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Abstract

The handicap principle suggests that individuals of superior quality can more easily bear the cost of developing extravagant
ornaments. Consequently, ornament size should provide reliable information about quality or condition. Previous models
have largely ignored the process of ornament growth, focusing only on final ornament size. We model ornament growth
schedules for individuals of different qualities, where higher quality individuals experience lower costs of carrying energy
reserves of a given size, but where all individuals pay a net cost of carrying ornaments of a given size. If the costs of
ornament production ensure that final ornament size reliably signals quality, the information conveyed by the signal can
change dramatically during growth. Higher quality individuals should delay growth until closer to breeding. Taking a
snapshot of partially developed ornaments prior to breeding would show them to be larger in poorer quality individuals.
The claim that costly ornaments honestly signal quality thus needs to be understood in a dynamic context, and may only
hold during some phases of growth.

Citation: Rands SA, Evans MR, Johnstone RA (2011) The Dynamics of Honesty: Modelling the Growth of Costly, Sexually-Selected Ornaments. PLoS ONE 6(11):
e27174. doi:10.1371/journal.pone.0027174

Editor: Stephen R. Proulx, UC Santa Barbara, United States of America

Received May 5, 2011; Accepted October 12, 2011; Published November 2, 2011

Copyright: � 2011 Rands et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by a Leverhulme Trust research grant to MRE and RAJ. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have read the journal’s policy and have the following conflicts: SAR is an editor for this journal. This does not alter the
authors’ adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: sean.rands@bristol.ac.uk

Introduction

Many sexually selected traits and ornaments such as horns and

tails require an extended period of growth before they reach a

mature state [1–4]. Much research [5–7] has examined how

carrying large ornaments could handicap [8] an individual (where

only good quality individuals should be able to cope with large

costs resulting from the ornament), but little research has

examined how the costs of producing and bearing an ornament

shape its growth trajectory. Sexually selected traits are frequently

characterized by extreme variation seen within populations [5],

and we would therefore expect similar variation in growth

trajectories. Only a few models, however, have focused on the

process of ornament development: Aparicio [9] uses a cost-benefit

approach to examine how fluctuating asymmetry can develop,

whilst Badyaev [10] considers the evolution of cost-reducing

developmental mechanisms. However, neither of these consider

how a trait should develop within individuals. Bonduriansky &

Day [11] and Lindström et al. [12] explore the trade-off between

body growth and ornament growth using deterministic dynamic

models, and Kokko looks at the development of ornaments at

consecutive mating seasons [13]. Lastly, Lindström et al. [14], to

whom we return, employ stochastic dynamic programming to

model sexual signal dynamics in the face of random variation in

resource availability.

In this paper, we develop a stochastic dynamic program (SDP)

that examines how ornaments can develop in an adult animal

that breeds at a set point of its lifecycle, assuming that it is

investing its resources in either metabolic processes or the growth

of the ornament–consequently, we do not focus directly on

allometric relationships [15,16], but rather the investment

strategy of an animal challenged by environmental variation

(although the latter may give rise to allometric patterns of growth

– see [17]). Stochastic dynamic programming [18–20] is the

perfect technique to examine how a trait should develop when we

are able to quantify the fitness of an individual possessing an

ornament of a specific size at a defined moment in time, and here

we use a variation on a standard forage-rest model [19]. We

consider an animal that can choose between two activities (low-

cost resting and high-cost foraging), which allows us to

incorporate an ornament-dependent cost that impacts on the

amount of resources that the animal can collect to fuel further

ornament growth.

Our approach is most similar to that of Lindström et al. [14],

who also use dynamic programming to model allocation of

resources to ornamentation in the face of stochastic variation in

resource availability. However, they consider expenditure during

the breeding season on a flexible signalling trait that may fluctuate

in its level of expression. By contrast, we focus on cumulative

expenditure prior to the breeding season on the growth of an

ornament such as a horn or tail, which (once growth is completed)

will not subsequently fluctuate in size. We show that differences in

individual ‘quality’ (taken here to be correlated with an

individual’s energetic expenditure) can lead to very different

growth schedules within the population, with implications for the

dynamics of honesty.
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Methods

Overview of Model
In this model, we consider the growth of an ornament over one

hundred consecutive periods prior to the point at which mate

choice occurs. At the beginning of each of these periods, the

animal is assumed to make a decision about whether it forages or

rests during the period. If it rests, it loses energy. If it forages, it

uses energy but also has a chance of finding food, such that its

energy will, on average, increase if it forages. (This is similar to

standard assumptions of forage-rest dynamic programs [18,21–

25], although we do not consider predation risk in this example).

