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Abstract

Background: Genome wide association studies (GWAS) have proven useful as a method for identifying genetic variations
associated with diseases. In this study, we analyzed GWAS data for 61 diseases and phenotypes to elucidate common
associations based on single nucleotide polymorphisms (SNP). The study was an expansion on a previous study on
identifying disease associations via data from a single GWAS on seven diseases.

Methodology/Principal Findings: Adjustments to the originally reported study included expansion of the SNP dataset
using Linkage Disequilibrium (LD) and refinement of the four levels of analysis to encompass SNP, SNP block, gene, and
pathway level comparisons. A pair-wise comparison between diseases and phenotypes was performed at each level and the
Jaccard similarity index was used to measure the degree of association between two diseases/phenotypes. Disease
relatedness networks (DRNs) were used to visualize our results. We saw predominant relatedness between Multiple
Sclerosis, type 1 diabetes, and rheumatoid arthritis for the first three levels of analysis. Expected relatedness was also seen
between lipid- and blood-related traits.

Conclusions/Significance: The predominant associations between Multiple Sclerosis, type 1 diabetes, and rheumatoid
arthritis can be validated by clinical studies. The diseases have been proposed to share a systemic inflammation phenotype
that can result in progression of additional diseases in patients with one of these three diseases. We also noticed
unexpected relationships between metabolic and neurological diseases at the pathway comparison level. The less
significant relationships found between diseases require a more detailed literature review to determine validity of the
predictions. The results from this study serve as a first step towards a better understanding of seemingly unrelated diseases
and phenotypes with similar symptoms or modes of treatment.
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Introduction

Genome-wide association studies (GWAS) have become a

popular method for surveying genetic variations, such as single

nucleotide polymorphisms (SNPs) and classifying heritable risk

factors associated with a particular disease [1,2]. In an effort to

better understand the genetic basis of complex diseases, GWAS

have been made technically feasible and affordable due to the

completion of the Human Genome project [3,4], identification of

SNPs throughout the human genome by the International

Haplotype Map project (HapMap) [5,6], and the availability of

dense genotyping chips enabling simultaneous and cost effective

typing of millions of SNP loci [7]. GWAS have been carried out

for several commonly known diseases including inflammatory

bowel disease, type I and type II diabetes, asthma, breast cancer,

coronary artery disease, and prostate cancer [8]. Results from such

studies have demonstrated the potential for GWAS to detect a

range of genetic variability, including copy number and repeat

variants [7]. GWAS may also aid in improving understanding of

the effects of genetic variation on genes and pathways. However,

the ultimate objectives of such studies are to present a full

description of the susceptibility framework of major biomedical

traits and translate such findings towards the diagnosis and

treatment of diseases [8].

In this study, we performed a large-scale comparison of 61

diseases and phenotypes by expanding on studies conducted by the

Wellcome Trust Case Control Consortium (WTCCC) [9] and

Huang et al. [10]. The WTCCC study examined 2000 diagnosed

individuals and about 3000 controls for coronary artery disease

(CAD), hypertension (HYP), type II diabetes (T2D), rheumatoid

arthritis (RA), Crohn’s disease (CD), type I diabetes (T1D), and

bipolar disorder (BD). All participants in the study were from the

British population. Using SNPs from the WTCCC study, Huang

et al. [10] performed analyses at four levels: nucleotide, gene,

protein, and phenotype. The goals of the study included:

identification of overlap across SNPs associated with the seven

diseases, analysis of genetic commonalities, protein-protein

interaction network construction, and exploration of phenotypic

similarities between diseases. The group found strong associations

across all four levels of analysis for the autoimmune group (CD,
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RA, and T1D), while no genetic associations were found at any

level within the metabolic/cardiovascular group (CAD, HYP, and

T2D). These results reasserted some expectations based on clinical

literature in the case of the autoimmune group, and suggested

inappropriate disease grouping in the case of the metabolic/

cardiovascular group [10].

The purpose of this study was to predict the genetic basis of any

associations within an expanded set of human diseases and

phenotypes and develop networks based on disease/phenotype

relatedness. Data about genetic commonality may help in

discovering hidden relationships that do not initially appear

phenotypically but may prove useful in diagnostic or treatment

practices. A large-scale comparison study such as this has the

potential to uncover relationships between diseases and pheno-

types that are often ignored by single disease SNP data analysis.

