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Abstract

Behavioral responses of an animal vary even when they are elicited by the same stimulus. This variability is due to stochastic
processes within the nervous system and to the changing internal states of the animal. To what extent does the variability
of neuronal responses account for the overall variability at the behavioral level? To address this question we evaluate the
neuronal variability at the output stage of the blowfly’s (Calliphora vicina) visual system by recording from motion-sensitive
interneurons mediating head optomotor responses. By means of a simple modelling approach representing the sensory-
motor transformation, we predict head movements on the basis of the recorded responses of motion-sensitive neurons and
compare the variability of the predicted head movements with that of the observed ones. Large gain changes of optomotor
head movements have previously been shown to go along with changes in the animals’ activity state. Our modelling
approach substantiates that these gain changes are imposed downstream of the motion-sensitive neurons of the visual
system. Moreover, since predicted head movements are clearly more reliable than those actually observed, we conclude
that substantial variability is introduced downstream of the visual system.
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Introduction

Behavioral responses of animals to repeated presentation of the

same stimulus usually vary from trial to trial. This variability can

be due to changes of the internal state of the animal as well as to

stochastic processes underlying information processing in the

nervous system and in the motor system eventually producing

behavior. Decisive sources of variability are tackled in a range of

animal systems [1]. For instance, most of the noise affecting

smooth pursuit eye movements in monkeys has been concluded to

arise already in the sensory processing stages [2]. There is ongoing

controversy on this topic as other studies of primate eye

movements demonstrated that motor noise exceeds the sensory

noise [3,4]. In the visual system of insects the issue of neuronal ([5–

10], reviews: [11–14]) and behavioral [15,16] variability has been

addressed. However, even in these systems the decisive sources for

behavioral variability have not yet been located.

In the present paper we analyse whether neuronal variability at

the output level of the visual motion pathway can cause the

observed variability in the final behavior. We use visually induced

head pitch movements of blowflies as our experimental paradigm.

The considerable variability of these movements is largely due to

two different motor activity states in the fly [16]. However, even

within one activity state the responses are variable. The activity

state also affects the responses of motion-sensitive neurons in the

fly’s visual system, the so-called lobula-plate tangential cells

(LPTCs) [17–20], as well as a subsequent motor neuron [21].

LPTCs, which can be identified individually based on their

physiological and anatomical properties, encode motion informa-

tion within large parts of the visual field [11,22–24]. The LPTCs

mediating downward directed head pitch movements are directly

presynaptic to the motor neurons innervating the respective neck

muscles [25,26]. It has been suggested that the state associated

optomotor gain changes are brought about by a central signal

downstream of the visual system [16,17,21]. Because of its

straightforwardness the system investigated here is particularly

well-suited to analysing whether the variability found at the

sensory level can account for the variability of the behavioral

output.

By comparing neuronal and behavioral responses via a simple

modelling approach we conclude that the variability present at the

level of LPTCs is too small to account for the variability of head

pitch responses both within and across behavioral states.

Results

We aim to discover whether the variability found at the level of

motion-sensitive LPTCs can account for the variability of head

optomotor pitch responses or, alternatively, whether variability

comes into play downstream of the LPTCs. We used neuronal

responses of VS2/3-cells that mediate head pitch movements

[25,26] to predict head movements by applying a simple

modelling approach. We then compared the reliability of

predicted and actual head movements.

VS2/3-cells respond to the onset of constant velocity motion

with a sudden depolarisation of their membrane potential

(example traces in Fig. 1A). The membrane potential stays

depolarised throughout the presentation of the motion stimulus. In

these cells the graded membrane potential change is often

superimposed by spikes of variable amplitude [27,28]. VS-cell
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responses to repeated presentations of an identical motion stimulus

differ from one trial to the next (Fig. 1A). Large parts of this

variability could be caused by different behavioral states of the

animal (review: [29]). As an indicator of the activity state we

examined the movement of the halteres which are known to

oscillate when a fly walks or flies [30]. However, the neuronal

responses elicited by strong visual stimulation did not clearly

depend on the state of motor activity of Calliphora (Fig.1A). Possible

reasons for the insignificant state-dependence are discussed below.