The amount of energy it can gain from the environment is

assumed to be dependent upon the size of the ornament it carries:

ornament size is negatively related to mean gain from the

environment. As well as deciding whether to forage or rest, at the

beginning of each period the animal also decides whether to

allocate a quantity of its energy reserves to growing its ornament.

We assume that the animal’s fitness (assumed here to be some

measure of reproductive success) is positively related to the size of

the ornament (regardless of the final energy reserves of the

individual) at the end of the final period considered in the model,

which means that we can assign a fitness value to all possible

combinations of the animal’s state (defined here as the combina-

tion of its energy reserves and ornament size) at this final moment.

By making this assumption, we can then use stochastic dynamic

programming [18–20] to assign fitness values to all possible

combinations of ornament size and energetic reserves at the

penultimate moment before mating. This is done by considering

all possible behavioural decisions (choosing to forage or rest, and

how much energy to allocate to ornament growth) for each

possible state the animal could be in. The mean fitness for each

decision can be calculated by considering what states the animal

could achieve in the final period if it makes a particular decision in

the penultimate period, where each of these final states has a

defined fitness value. Therefore, for each possible state in the

penultimate period, it is possible to identify the optimal behaviour,

which yields the highest mean fitness for the individual (which is

consequently the fitness recorded for that state during the

penultimate period). Having calculated the optimal behaviours

and their associated fitnesses for all possible states in the

penultimate period, the process can be repeated for the period

immediately before the penultimate one, and consequently

repeated again and again, moving one decision period back in

time at each step. In this way, the optimal behavioural policy can

be determined for the individual, which defines its optimal

behaviour at any moment in time if its current energy reserves and

ornament size are known. The techniques described above are

standard for stochastic dynamic programming models. For further

explanations of some of the standard assumptions and techniques

used, see [18–20,23,26].

Details of Dynamic Program
We examined the growth of ornaments over a period of T = 100

consecutive periods. During each period (denoted by t), the state of

an individual has two components: x, its energetic reserves, and s,

the size of its ornament. At the beginning of each period, the

animal makes two decisions about its actions between t and t+1: u,

its behaviour during the period (to either forage or rest), and i, the

investment in ornament-building done during the following period

(for simplicity, we assume the animal can decide to increase its

ornament by 0 or 1 units). To introduce some stochasticity to

avoid grid effect artefacts [18], after choosing to invest in the

ornament, the investment is successfully increased with likelihood d

(the alternative being that investment is unsuccessful, with no

increase in the ornament occurring despite incurring expenditure).

Considering a simple discrete choice of investing 0 or 1 units into

an ornament may well introduce some constraints upon the form

of growth of the ornament within the model, but should give us a

rough understanding of investment decisions over time. Further

exploration could involve identifying the optimal probability of

investment during a period (instead of a simple choice to invest or

not), but is unlikely to make a difference to the qualitative results

presented here.

The energetic costs incurred by the animal are dependent upon

its behaviour (characterized by a base level of expenditure Ku),

where foraging is assumed to be more expensive than resting.

Investment i in an ornament also incurs energetic expenditure.

Finally, energy use can also depend upon the size of the energy

reserves and ornament, for instance through mass-dependence

[27]: we modelled these expenditures using scalars (kx and ks) and

power constants (p and q) to describe potentially non-linear

increases in expenditure with reserves (kx and p) and ornament size

(ks and q). Because the mean expenditure (calculated as Km = Ku + i

+ kx xp + ks sq) from these variables could take a non-integer value

(energetic reserves themselves are in integer units), we calculated

k(c; x, s, u, i), the probability of expending c units of energy (where

c = 0, 1, 2, 3, or 4 energy units) when in state (x, s) and conducting

actions (u, i), as a discretized normal distribution with a mean value

of Km and standard deviation of vc.