Methods

Changes made to the Huang et al. protocol
Previously, Huang et al. [10] analyzed GWAS data for seven

diseases to uncover disease relatedness. We expanded the study

using the GWAS database curated by Johnson and O’Donnell

[11] and focused on 61 diseases and potential disease-associated

phenotypes. We characterized disease and phenotype relatedness

at four levels: nucleotide level, SNP block level, gene level, and

pathway level. Huang et al. [10] clustered SNPs on the same

chromosome based on a 1MB distance threshold; however, this

1MB cutoff was arbitrary and might not reflect the actual linkage

of neighboring SNPs on the chromosomes. Thus, we improved

this procedure by grouping SNPs based on linkage disequilibrium

(LD). Since LD along the chromosome varies among different

human populations, we used LD data for more than the single

British population used in the original GWAS. However, simply

cataloging LD data from multiple GWAS proved difficult as the

GWAS for the 61 diseases and phenotypes were done by various

research labs on various human populations. We therefore used a

single set of SNPs from dataset release #24 (2009-02_rel24) of the

HapMap database and the estimated LD data by the HapMap

project for five populations as a surrogate for the LD in the

original GWAS population [5,6]. The five populations were Han

Chinese (CHB), Japanese (JPT), a combined CHB and JPT

population (CHB+JPT), Yoruba (YRI), and U.S. residents with

northern and western European ancestry (CEU). We note that as

the LD estimates for the five populations might not be an accurate

reflection of the LD in the original GWAS population, this

procedure may have biased our results away from those found by

Huang et al. [10].

SNP Comparison
The initial list of SNPs was expanded using LD. We performed

a comprehensive search for all SNPs in strong to moderate LD

with the initial SNP set to include what might be causal SNPs

missing from the available GWAS data. For this search we used

the bulk LD data files produced by the HapMap project [5,6]. The

files were processed to extract SNPs having an r2 value greater

than or equal to 0.5 with the SNPs in the initial set. Similarity

between the original and expanded datasets was assessed using the

Spearman correlation method. Perl [12] scripts were implemented

to count the number of similar SNPs between pairs of the 61

diseases and phenotypes in order to explore relatedness. Given

that there are 61 diseases/phenotypes and five populations, there

were a total of 9150 pairwise comparisons. The Jaccard index was

then calculated for each pair by computing the ratio of the number

of common SNPs to the total number of unique SNPs.

Block Comparison
SNPs were clustered into blocks based on LD as well. Huang

et al. suggested SNP clustering was rational given expression

patterns for proximal genomic regions tend to be similar and make

up parts of a combined response [10]. Therefore, identification of

significant patterns across diseases would be possible by analyzing

blocks of SNPs rather than individual variations [10]. A block

clustering algorithm was used to analyze the LD values between all

adjacent pairs of SNPs within the HapMap LD data files. Two

SNPs with an LD above the set r2 threshold were clustered into the

same block, while SNPs with an LD below the threshold were

listed as separate blocks. Using a threshold of r2$0.5 resulted in

approximately 50% of the blocks containing a single SNP, which

was not conducive to a proper comparison analysis. The threshold

was reduced to r2$0.1, for which approximately 20% of the blocks

contained a single SNP.

To get a quantitative measure of commonalities between two

diseases, we compared the sets of SNP blocks belonging to each

disease. We implemented a script in the R programming language

[13] to count the number of common blocks across all diseases by

considering equal and overlapping blocks. Blocks meeting the

criteria were counted as being similar and used in the calculation

of the Jaccard index.

Gene Comparison
The block data was cross referenced against a list of human

gene names and chromosome positions derived from the Ensembl

Genome Browser [14]. Blocks that did not match a region

between gene start and end positions listed in the Ensembl dataset,

and did not have a distance of at most 2 kilobases from the start or

end positions of a gene, were excluded from the gene comparison

analysis. Some blocks did not match Ensembl gene information

and therefore no genes were available to compare. Disease and

phenotype pairs for which no gene associations could be made due

to lack of genes were assigned Jaccard indexes of zero to maintain

the number of compared diseases. Atrial Fibrillation/Atrial Flutter

(AF) in all populations and Progressive Supranuclear Palsy (PSP) in

the YRI population met this criterion.