Even during the presentation of the stationary dot pattern prior to

pattern motion onset, we did not observe clear state-dependent

changes of VS2/3 cell responses.

Like the neuronal responses, head pitch responses elicited by the

same motion stimulus also differ from trial to trial (Fig. 1B).

Compared to the basically step-like neuronal responses, head pitch

responses are ramp-shaped, changing throughout the entire

recorded time period in response to constant velocity motion

(Fig. 1B). VS2/3 cells depolarise during downward motion and, as

a consequence, the head bends downward reducing the slip

velocity on the retina. In contrast to the neuronal responses, the

head pitch responses take a conspicuously different gain depending

on the state of motor activity. If the fly is in an elevated motor

activity state, the optomotor gain is much higher than in the

inactive state of the fly (Fig.1B; [16]).

To directly relate the variability at the neuronal to that at the

behavioral level we modelled the sensory-motor transformation by

applying a low-pass filter to the neuronal responses in order to

then compare predicted and measured head pitch (for rationale of

low-pass filter approach see Discussion section).

The prediction of head pitch movements from neuronal

responses recorded in either the elevated or the reduced motor

activity state yields very similar results (Fig.2) and does not match

the findings at the behavioral level with respect to the large state-

dependent gain changes observed there. Since in accordance with

previous suggestions [16,17,21] the drastic state-dependent head

optomotor gain changes cannot be explained by the LPTC

responses, we implement a gain modulating mechanism down-

stream of the LPTCs. This adjusts the optomotor gain to the

particular state of motor activity. Because of the apparent lack of

state-dependence in our neuronal data all stable electrophysiolog-

ical recordings (see Materials and Methods section for definition of

stability) were used for predicting head movements independent of

whether they were recorded during or without haltere activity.

Note that, if there actually were any differences between the

neuronal responses obtained in the high versus low activity state

our procedure should increase the variability of the predicted head

pitch responses. As we will see later, overestimating neuronal

response variability does not affect our conclusions.

For predicting head movements from VS2/3-cell responses we

chose three different time constants (t1 = 50 ms; t2 = 100 ms;

t3 = 150 ms) for the low-pass filter, in order to cover a range of

temporal properties of the filtering algorithm and also to test to

what extent the results depend on them. Between the two states of

motor activity, not only the gain but also the shape of the time-

dependent responses differs (Fig. 3 and [16]). Head pitch

movements in the high activity state are well approximated by

first-order low-pass filtering the neuronal responses (Fig. 3A).

However, head pitch traces recorded while flies were in the low

motor activity state become steeper throughout the evaluation

period (Fig. 1B and [16]). This response profile can be

approximated better by filtering neuronal responses with a

second-order low-pass filter (Fig. 3B). It is not unreasonable to

assume such a filter because it has been suggested that resting flies

actively pull their head to the thorax [31]. Such a mechanism

implies a second damping process in the reduced activity state of

the fly acting upon the already existing low-pass properties of the

neck motor system. Fig. 3B shows several example predictions of

head pitch movements derived from filtering neuronal responses of

Figure 1. Variability of neuronal and behavioral responses to downward motion during the two motor activity states. (A) Ten
individual trials of membrane potential changes of a VS2/3-cell in the reduced (blue) and elevated (red) motor activity state and mean across trials
(black) illustrating step-like response profile. Membrane potential is shown relative to the resting potential measured while no pattern was presented.
(B) Fifteen individual head pitch responses during reduced (blue) and elevated (red) motor activity of another fly (for details of the analysis see [16]).
The VS2/3-cell responds with a sudden change of the membrane potential and stays depolarised throughout motion stimulation whereas the head
pitches slowly downwards yielding an inverted ramp-shaped response profile. The behavioral responses show a conspicuous state dependence while
the neuronal responses do not. Note that the variability of the traces is largely reduced around time 0, because of the analysing procedure (see
Materials and Methods section).
doi:10.1371/journal.pone.0026886.g001
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a single cell. The overall shape of the predicted responses meets

the observed ones very well. Hence, in the following a first-order

low-pass filter and a high gain were used to predict head pitch

responses in the high activity state; to predict head pitch

movements observed in the low activity state a second low-pass

filter was applied in conjunction with a low gain.