If the animal chooses to forage and is unhampered by any kind

of ornament (s = 0), the base level of energy found in the

environment is bg. However, carrying an ornament could lead to

a reduction in foraging efficiency dependent upon ornament size

(modelled using a scalar rs), and mean energetic gain is therefore

calculated as Gm = bg2rs s. Again, because mean intake can take a

non-integer value, and also because finding the food may depend

upon the environment, we calculated the probability of gaining

g = 0, 1, 2, 3, or 4 energy units, c(g; s), based upon a discretized

normal distribution with mean Gm and standard deviation vg.

The fitness of the animal is determined by the reproductive

success it achieves when it reaches the end of the period modelled

(assuming it survives to this period): at T, we assume that

reproductive success depends upon the size of its ornament, and is

defined by the reward function

R x,sð Þ~ s2
�

smax ifxw0,

0 otherwise:

(

This is taken to be an accelerating function of ornament size.

Because the results of this model are potentially highly dependent

upon this reward function, we also investigated linear and

decelerating increases in fitness, and obtained results that were

qualitatively similar to those given below. Further consideration of

the form of the reward function may be useful for exploring how

variation in mating success correlates with individual condition

and quality [28], but the broad approach we use here gives a

broad qualitative indication of how ornaments may develop within

a population.

The function V(x, s, t) is the fitness at time t for an animal in state

(x, s). The dynamic programming equations were set so that at

t = T, V(x, s, T) = R(x, s), whereas when t,T,

V x,s,tð Þ~ max
u,i

H x,s,t; u,ið Þ½ �,
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where, if x = 0, H 0,s,t; u,ið Þ~0; otherwise

H x,s,t; rest,ið Þ~
Xcmax

c~0
k cx,s,rest,ið Þ dV X’x,0,cð Þ,S’ s,ið Þ,tz1ð Þzð

1{dð ÞV X ’ x,0,cð Þ,s,tz1ð ÞÞ, and

H x, s, t; forage, ið Þ

~
Xcmax

c~0

Xgmax

g~0
k c; x,s, forage,ið Þc g,sð Þ dV X 0 x,g,cð Þ,S0 s,ið Þ, tz1ð Þð Þ

z 1{dð ÞV X 0 x, g, cð Þ, s, tz1ð Þ

using chop functions X9(x, g, c) = min(max(x+g2c, 0), xmax) and

S9(s, i) = min(s+i, smax): these chop functions limit state variable

changes to within maximum and minimum values [20]. V(x, s, t) is

calculated by backwards induction, as standard in SDP models

[19,20]. The values of u and i that maximize each V(x, s, t) are

recorded. These are then used in forward simulations, which

assume that at t = 0, ornament size s = 0, and reserves x are low:

writing in(x, s) for the proportion of the population in state (x, s) at

t = 0, we assumed that in(1, 0) = in(5, 0) = 0.1, in(2, 0) = in(4, 0)

= 0.2, in(3, 0) = 0.4, and in(x, s) = 0 for all other state pairs.

The model was coded in C++, using long double floating point

precision to minimize computational artefacts [29].

Sensitivity Analyses
We conducted sensitivity analyses to investigate the relative

effect of each of the variables used in the model. Using a

framework with smax = 50, and xmax = 100, we used a Mersenne

twister algorithm to randomly generate 50 independent parameter

sets, where the values of the parameters were taken from uniform

distributions with the following ranges: bg M [0.5, 2.5], d M (0, 0.5],

Kf M [0.5, 2.0], ks M [0.0001, 0.5], kx M [0.0001, 0.5], p M [1.0, 2.0], q

M [1.0, 2.0], rs M [0.0001, 0.1], nc M [0.5, 1.0], ng M [0.5, 1.0]. The

randomly generated value of Kr was dependent upon the value of

Kf generated, and came from the range [0.1, 0.56Kf]. For each of

the 50 parameter sets, we calculated policies and the resulting

population distributions when each of the parameters was changed

systematically (holding all the other parameters at the initial

randomly generated value): for a given focal parameter p we

calculated these for 0.16p, 0.26p, … , 2.06p.