Pathway Comparison
The Ensembl dataset was cross referenced against data from the

KEGG Pathway Database [15–17] to generate a directory of text

files containing KEGG pathway IDs associated with specific gene

IDs. Pathway ID lists were generated for each disease by

comparing the list of Ensembl gene names against the KEGG

gene name-specific pathway ID lists. Data were once again lost at

this level of analysis because the KEGG dataset does not list all the

genes found in the Ensembl dataset. Table S1 lists diseases with

index values of zero for comparisons in the final analysis level. As

with the gene level, Jaccard indexes were set to zero for these

diseases/phenotypes in order to maintain the number of diseases

included in the comparison analysis.

Principal Components Analysis
Principal components analysis (PCA) is generally used as an

exploratory tool to find hidden trends within high dimensional

data. The reduction in the dimensionality of the data is a

consequence of covariance analysis between variables or factors.

In this case, each level of analysis was considered a single factor

and significant relationships were extracted. These relationships

were clustered using a partitioning around medoids (PAM)

algorithm, which is a more robust version of the k-means method.

The number of clusters selected was three in order to divide the
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data into three categories: ‘‘most significant associations’’, ‘‘general

associations’’, and ‘‘no associations’’.

The first step of analysis involved computing the principal

components from the variance covariance matrix. Next, a

regression model was fit where the independent variable was the

centered data and the dependent variables were the principal

components. The resulting regression coefficients were then

clustered using PAM. Additional details for this method are as

described by Beckman et al. [18].

Disease Relatedness Networks
Distribution curves were generated for each population at each

level of analysis (Figure S1). The curves represented counts for all

of the calculated Jaccard indexes. DRNs were generated with

Jaccard similarity index values using Cytoscape 2.8.1 [19]. For the

DRNs, edges connecting disease nodes represented the weighted

relatedness of the disease/phenotype pairs for each population and

level of analysis. The divisions for line color were set as the

quartiles for the range of indexes for the specified level. Line

thickness was also scaled from thin to thick relative to increasing

Jaccard index values.

Results

Expansion of SNP dataset
The GWAS data used for this study was derived from several

different SNP genotyping platforms. Each platform yielded

genotypes for only a subset of the approximate 10 to 30 million

SNPs in the human genome, and these tag SNPs were selected to

be representative of chromosomal regions in strong LD. However,

the tag SNP selection process is imperfect, and neighboring

disease-causing SNPs can thus be missing from GWAS results

[20]. For our analysis we attempted to restore these potentially

causal SNPs to an expanded dataset by finding SNPs in strong LD

with those present in the original Huang et al. GWAS dataset.

The 61 diseases/phenotypes explored in this study are listed in

Table 1. Phenotypes were considered in our analysis because we

hoped to find hidden genetic associations between phenotypes and

Table 1. List of phenotypes and diseases considered for this study and corresponding abbreviations. The list was taken from
Huang’s collected dataset.

Abbrev-iation Disease/Phenotype Abbrev-iation Disease/Phenotype

AD Alzheimer’s disease LM Lipid measurements

AF Atrial Fibrillation/Atrial Flutter LOAD Late-onset Alzheimer’s disease

ALS Amyotrophic Lateral Sclerosis LONG Longevity and age-related phenotypes

BA Brain aging MHA Minor histocompatibility antigenicity

BC Breast cancer MI Myocardial infarction

BD Bipolar disorder MS Multiple sclerosis

BL Blood lipids ND Nicotine dependence

BMG Bone mass and geometry NEU Neuroticism

BPAS Blood pressure and arterial stiffness OBE Obesity-related traits

CA Childhood asthma PA Polysubstance addiction

CAD Coronary Artery Disease PC Prostate cancer

CC Colorectal cancer PD Parkinson’s disease

CD Crohn’s disease PF Pulmonary function phenotypes

CDI Celiac disease PR Psoriasis

CS Coronary spasm PSP Progressive Supranuclear Palsy

CVD Cardiovascular Disease outcomes QT Cardiac repolarization (QT interval)

EO Early onset extreme obesity RA Rheumatoid Arthritis

GCA General cognitive ability RLS Restless Leg Syndrome

GD Gallstone disease SA Subclinical atherosclerosis

GLA Glaucoma SALS Sporadic Amyotrophic lateral Sclerosis

HAE Hepatic adverse events with thrombin inhibitor ximelagatran SCP Sleep and circadian phenotypes

HBF Adult fetal hemoglobin levels (HbF) by F cell levels SLCL Serum LDL cholesterol levels