As a measure of the reliability of the predicted and the

experimentally determined pitch responses we calculated the

signal-to-noise ratio (SNR) as a function of time (Fig. 4). The SNR

is determined as the ratio of the mean head deflection at a given

time (i.e. across trials) divided by the corresponding standard

deviation. The SNR of the observed head pitch responses first

increases and then tends to saturate about 100 ms after motion

onset for both the high and the low activity state. In comparison,

the SNRs of the predicted responses also indicate some saturating

behavior but do not reach their plateau values within the analysed

time interval. Importantly, the SNRs of the predicted responses for

the high and low motor activity state are higher within large parts

of the evaluation period than the SNR of the actually measured

head movements. The difference in the SNRs of the predictions

and the observed optomotor responses increases with time. Which

time period should be consulted for comparing predicted

(neuronal) and measured (behavioral) SNRs? On the one hand a

late point in time is preferable for obtaining a reliable comparison

of the SNRs because the early phase of the behavioral responses is

largely the consequence of the condition of the neuronal

machinery and the neck-motor system preceding the downward-

directed motion stimulus. Head movements preceding the motion

stimulus, however, can be expected not to be dominated by VS2/

3-cell responses, because at that time their response strength

should not be exceptionally large compared to other input

channels influencing the neck-motor machinery (see Discussion).

In the present study, however, we want to analyse optomotor

responses that are mediated by VS2/3-cell responses and

accordingly our model only takes VS2/3-cell responses into

account. Predictions and behavioral responses should therefore be

compared when the influence of the VS2/3-cell response on the

neck motor machinery is clearly noticeable.

At the last evaluated data points, 178 ms after stimulus motion

onset, the SNR of the VS-cell-based predictions (S/Nsens) clearly

surpasses the SNR of the observed behavioral responses (S/Nbehav)

for both the high and low activity state (Fig.4). This result suggests

that noise is added after sensory signal processing, i.e. beyond the

Figure 2. Head pitch movements predicted from neuronal
responses to downward motion. A first-order low-pass filter
(t= 150 ms) was applied to neuronal responses of a VS2/3-cell recorded
in close temporal succession during the presence (red) or absence
(blue) of haltere oscillations.
doi:10.1371/journal.pone.0026886.g002

Figure 3. Comparison of predicted and actually observed head pitch responses to downward motion. The same neuronal responses
were used for the predictions in (A) and (B). The gain factor was adjusted to fit the mean response amplitude of the behavioral responses. (A)
Behavioral responses (red) were recorded while the fly was in a state of elevated motor activity. A first-order low-pass filter (t= 100 ms) was used to
predict head pitch from neuronal responses. Predictions (dark gray) are much less variable than the actually observed responses. All pitch responses
recorded in the elevated activity state of one fly are shown. (B) Neuronal and behavioral (blue) responses were recorded while the fly was in a state of
reduced motor activity. A second-order low-pass filter (t1 = 100 ms, t2 = 100 ms) better approximates head pitch in the reduced motor activity state
than a first-order filter. Again, predictions (dark gray) are less variable than the actually observed responses. Only a subset of the recorded traces is
shown for illustration of response shape and variability. Note the different scales in (A) and (B).
doi:10.1371/journal.pone.0026886.g003
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LPTCs. The following thoughts allow us to estimate the amplitude

of this postsensory noise relative to the noise observed in the

LPTCs:

When assuming independent normally distributed noise for

both the responses of the VS2/3 cells (Nsens) as well as for the

downstream, postsensory processing (Npost), the variances of

these two parameters add to yield the variance of the final

behavioral head pitch (N2
behav). Hence the variance of the

postsensory noise can be estimated according to the following

equations:

N2
behav~N2

senszN2
post ð1Þ

The predicted SNR (S/Nsens) can be related to the SNR of the

observed head pitch movements (S/Nbehav) according to:

S=Nsens

S=Nbehav

~
13:54

2:59

2, high activity state,time constant of low{pass filter : t~100msð Þ

Figure 4. Signal-to-noise ratios for simulated and actually observed head optomotor pitch movements. Signal-to-noise ratios (SNRs)
are means across flies (predictions: N = 7, behavior: N = 6) and plotted as functions of time after stimulus motion onset. In order to predict head pitch
in the elevated (reduced) motor activity state a first-order (second-order) low-pass filter was used. The SNR of actually observed head movements at
the end of the trials in both motor activity states is considerably smaller than predicted for the respective state. At the end of the open-loop interval
(grey shaded box and inset), the SNR of the predicted high activity state responses already outreaches the SNR of the head movements recorded in
that state (see text for details). Note that the seeming state difference in SNRs of actually observed responses is at least in part the consequence of
spontaneous head pitch superimposing on the visually induced response (see [16]).
doi:10.1371/journal.pone.0026886.g004
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The signal S is modelled to be the same and hence cancels out:

Nbehav

Nsens

~
13:54

2:59
ð3Þ

Substituting Nbehav from (3) in (1) yields:

Npost~5:13 �Nsens ð4Þ

From this reasoning it follows that the variability added after the

visual system is considerably larger than the sensory variability

inherited from the noisy signals of the VS-cells. The chosen time

constant does not affect this result (the multiplier in equation (4) for

a time constant of 50 ms and 150 ms changes to 4.21 and 5.62,

respectively). Taking the low activity state responses as a basis for

estimating the postsensory noise one gains even higher factors.

Although a late point of time is preferablefor the aforemen-

tioned reasons, there is one important drawback, for the high

activity state: Stimulus motion was identical in the experiments

recording neuronal and behavioral responses. Nevertheless, the

actual retinal pattern velocity was not the same in both situations.

In the high activity state the head movements compensate for

about 20% of the pattern velocity [16], reducing the net pattern

velocity on the eyes of the fly. In other words, the loop between the

sensory input and the motor output was closed in the behavioral

experiments. This problem only applies to the high activity state

because in the low motor activity state head movements are so

small that they do not effectively impact the retinal pattern velocity

imposed by stimulus motion. For the high activity state, neuronal

and behavioral performance can be easily compared only within

the early response (‘‘open-loop’’) phase in which the optomotor

response is influenced only by the motion stimulus and not yet

influenced by changes of the retinal stimulus velocity due to the

fly’s pitch response. However, towards the end of the open-loop

phase, which is commonly assumed to correspond to twice the

latency [32], the SNR of the predicted responses is already higher

than the SNR of the actually observed head pitch responses. The

latency of the behavioral responses was at least 22 ms [16].

Therefore the open-loop period ends approximately 44 ms after

stimulus motion onset. Here the SNR of the predicted pitch

responses already surpasses the SNR of the measured pitch

responses. Calculating the postsynaptic noise for that moment of

the high activity state (according to equations 1–4) yields a

multiplier of 1.12 (1.20/1.03) with respect to the noise inherited

from the VS2/3 cells for a filter time constant of 100 ms (50 ms/

150 ms). This result again indicates that variability of a relevant

degree is added on the way from the LPTCs to the final behavioral

output. Our results are robust against the selection of filters with

different time constants. Hence, we conclude that variability

comes into play downstream of the LPTCs for both the reduced

and the elevated motor activity state based on a linear model to

predict head pitch responses.

Discussion

In the present study we evaluated whether variability occurring

in neurons at the output of the visual motion system in flies can

account for the variability of head optomotor responses. We

modelled the sensory-motor transformation and in this way

predicted head pitch movements from responses of motion-

sensitive neurons (LPTCs) that mediate this behavior. We found

that (i) the tremendous difference in head optomotor gain

associated with two different behavioral states cannot be explained

by gain changes at the level of LPTCs. (ii) The variability of

measured head optomotor pitch movements within a given activity

state is higher than is expected from the variability of the VS2- and

VS3-cell, the LPTCs we recorded from that mediate head pitch.