To assess how changing the size of each parameter affected the

final ornament size, for each of the fifty parameter sets we

calculated the mean ornament size within a population in

response to the size of the focal parameter, and then used R 2.2.0

[30] to fit a least-squares regression line (considering final

ornament size in response to a standardised size of the focal

parameter, such that the standardised parameter was a value

from the series 0.1, 0.2, …, 2.0). The predicted slope of the line

was recorded, ultimately giving us 50 regression coefficients for

each of the variables considered, which were then summarised to

give a median value and associated ranges. It should be noted

here that although final ornament size was very unlikely to follow

a straight line, we felt that fitting a straight line was sufficient for

exploring how changes in the value of a parameter could affect

the final size of the ornament, as most cases (as described below)

showed a gradual increase or decrease in ornament size, and we

required a simple statistic to compare the spread of data between

the variables.

For each of the 50 replicates, we also identified the period at

which at least 50% of the population had started growing an

ornament (so that s $1). We quantified how this changed using the

regression coefficient technique described above.

Results

The physiological parameters included in the model had

broadly similar effects, only differing qualitatively in their

‘direction’. Figure 1 illustrates the typical sequence of changes in

response to systematically changing a parameter, while table 1

outlines the direction of changes (up or down the sequence of

graphs in the figure) induced by increasing each different

parameter. For illustrative purposes (figure 1), we have shown

how optimal ornament growth changes as the energetic expendi-

ture of carrying energy reserves is increased (holding the other

physiological costs constant), but the other parameters listed in

Table 1 all induce similar effects as they are increased or

decreased.

In this illustrative example, where the relative cost of carrying

energy reserves is small, signal growth is initiated late in the

developmental period, and the signal is grown at a maximum rate

up to the end of the developmental period, giving near-linear

growth (seen in figure 1 where p = 1.5). To begin with, as the cost

of carrying reserves increases, the time at which the signal is

initiated moves later in the growth period (p = 2.5), though

initiated growth is still linear. Initiation occurs later because the

optimal size of the final signal is reduced, but the animal is still able

to reach this size if it leaves investing until as late as possible, and

then grows the signal at a maximum rate.

Figure 1. Changes in ornament growth and reserve size with
increasing costs of carrying large reserves. In successive panels,
the relative energetic cost of carrying large energy reserves is increased
by increasing the power term p. bg = 2.0, d = 0.8, Kf = 1.0, Kr = 0.5,
ks = 0.0001, kx = 0.0001, q = 2.0, rs = 0.1, smax = 50, T = 100, nc = 0.5,
ng = 0.5, xmax = 100.
doi:10.1371/journal.pone.0027174.g001
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As the cost of carrying energy reserves increases further,

however, there comes a point at which the cost of producing and

supporting the maximum ornament is too much, and so the final

size of ornament produced is not the largest possible. From this

point, the models frequently show that the animal doesn’t invest in

growth in a linear manner. Instead, early investment is put into

producing an initially small ornament, and then further investment

is put into the ornament just before the final period (p = 3.5). This

initial investment in a small ornament is likely to occur as a buffer

against a variable environment, where the investment and less-

costly carrying of a small initial ornament ensures that the animal

can then build the costlier part of the ornament prior to its need,

and gain the highest reward possible. However, as the cost of

carrying energy reserves increases further, the price of building

and maintaining even a mediocre ornament is such that any

investment starts later and later in the growth period (p = 4.5).

Figure 1 also demonstrates that the animal will tend to show a

peak in its energy reserves in the middle of the developmental

period, and these are then reduced as it begins to invest heavily in

the ornament. If costs are high, the maximum level of reserves that

the animal can maintain and carry is reduced, which in turn

affects the amount that it is able to invest in its ornament.