HEI Height SLE Systemic Lupus Erythematosus

HEM Human episodic memory SP Schizophrenia

HIV1 HIV-1 disease progression SPBC Sporadic post-menopausal breast cancer

HT Haematological (blood) traits SPM Skin pigmentation

HYP Hypertension STR Stroke

IC Iris color T1D Type I Diabetes

IMAN Immunoglobulin A nephropathy T2D Type II Diabetes

IS Ischemic stroke TG Triglycerides

KFET Kidney function and endocrine traits

doi:10.1371/journal.pone.0027175.t001
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diseases. The SNP counts for each disease/phenotype can be seen

in Table S2. Using an LD threshold of r2$0.5, the initial set of

15,388 unique SNPs was expanded to approximately 70,000

unique SNPs for the YRI population, and approximately 130,000

unique SNPs for the other populations. The high correlation

between the original and adjusted datasets indicated a linear

increase in the number of SNPs (Table 2 with graphs located in

Figure S2).

In addition to comparing the individual SNPs associated with

different diseases and phenotypes, we compared blocks of SNPs

clustered on the basis of LD. SNP blocks were created by

combining SNPs with an LD threshold of r2$0.1. This produced

approximately 12,000 SNP blocks for each of the populations,

with approximately 20% of the blocks containing one SNP. The

SNPs clustered in each block were likely to be associated with

similar expression patterns and common function given the genetic

proximity of these variants, making it appropriate to analyze

disease/phenotype similarity at this level. In the earlier research by

Huang et al., SNPs were clustered based simply on genetic

distance [10], but this would have produced blocks containing

SNPs with very little LD between them, and therefore were

unlikely to have similar expression or function.

Relatedness increased across the analysis levels
The Jaccard index values were tallied for each analysis level and

a histogram of the values was assessed (Figure 1). The distribution

shifted toward a higher degree of relatedness and more non-zero

values as we progressed from one level to the next. A majority of

the non-zero Jaccard index values was observed for the pathway

level, with most of those values suggesting a relatively high level of

similarity. The opposite was true for the initial SNP level with a

small percentage of the non-zero indexes represented as low

Jaccard index values. Greater contrast between diseases and

phenotypes was observed at the SNP level as each disease or

phenotype contained association-specific SNPs. As the SNP level

was translated to block data, causal SNPs were grouped. This

trend of grouping continued as we progressed to the gene level,

and finally the pathway level. This grouping reduced the amount

of disease/phenotype-specific characteristics, but allowed for a

higher degree of relatedness as pathways contain multiple genes.

This indicated diseases/phenotypes with completely different gene

sets may share pathways if both sets of genes were present in the

common pathways.

Spearman correlations between levels for all populations

(Table 3) and between populations for all levels (Table 4) were

conducted to assess similarity between the datasets. The highest

correlation between the datasets for all populations was seen when

the SNP and block levels of data were compared. The least

correlation was observed between the pathway level and the other

three analysis levels. The correlations between populations for

each level were strong for all analysis levels. The pathway level

showed the highest similarity for all populations, with the greatest

correlation between the Asian populations. This trend of high

correlation between Asian populations was also seen for the SNP,

block, and gene levels. We hypothesized the correlation assessment

would indicate if the combined CHB+JPT population listed in

HapMap release #24 could be used instead of the individual

populations. As differences in the degree of correlation between

the populations changed for each level, and the list of SNPs

differed slightly for each population, all three populations were

considered for the disease/phenotype comparison steps.

Visualization of similarity indexes with DRNs
The Jaccard indexes did not indicate statistically strong

relationships at all levels. The maximum index values across all

populations for each level were 0.28, 0.54, 0.41, and 0.89 for the

SNP, block, gene, and pathway levels, respectively. The metric

suggested strong statistical similarity for data in the pathway level

only. Rather than directly interpreting Jaccard indexes as a

measure of similarity, the strength of relatedness was assessed

relatively for each level. For example, two diseases with a similarity

value of 0.28 for the SNP level would have more in common than

two diseases with a Jaccard index of zero.

The Jaccard index values were used to construct DRNs for each

level of analysis within each population (Figures 2 and 3). Each

disease and phenotype was assigned to a node, and edges were

drawn between each pair of nodes. Edge color and thickness (blue

to red and thin to thick, respectively) were adjusted to reflect

increasing index values. As thicker lines would indicate strong

relationships relative to the range of similarity index values for a

given level, diseases/phenotypes connected by such lines were the

focus of visual inspection. The SNP, block, and gene levels of

analysis consistently showed high relatedness between RA, T1D

and Multiple Sclerosis (MS) for all populations (Figure 2). We also

saw relatively consistent significance for hematological traits (HT)

and adult fetal hemoglobin level (HBF).

