any similarly diverse

panel of physicians would reach conclusions on underlying

population cause and indicator likelihoods that would differ by

Figure 1. Broad cause distributions based on original InterVA and a modified version with 25% of a priori probabilities modified by
upto 1, 2 and 3 steps.
doi:10.1371/journal.pone.0027200.g001

InterVA Robustness
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Figure 2. Broad cause distributions based on original InterVA and a modified version with 50% of a priori probabilities modified by
upto 1, 2 and 3 steps.
doi:10.1371/journal.pone.0027200.g002

Figure 3. Top 10 cause-of-death categories based on InterVA and the physician-consensus a priori probabilities and the randomly
modified probability matrices. Green shading represents an exact match, pink shading represents a top-10 cause but at a different rank, red
shading represents a cause not included in the original top-10.
doi:10.1371/journal.pone.0027200.g003

InterVA Robustness
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such a large degree, other than for HIV and malaria as described

above. Given the findings that approximate, ‘‘ball-park’’ estima-

tions of a priori probabilities are sufficient to achieve a workable

model it is not surprising that the very first prototype of InterVA,

which was based solely on the personal experiences and

assumptions of an experienced epidemiologist, performed reason-

ably well [3]. Subsequent Delphi-style consensus building among a

panel of physicians did improve the model’s performance in

relation to physician review [2]. However, observed improvements

may have been as much due to the addition of new indicators and

cause categories to the model as to modifications of a priori

probabilities. Either way, any concerns that a different InterVA

model would have resulted from the involvement of a different

panel of physicians seem unfounded given the large degree of

variation in underlying probabilities that is needed to meaningfully

alter the output of InterVA.

The InterVA method does have limitations. For example, not

all indicators built into InterVA are available in the Agincourt VA

data and similarly, not all information gathered by the Agincourt

VA questionnaire can be utilised by InterVA. In general the

consequences of this are likely to lead to lower overall certainty of

derived causes of death and the fact that InterVA cause

probabilities are only modified by affirmative answers minimises

the effects of missing or negative information from VA forms. In

relation to the current study, it is possible that matrix probabilities

that ultimately were not utilised when applied to the Agincourt

data were included in the sample of modified probabilities. This is

a limitation of the study and in theory could have underestimated

the effect of a priori probability modification on resulting CSMFs.

However, the repetition of each analysis twenty times, each time

taking a new sample of matrix probability cells is likely to have

reduced any such effects.

In presenting the considerable consistency of results from the

InterVA model from these sensitivity analyses of randomly

induced variations in the model’s probability matrix, it is also

important to stress that the model has previously been demon-

strated to reveal very considerable differences in CSMFs across

different settings in Africa and Asia [9]. It is therefore not the case

that the InterVA model tends to reduce any VA data to a common

pattern of causes of death, and thus the lack of variation in these

sensitivity analyses does not arise out of an inherent property of the

InterVA model.

Whilst this study shows that approximations of underlying

probabilities in the InterVA model are sufficient to establish a

workable model, the probabilities are based to some extent on the

assumption that responses to each indicator are independent of all

other indicators, which, in reality, is flawed. Other techniques are

being developed that use facility-data to establish the probability of

reporting specific symptoms given a specific cause [15,16]. These

symptom properties then allow population and individual-level

cause patterns to be determined from VA data from a second

dataset from the population of interest. Such methods are

theoretically appealing but are ultimately limited in that they

depend upon the availability of high quality facility-based or valid

mortality data for modelling – a highly context-dependant pre-

requisite that cannot readily be met in the majority of settings that

need to use VA methods [1]. Furthermore, as the current study

suggests, the added complexity and greater precision of such

techniques may have little consequence on the ultimate conclu-

sions and utility of VA-derived cause-of-death profiles.

VA is often considered a blunt tool that lacks precision.

However, this need not detract from its utility for health

monitoring and service planning in resource-poor settings that

otherwise have no means of knowing and monitoring causes of

death in their populations. Indeed, by keeping in mind who needs

cause of death data and for what purposes [17], reasonable

degrees of imprecision become acceptable and the criteria of

efficiency, affordability and reliability become paramount. VA is

fundamentally a population-level, public health tool; thus methods

which reliably interpret VA data to estimate population-level

causes of death with an appreciation for inevitable degrees of

uncertainty are highly desirable and InterVA offers one such

method that, based on this study’s findings, can be applied with

confidence in the diverse range of settings where deaths and their

causes are not counted.
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