Hence, downstream of the LPTCs the gain changes depending on

the fly’s activity state and additional variability comes into play. In

the following these two findings will be related to the results of

other studies and discussed with respect to their functional

implications.

Addressing the optomotor gain shift
We assume a mechanism exists which changes the gain of the

investigated head movements downstream of the VS2- and VS3-

cell, dependent on the fly’s activity state, in accordance with what

has been proposed previously [16,17,21] -despite the observation

of state-dependent neuronal response changes at the level of

LPTCs in calliphorid flies [7,17,20,33] and Drosophila [18,19].

Whereas head pitch movements depend considerably on the flies’

activity state (Fig.1b and [16]) we did not observe obvious state-

dependent response changes in VS2/3-cells during identical

stimulation (Fig.2). This could be misconceived as contradicting

the state-dependent changes in fly LPTCs mentioned above.

However, we already concluded previously [17], that during

strong visual stimulation the activity state does not substantially

affect the responses of LPTCs. This was confirmed in a recent

study in which responses of a spiking LPTC were recorded during

tethered flight [20]. This latter study also provided evidence, that

strong state dependencies are barely visible in the early phase of

the response to a sudden motion onset (i.e. the transient response

phase (e.g. Fig.4 in [20]). In the present study we only evaluated

responses during such transient response phases. Furthermore

even during the presentation of the stationary pattern a shift in the

membrane potential does not always occur in LPTCs (see Fig.1B

in [17]). Hence, the absence of strong state-dependent changes in

the LPTCs under the stimulus conditions of our experiments is not

in conflict with what was already found in previous studies.

Moreover, differences in the amount of state dependent response

changes could be due to the larger behavioral repertoire still

available to the flies in other studies [18–20] compared to our

experiments. In our experiments the flies could only swing halteres

while in the other studies the animals could fly or walk. Most

important for the current conclusions however is the following

consideration: The primary goal here is not to analyse the exact

quantity of changes in the neuronal response of LPTCs during

different activity states of the animals but to determine whether the

neuronal variability at the level of LPTCs suffices to explain the

behavioral variability. As mentioned above we acquired our

neuronal and behavioral data on the same kind of preparation

using animals that could neither fly nor walk. Hence, if the largely

restrained fly in our preparation displays a different kind of state

dependence than the dependence described in flying or walking

flies, this difference does not weaken our conclusion that neuronal

variability of the VS2/3 cells is too small to account for the

variability of head pitch movements.

If LPTC responses do not exhibit a clear activity-dependent

gain change under our experimental conditions but head

movements do, what then is the site of action of the gain-changing

signal? The VS2- and VS3-cells are directly coupled to the motor

neurons innervating the neck muscles that mediate head pitch

movements [25,26]. We hence suggest that the gain-changing

signal acts at the level of the motor neurons or muscles (see below

and [16,17]). There is evidence for gain modulation at the level of

the motor neurons mediating fly head movements [21,34]. It has

Relating Neuronal to Behavioral Performance
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been proposed that a central signal changes the gain of optomotor

head pitch [16,17]. This central signal could elevate the gain of the

optomotor response and, in parallel, induce the fly to walk or fly.

Further evidence for such a central signal has recently been

provided for head yaw [21]. However, the gain-changing signal for

head pitch does not necessarily need to act on motor neurons–at

least not exclusively. The signal could (additionally) release a clamp

pulling the head to the thorax. Such a clamp was found to exist in

the flesh-fly, Neobellieria bullata [31]. This clamping mechanism in the

resting flesh-fly prevents proprioceptive signals about head

deflections from eliciting head movements and is thought to be

achieved by identified muscles that pull the head to the trunk

[26,31]. In Calliphora such a potential clamp could be released by the

aforementioned central signal when the fly switches to a state of

enhanced motor activity. This hypothesis is compatible with our

finding that the time course of visually induced head movements in

the low activity state is better predicted from the neuronal responses

by applying a second- rather than a first-order low-pass filter. The

state-dependent differences in the time course of the head

movements thus suggest an additional damping process in

accordance with a clamping mechanism.