A strong association between serum low-density lipoprotein

cholesterol level (SLCL) and lipid measurements (LM) was seen

only at the SNP level for CEU, CHB, and CHB+JPT (Figure 2A,

B, D). This association was seen as less significant for the JPT and

YRI populations (Figure 2C and E) and for all populations in the

block (Figure 2F-J) and gene levels (Figure 2K-O). Other

associations displayed as thick blue lines indicated less significant

Table 2. Spearman correlations between the original and
adjusted SNP datasets.

Population Correlation

CEU 0.986

CHB 0.985

JPT 0.988

CHB+JPT 0.986

YRI 0.991

doi:10.1371/journal.pone.0027175.t002

Figure 1. Distribution of Jaccard index values for all popula-
tions and levels. Histogram illustrating distribution of Jaccard Index
values for all populations at each level of analysis. Frequencies are
represented on a base ten logarithmic scale from zero (0) to 10,000.
doi:10.1371/journal.pone.0027175.g001
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similarity. An increase in the number of thick blue lines was seen

for the gene level data. This suggested more relationships with

index values greater than zero, but not as significant as the

previously mentioned associations. It is possible that this indicates

some increase in clustering of casual SNPs shared across diseases.

For the pathway level, the maximum edge thickness was reduced

for ease of viewing as the number of relatively significant

associations at this level was high (Figure 3). The strong associations

seen at the pathway level did not directly match what was seen as

consistent across the SNP, block, and gene levels. For instance, the

strong MS-RA-T1D associations were missing. Instead, we saw

strong associations between SLCL, longevity and age-related

phenotypes (LONG), and early onset extreme obesity (EO) as one

group, and sporadic Amyotrophic Lateral Sclerosis (SALS),

immunoglobulin A nephropathy (IMAN), and celiac disease (CDI)

as another. The number of relatively significant relationships at this

level made it difficult to identify the strongest relationships. It was

observed that some of the less significant relationships seen at the

gene level (thick blue lines) were seen as more significant

relationships at the pathway level (red and orange lines). As

pathways were composed of many different gene products, it is

possible that uncommon lists of genes can all be present in a single

pathway. This interesting occurrence was seen for various disease/

phenotype pairs including AD-Parkinson’s Disease (PD), T2D-PD,

T2D-HIV1 and MS-HIV1. These diseases most likely share

pathways in which disease progression occurs even though the

affected genes are not identical. It is also important to note that a

loss of some diseases and phenotypes from the comparison list was

seen at the pathway level (Table S1). The reason for this loss was due

to limitations of matching gene information between the HapMap,

Ensembl, and KEGG databases. This data limitation could also

have influenced absent associations, but did not appear to account

for the missing MS-RA-T1D associations. Pathway data for HBF

and SLCL were missing, however. Therefore, the HBF-HT and

SLCL-LM associations were absent at the pathway level.

Strongest disease associations identified via PCA
The DRNs constructed based on the Jaccard indexes were dense,

which made it difficult to verify significant relationships common

across populations and levels of analysis. Genetic relatedness that

translated to disease/phenotype association should be evident in

clinical literature. Given the amount of clinical information

available for the diseases and phenotypes included in this study, a

pair-by-pair search for clinical evidence would take an extensive

amount of time. Instead, the most significant relationships were

identified to assess clinical relevance. A principal component cluster

analysis method as proposed by Beckman et al. [18] was used to

extract significant relationships within the first three analysis levels.

The initial clustering was done across all levels of analysis and

the proportion of variance for each population was assessed

(Figure S3). PCA for all four comparison levels resulted in the first

three components explaining over 85% of the variance. This was

not surprising since only four principal components were assessed

given each level was considered a single variable. Additional

analysis was carried out based on coupled SNP and block levels,

SNP and gene levels, block and gene levels, and finally the SNP,

block and gene levels as a group. Only the SNP, block, and gene

analysis levels were assessed for most significant relatedness rather

than all four levels because missing cross referenced data resulted

in a lack of correlation between these three and the pathway data.

As shown in Table 5, the results were consistent across all but one

coupled clustering. Notably, the MS-RA-T1D association ap-

peared consistently for all populations across the first three levels,

which matched what was seen in the DRNs. Though not

Table 3. Spearman correlations between analysis levels for
each population.