Figure 2 shows that the basal rate of energy gain bg has a large

effect upon both the final size of the ornament (Figure 2a), and

when ornament growth is initiated (Figure 2b). This is to be

expected as the animal is trading off ornament growth with the risk

of starvation, and so a reduction in the baseline amount of food in

the environment should have a large effect upon ornament

scheduling. The final ornament size (Figure 2a) is also greatly

affected by the cost of resting Kr, where if resting gives relatively

little reduction in energy expenditure compared to foraging,

carrying an ornament becomes relatively more costly and so

growth is delayed. The other parameters had varying degrees of

effect upon final ornament size with respect to how the variable of

interest was altered, but show little variation with different

parameter sets, suggesting that differing costs of carrying an

ornament or energy reserves have little overall effect upon growth

scheduling. The period at which ornament growth is initiated also

remains relatively unaffected by parameter sets with two

exceptions: the basal rate of energy gain (as described above),

and the reserve cost power term p. We took an initial random

value of p between 1 and 2, and then calculated a range of60.1 to

62 around this, meaning that p could potentially range between

0.1 and 4, and so we were considering a cost of energy reserves

that could deceleratingly or acceleratingly increase with reserve

size. This means that if the cost of carrying reserves increases in a

potentially non-linear manner, this can have a large effect upon

the growth schedule seen, and the shape of this function should

therefore be considered carefully if it is being used in a predictive

model. These sensitivity analyses show that these patterns are

extremely robust to changes in the various parameters built into

the model (table 1), as well as changes in the number of periods,

states, and probabilities considered. The trends apparent in table 1

are as would be expected, where increasing variables that could

lead to energetic costs increasing (such as through increasing the

Table 1. Changes in ornament growth pattern obtained by
increasing the parameter values.

parameter description

change with
increase in
parameter

bg basal energetic gain q

d probability of a correct investment in ornament q

Kf basal energetic cost of foraging Q

Kr basal energetic cost of resting Q

ks ornament cost scalar Q

kx reserve cost scalar Q

p reserve cost power term Q

q ornament cost power term Q

rs scalar for energy intake reduction due to ornament Q

vc cost standard deviation Q

vg gain standard deviation q

The arrows refer to the direction of change sketched in figure 1, where ‘Q’
indicates an increase in the parameter gave a change similar to moving from
top-to-bottom in figure 1, and ‘q’ indicates a reversed (bottom-to-top) change.
doi:10.1371/journal.pone.0027174.t001

Figure 2. Results of sensitivity analyses. Boxplots describing the
median size (with corresponding interquartile and 95% ranges) of the
regression coefficients for a) final ornament size and b) period at which
at least half of the population have initiated ornament growth,
obtained for the eleven variables described in the model (for full
meanings of the parameters, see Table 1), resulting from the
exploration of parameter space described in the sensitivity analyses.
A large positive median value of the coefficient shows that final
ornament size/start period increased greatly as the size of the variable
being investigated was increased (and a large negative value showed
that final ornament size/start period decreased as the variable was
increased). A large amount of variation around the median suggests
that the amount that the ornament or period can vary is sensitive to the
parameterisation of the system.
doi:10.1371/journal.pone.0027174.g002
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cost of carrying an ornament) saw a move away from building an

ornament early to late investment.

Discussion

Careful attention needs to be paid to how the growth sexual

ornaments are scheduled by individuals. The model developed

here suggests that the pattern of ornament development can be

highly variable. The fact that investment and maintenance should

be reduced as an ornament becomes more energetically costly isn’t

surprising, but the fact that an individual may carry a partly-

developed ornament for a long period of time before allowing it

develop fully is important. For example, if an animal develops a

costly ornament well in advance of the breeding season, it could be

argued that carrying this costly ornament for a long time is a

manifestation of the handicap principle [8], as carrying a costly

ornament for a long time would arguably only be possible in a

good quality individual. This would in turn assume that mates

were able to assess the quality of individuals based upon their

monitoring the appearance and growth of ornaments early in the

season, prior to the mating period. Our model doesn’t make this

assumption however: we assume that no mate assessment occurs

before the period of mating (which could be the case for a lekking

species where individuals are solitary prior to the breeding season),

and therefore the early development of ornaments simply ensures

that the individual can possess the best possible ornament when it

begins to breed.