Addressing the reliability of optomotor responses
In the following we often will refer to the variability intrinsic to a

given activity state as noise. Note however, that even within a

given activity state, the variability of behavioral responses may in

part be due to active processes of the nervous system rather than to

random fluctuations [35]. We conclude that the variability of

optomotor head pitch responses within a given activity state is

substantially governed by variability added downstream to LPTCs

based on the comparison of the optomotor response SNRs of two

activity states with predictions of optomotor responses from

neuronal data. To predict state-dependent movements we did

not separate the neuronal data into high and low activity state

responses because state dependent changes in VS2/3-cells during

the visual stimulation employed here are at most very small (Fig. 2).

If we thereby missed genuine state-dependent changes of LPTC

responses we would overestimate sensory variability present in

these neurons. Overestimating sensory response variability,

however, strengthens rather than vitiates our conclusion of

additional downstream variability, because such an overestimate

reduces the predicted SNR which we nevertheless found to surpass

the behavioral SNR (Fig4).

Although there is one VS2- and one VS3-cell in each brain

hemisphere, we based our predictions solely on the responses of

one neuron at a time, for reasons of simplicity. The responses of

the VS2- and VS3-cell to identical large-field stimulation are very

similar due to their common input organization and electrical

coupling [36,37]. Since the VS-cells from the two eyes are

indirectly coupled via the V1- and VS1-cells [38], a weak

correlation between the corresponding VS2/3-cells of the right

and left hemisphere is plausible. Nevertheless, because of at least

partly independent noise in these VS-cells, pooling their signals

should further increase the SNR of the predicted head movements,

even augmenting its superiority over the actually measured

behavioral responses.

The average head pitch responses can well be described by

linearly filtering VS-cell responses (Fig.3). Nevertheless, a reduc-

tion of the SNR downstream of the LPTCs could in principle be

due to postsensory processing that differentially affects the signal

and the noise as can be the case for nonlinear mechanisms.

However, results from other studies indicate that responses of the

frontal VS-cell responses are generally speaking transformed

linearly to their postsynaptic follower neurons [39–41]; see also

[42]. Findings of nonlinear processing in descending neurons

downstream of LPTCs refer to nonlinear summation of input

signals from multiple cells covering different parts of the visual

field that converge onto a downstream neuron [43]. This is

different from what we aim to cover with our low-pass filter

approach simulating the information flow within a single sensory-

motor strand. Moreover, optomotor responses have also previ-

ously been modelled by low-pass filtering of the responses of

motion-sensitive neurons [15,44,45]. Furthermore, our approach

is supported by the properties of insect muscle contractions that

have successfully been modelled by applying simple low-pass filters

[46]. Head deflections basically reflect the outcome of muscle

contractions which are caused by neck motor neurons. Hence,

applying of a low-pass filter for predicting head movements from

LPTC responses is a reasonable procedure. Linear processing,

however, does not affect the SNR. Therefore, we conclude that the

reduction of the SNR is rather caused by additional variability

impinging on the signal downstream of LPTCs.

Neck motor neurons and descending neurons integrate input

from several sensory channels and from a central input reflecting the

behavioral state of the fly [21,34,42,47,48]. In the present study we

only provided visual stimulation leaving other sensory channels

without input. However, these channels were still prone to

variability, which can be expected to influence the motor neurons

responsible for head pitch movements and thus to contribute to the

behavioral variability. Similarly, changes in the internal state of the

animal that were not taken into account by separating head

movements in those occurring in the high and low activity state,

respectively, may increase behavioral variability. Moreover, not

only the input to the motor neurons, but also the motor neurons

themselves can add variability [49,50]. Even further downstream,

muscles can introduce a considerable amount of variability as is for

instance found in the medicinal leech [51]. Finally, muscles not

directly involved in controlling head pitch movements as well as the

respective upstream elements could add variability. For instance,

lateral VS-cells, as well as the subsequent descending and motor

neurons evoke head roll possibly combined with a pitch component

[25,26,52]. By recording the responses of motor neurons or muscle

potentials preferably simultaneously with the responses of the

corresponding upstream LPTCs the contribution of postsensory

sources of variability could in future be unravelled in more detail.