CEU Block Gene Pathway

SNP 0.767 0.552 0.349

Block 0.523 0.302

Gene 0.481

CHB+JPT Block Gene Pathway

SNP 0.787 0.558 0.348

Block 0.527 0.299

Gene 0.481

CHB Block Gene Pathway

SNP 0.793 0.570 0.356

Block 0.539 0.292

Gene 0.495

YRI Block Gene Pathway

SNP 0.799 0.540 0.320

Block 0.510 0.283

Gene 0.487

JPT Block Gene Pathway

SNP 0.760 0.557 0.351

Block 0.526 0.306

Gene 0.463

doi:10.1371/journal.pone.0027175.t003

Table 4. Spearman correlations between populations for
each level of analysis.

SNP CHB JPT JPT+CHB YRI

CEU 0.873 0.857 0.874 0.836

CHB 0.937 0.970 0.829

JPT 0.955 0.805

CHB+JPT 0.835

Gene CHB JPT JPT+CHB YRI

CEU 0.922 0.872 0.916 0.924

CHB 0.907 0.962 0.892

JPT 0.937 0.834

CHB+JPT 0.886

Block CHB JPT JPT+CHB YRI

CEU 0.898 0.891 0.910 0.887

CHB 0.944 0.968 0.890

JPT 0.976 0.885

CHB+JPT 0.906

Pathway CHB JPT JPT+CHB YRI

CEU 0.963 0.965 0.978 0.969

CHB 0.972 0.986 0.971

JPT 0.986 0.950

CHB+JPT 0.962

doi:10.1371/journal.pone.0027175.t004
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Figure 2. Human disease relatedness networks (DRNs) for 61 diseases and phenotpyes. DRNs across three levels of SNP data analysis for
five populations: CEU (A, F, K), CHB (B, G, L), JPT (C, H, M), CHB+JPT (D, I, N), and YRI (E, J, O). The three levels of analysis were SNP (A-E), blocks (F-J),
and genes (K-O). The placement of disease/phenotype abbreviations was consistent for all DRNs for ease of comparison. The width of the edge and
color correspond to the Jaccard indexes for each disease pair. Line width increases from small to large indexes. The color scale increases in the order
blue, green, yellow, orange, and red. The inserted table lists index percentile cutoff values for each line color designation. Line colors were designated
according to a gradient of the listed colors from minimum to maximum Jaccard index.
doi:10.1371/journal.pone.0027175.g002
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consistent across all populations, the HBF-HT, LM-SLCL, LM-

Triglycerides (TG), and EO-TG relationships matched what was

visually observed in the DRN assessment. The strongest

relationships seen for the SNP-block and SNP-gene analyses

matched. The RA-T1D association was listed as significant for all

levels, and proved the only strong relationship for 4 out of 5

populations for the block-gene clustering. The SNP-block and

SNP-gene analysis returned more significant relationships than the

block-gene group suggesting the block to gene progression was less

significant in the increase in degree of relatedness. The CHB+JPT

population showed significant association between EO and TG for

the SNP-block, SNP-gene, and SNP-block-gene cluster groups,

but this association was not observed in the individual JPT and

CHB populations. This is an association that is less pronounced in

the SNP and block DRNs for the three Asian populations

(Figure 2B, C, D, G, H, and I) and not visible at all for the gene

DRNs (Figure 2L, M, and N). Further, the BC-SPBC and HBF-

HT pairs predominate for the block-gene cluster of the YRI

population appeared to be masked at the SNP level as these

associations were not present for the other analysis sets.

Comparison to Huang et al. results
The RA-T1D association found here matched conclusions set

forth by Huang et al. [10], but we did not see strong associations

between either of these diseases and CD. In the original study,

associations were made given block proximity. It was noted that the

number of genes shared at zero distance between blocks was higher

for the RA-T1D pair than CD and either disease [10]. It is possible

that the increase in the number of SNPs assessed in the current study

masked any association seen between CD and RA or T1D. Missing

cross-reference data could be to blame for lack of relatedness as well.

It is also possible that the change in block level assessment revealed a

lack of genetic association between causal variants for the diseases. A

closer look at the Jaccard index values for the pathway level for all

populations revealed the CD-RA pair possessed moderate similarity

(0.36–0.5), while the CD-T1D pair possessed low similarity (0.04–

0.2). Little to no relatedness was calculated for the other three levels.