This framework can also be used to consider what should be

happening within populations of individuals that differ in their

ability to respond to environmental stochasticity. This difference in

what we could describe as quality may lead to a difference in

investment between individuals, as their optimal policies will be

based upon different parameter sets (where we can use our

findings from the sensitivity analyses to identify where variation

will be important). At any point in time, there will be a large

amount of variation in ornament size within the population

(Figure 3). However, as we have shown above, it may not be the

case that the individuals with large ornaments earlier on in the

developmental period are the higher quality individuals. Figure 4

illustrates this by considering how the distribution of ornaments

over time shown in Figure 3 relates to the qualities of the

individuals within the population. In Figure 4, there is a negative

relationship between quality and ornament size for the first two

thirds of the developmental period, and it is only after this point

where high quality individuals will tend to have larger ornaments.

Therefore, if we are assessing the quality of individuals prior to

breeding, we must be careful to ensure that, as well as the

inferences we make about quality from measurements, we also

take into account the fact that poor quality individuals could have

larger ornaments than high quality individuals for a large

proportion of their developmental schedule. It should also be

acknowledged that for some, flexible, types of display, the signals

produced by individuals may change dynamically over the course

of the breeding season, and individuals starting with high quality

signals may show a reduction in the quality of their signals over

time [14].

It is difficult to assess how important this effect is, for little data

exists that examines how ornaments develop in an individual

through the course of a breeding season or lifecycle: although

measurements of the growth of ornaments can be done routinely,

(e.g. [31–35]), measurements so far taken to compare the size of

ornaments between individuals have only been made at a single

point of the season (e.g. [36–38]). There is therefore much to be

gained by examining the ornament growth schedule of known

individuals within populations, relative to their seasonal mating

success, where modelling work using the framework described

above would give new insights into individual variation in signal

production. Furthermore, the modelling framework could be

extended to consider life histories [39] where traits develop

multiple times, or where potential mates can track and assess the

Figure 3. Ornament development over time in a population of
individuals with differing ‘qualities’. Although ornaments increase
in size, there is considerable variation within the population. Here, the
population consists of individuals of 21 quality types, defined by the
individual’s energetic expenditures when carrying a given amount of
energetic reserves. The policies are derived for individuals with p = 2.0,
2.1, ..., 4.0 (smax = 20, other parameters as figure 1). The initial proportion
of each type follows a binomial distribution, where the likelihood of an
individual following a policy with reserve cost power p is 20C((p–2)/10)?
(0.5)20.
doi:10.1371/journal.pone.0027174.g003

Figure 4. The relationship between quality and ornament size
changes over time. Early in ornament development, individuals with
large ornaments tend to be poor quality (shown by a negative value of
‘ornament/quality slope’), but later on, quality is positively related to
ornament size. In this example, we define the quality of an individual as
Q = 210 p. Using the quality proportions calculated for figure 2, we
regressed (using least-squares regression) the mean value of Q for a
given ornament size in a period against size. The ‘ornament/quality
slope’ is the slope (6 s.d.) of the calculated best-fit line.
doi:10.1371/journal.pone.0027174.g004
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quality of an individual throughout the life of the signaller, rather

than at a set moment in time.

We also need to assess how ornament growth relates to sexual

selection processes where mate choice and competition between

individuals is also important. The model presented here does not

make any inferences about how selection could shape the reward

offered to individuals with differing ornaments, and would need to

be extended in order to consider how ornament development is

tied in with how sexual selection shapes mate preferences within

populations. At the moment, the fitness return to an individual

that has an ornament of a given size in the period when mate

choice occurs is represented by a fixed function, but it is highly

likely that the fitness return of a given ornament needs to reflect

what else is available in the population. This means that ideally we

should take the social context of the signal into account (which

could be done here by extending the dynamic program presented

here into a dynamic game between population members, e.g.

[21,22,40]), where the state-dependent rewards associated with

mating will depend upon the frequency of differently sized

ornaments in the population. It is consequently difficult to predict

the exact effects that a changing population distribution of

ornaments would have on the growth schedules of individuals of

different qualities. Furthermore, we do not consider whether the

animal is constrained in its ability to judge or perform the optimal

behaviour [41], or whether it instead has to use a rule-of-thumb

that approximates this optimal policy [42–44]. Taking these

considerations into account, we strongly suggest that the

framework we describe here should be extended to consider a

dynamic game between individuals [14,18,21,22,40], and we are

confident that this technique could open many new avenues of

research into an unconsidered side of sexual selection.
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