Comparatively, the RA-T1D pair showed high similarity relative to

the maximum index values for the SNP, block, and gene levels, and

low similarity for the pathway level.

No genetic links were seen between CAD, HYP, and T2D in the

current study, which agreed with the results of the previous study.

The Jaccard indexes for all populations showed little to no

relatedness between these diseases. Association was seen between

CAD and T2D minimally for the first three levels (,0.06) and

moderately at the pathway level (0.51–0.56). Our results suggest

limited genetic similarity can be found between this triad of diseases.

Discussion

Here we describe a step-wise means of elucidating relatedness

between diseases and phenotypes. This study suggests that it is

possible to find genetic similarities that can be overlooked during

GWAS by progressively grouping data at less discriminating levels.

Such results suggest genetic similarities may exist between diseases

and phenotypes, and that these may serve as a guide for physicians

to monitor for less common or seemingly unrelated symptoms and

subsequent disease onset. A general search of the literature

supported some of the disease relationships found in this study.

The strong associations between MS, RA, and T1D have been

suggested in editorials and letters concerning clinical studies were

patients have exhibited two of these diseases [21–24]. The authors

suggested shared autoimmune responses and/or a systemic

inflammation response are responsible for the predisposition seen

Figure 3. Human DRNs from pathway-level analysis for 61 diseases and phenotypes. Analysis for five populations: CEU (A), CHB (B), JPT
(C), CHB+JPT (D), and YRI (E). The edge width and color correspond to the Jaccard indexes for each disease pair. Line width and color is scaled the
same as in Figure 2. The inserted table lists index cutoff values for each line color designation.
doi:10.1371/journal.pone.0027175.g003
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in patients with one disease for developing a second disease [21–

24]. Relatedness between HT-HBF, SLCL-LM, and TG-LM were

not surprising given these phenotypes assumingly share traits and

mechanisms of genetic regulation. For example, haematological

traits are those that determine leukocyte, erythrocyte, and platelet

phenotypes [25], while fetal hemoglobin levels have been linked to

diagnosis of erythrocyte-associated diseases, such as sickle cell

anemia [26]. The connection here may be due to shared blood cell

gene regulation and erythrocyte phenotypes.

The high overall similarity among the three Asian populations

(CHB, JPT and CHB+JPT) coupled with the variation between CEU,

YRI, and the Asian populations may indicate that subtle genetic factors

influence the susceptibility of populations to some diseases. It is also

possible that environmental factors, such as geographical separation,

may have some influence on genetic variations that have arisen over

generations. Admittedly, the limitation of the current GWAS data and

limitations of LD may also result in discovery bias for this study.

Associations unique to either the CHB or JPT populations showed up

in the CHB+JPT population. Given that unique associations did show

up for the individual populations, use of a combined population would

not be ideal regardless of the high correlation between the datasets. Use

of a combined population would potentially mask population-specific

associations as something common to the combined group. It is

possible that the amount of data available for a specific disease or

phenotype was not consistent between the populations. It is also

possible that unique associations are a result of this discrepancy in data

points. This notion reinforces the need for individual population data

versus combined population data. The issue also conflicts with the idea

that population-specific associations could be seen in a comparison

study. To ensure population-specificity, the quantities of SNP data for

each disease would have to be incorporated into the similarity decision

process. As we know the quantity of SNPs was inconsistent between

populations for each disease and phenotype. Therefore, predictions

about population were excluded from our analysis.

A surprising observation was the lack of certain associations that

have been seen in the literature. One example is the association

between T2D, CVD, and OBE. These results do not indicate a

strong genetic link between the diseases despite the prevalence in

the literature of clinical links [27–30]. Our findings agree with the

Huang et al. [10] study in that no genetic links were seen between

CAD, HYP, and T2D. The clinical grouping of these diseases

could be a consequence of differences in gene regulation that result

in converged systemic responses. It is plausible that the clinical

manifestations of the diseases are common because disruption of

homeostasis in different pathways can manifest as similar

symptoms. It is also possible that the events triggered by one

disease result in the manifestation of another because the disrupted

pathway may have systemic implications as is presumed to be the

case with the MS, RA, and T1D associations. The difference here

would be the lack of similar genes affected in the disruption. In

Table 5. Most significant disease relationships for each population determined by PCA.

Population SNP and block SNP and gene Block and gene SNP, block and gene

CEU HBF-HT HBF-HT RA-T1D HBF-HT

LM-SLCL LM-SLCL LM-SLCL

MS-RA MS-RA MS-RA

MS-T1D MS-T1D MS-T1D

RA-T1D RA-T1D RA-T1D

CHB HBF-HT HBF-HT RA-T1D HBF-HT

LM-SLCL LM-SLCL LM-SLCL

MS-RA MS-RA MS-RA

MS-T1D MS-T1D MS-T1D

RA-T1D RA-T1D RA-T1D

JPT LM-TG LM-TG RA-T1D LM-TG

MS-RA MS-RA MS-RA

MS-T1D MS-T1D MS-T1D

RA-T1D RA-T1D RA-T1D

CHB+JPT EO-TG EO-TG RA-T1D EO-TG

HBF-HT HBF-HT HBF-HT

LM-SLCL LM-SLCL LM-SLCL

LM-TG LM-TG LM-TG

MS-RA MS-RA MS-RA

MS-T1D MS-T1D MS-T1D

RA-T1D RA-T1D RA-T1D

YRI MS-RA MS-RA BC-SPBC MS-RA

MS-T1D MS-T1D HBF-HT MS-T1D

RA-T1D RA-T1D MS-RA RA-T1D

MS-T1D

RA-T1D

Principal components were assessed for the first three levels in pairs, and all together to identify the most significant relationships.
doi:10.1371/journal.pone.0027175.t005
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either case, there is no genetic relatedness to be observed, but

rather a seemingly consequential relatedness, which we could not

appropriately address in this study. Such analysis would require a

more detailed look at the genes identified for each disease and the

clinical manifestations that result from mutations in those genes.

Though the pathway level data were not ideally matched to the

other three levels, some useful information can still be assessed

given commonality in pathways involved in pathogenesis between

diseases. Interesting associations between metabolic and neuro-

logical diseases were observed. For example, links between CAD

and MS, T2D and PD, and OBE and ischemic stroke (IS) were

seen in the pathway DRNs. Some of these associations showed up

as less pronounced for the SNP, block, and gene levels, which was

a trend observed with previously mentioned associations. The link

between these two disease categories warrants further study. The

systemic inflammation issue proposed to drive pathogenesis for the

MS-RA-T1D associations or the ‘‘different genes, same pathways’’

conclusion may also play a role in the proposed associations

between metabolic and neurological diseases.

It is possible that the amount of data within the moderate range of

relatedness is too large to isolate specific disease pairs. Therefore,

these associations could have been masked by the strongest

associations listed in Table 5. It is also possible that the reduction

in data during the progression from block to gene and gene to

pathway levels could have excluded some genes common to multiple

diseases. With the increased density of GWAS the anomalies

observed in this study might be better understood. Attempts have

been made to combine large SNP datasets into one database openly

available to researchers. Such an undertaking is time consuming and

difficult given the amount of data and discrepancies in naming

processes, but the practicality of such work is evident. A consolidated

source of SNP data would improve analysis given the gaps observed

in our data. Inclusion of more data might improve association

predictability as this could reintroduce points of relatedness that were

missing here and resulted in missing disease/phenotype associations.

Further, incorporating additional databases and filtering out common

associations might improve upon the results of a larger-scale study

and may shed light on less common but still significant disease

relatedness. Mathematical methods have recently been used to

identify perturbation differences between pathway-specific gene sets

for two synthetic tissue platforms [31]. Such techniques could be

adjusted and used with the addition of annotations for diseases linked

to gene sets in order to incorporate multiple databases while reducing

masking by redundant associations.

McCarthy et al. suggested assessing relatedness between diseases

is an issue of exploring mechanisms that influence susceptibility

and phenotype expression [8]. The techniques and data described

here suggested that large-scale disease and phenotype association

studies are possible and that such testing can provide insight into

mechanistic similarities. Broad implications of this study warrant

monitoring of patients by physicians for signs of diseases with

shared systemic effects is necessary. We also see the potential for

shared therapeutic targets for diseases with similar genetic

susceptibility and phenotype expression. Goh et al. suggested that

diseases could be connected if at least one gene was shared in

which a disease-associated mutation could be found [32]. We have

successfully expanded on this idea by introducing Jaccard

similarity as a means to weight the degree of association relative

to other diseases in the comparison. Taking a multi-disease

analysis approach is a useful means of assessing patterns across

human diseases [32] that may shed light on more effective means

of treating and improving upon human health.
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