Despite a considerable amount of variability that we conclude

adds to the signals inherited from the VS2/3-cells, head pitch

responses seem to be executed more reliably than steering

responses, the time course of which could only be reproduced in

model simulations by incorporating 16 times the noise of an LPTC

[15]. A higher reliability of head movements than of steering

responses is what one would expect taking into account the fact

that head movements of flies fine-tune gaze stabilisation in defined

periods of locomotor activity [53,54]. The reliability of visually

mediated head movements may even be higher under real world

conditions, when they are mediated by combining the information

from several sensory modalities (see above and [55,56]).

The impact of noise sources arising within an information

processing pathway from the sensory periphery to the final

behavioral outcome has previously been addressed (see above).

Recently, variability was also found to increase at consecutive

levels of processing in the auditory system of grasshoppers [57,58].

Additionally, similar to our findings, postsensory noise of about the

same amplitude as sensory noise can explain the variability of

human eye movements [3,4] (see however [2]). Hence, despite

neuronal mechanisms that may have evolved to optimize

information transmission, variability accumulates in several species

along a given sensory-motor pathway.

Relating Neuronal to Behavioral Performance
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Materials and Methods

Electrophysiology
One to four days old female blowflies (Calliphora vicina) were

taken from the laboratory stock. The animals were mounted on

custom-made holders. Wings and legs were removed and wounds

sealed by bees wax. In five of seven flies one haltere was fixated,

allowing only the other haltere to oscillate (see below). In the

remaining two flies both halteres were free to move. Movements of

a haltere were used as indicators for the activity state [16,17].

They oscillate when flies are walking or flying [30]. A small hole

was cut into the head capsule to allow access to the lobula plate.

We recorded intracellularly from seven VS2/3-cells in seven

different flies. These cells are sensitive in the frontal part of the

visual field of the fly and depolarise in response to downward

motion [24,59]. VS2/3-cells are thought to mediate downwards

directed head pitch movements [25,26]. For the recording we used

borosilicate micropipettes drawn on a microelectrode puller

(Sutter Instruments P-97). Electrodes were filled with 1 M KCl

and had a typical tip resistance of 25 to 60 MOhm. Data were

recorded using a 16 bit A/D-converter (DAQBoard 2000, IOtech,

Cleveland, OH) and analysed off-line with MATLAB (The

MathWorks Inc., Natick, MA, USA).

Image data acquisition and evaluation
During neuronal recordings of five VS-cells (in five different

flies) we monitored the activity of one haltere to distinguish the

state of motor activity of the flies using a CMOS camera

(LOGLUX i5CL, Kamera Werk Dresden, Dresden, Germany)

running at 250 Hz. The images were acquired using a National

Instruments frame grabber (National Instruments, Austin, TX,

USA) and a standard PC. The flies were illuminated by near-

infrared light-emitting diodes with a peak wavelength of 870 nm

which is beyond the spectral sensitivity of Calliphora photoreceptors

[60,61]. The spectral sensitivity of the camera ranged up to

1000 nm. We painted the haltere tips by infrared reflecting dye to

facilitate analysis of haltere movements. The two halteres can beat

independently [16], and often one haltere starts oscillating several

milliseconds before the other haltere does (Rosner, unpublished

results). Since they do not always beat at the same time it is

favourable to record oscillations of both halteres to gain

information about the fly’s state of motor activity. However, in

our experimental setup space was very restricted allowing us to

film one haltere only. We fixated the haltere which was not filmed.

Thus, we cannot be sure that all data we acquired without

observable haltere oscillation were indeed acquired during a state

of reduced motor activity. However, we can say for sure that trials

with haltere oscillation were recorded during states of elevated

motor activity. Haltere beat was evaluated offline by visual

inspection and, additionally, as described in detail in [16].

The data on head pitch movements of the flies were acquired in a

previous study [16]. Data acquisition and evaluation are described

there in detail. However, we simplified the analysis in two regards by

readjusting evaluation time windows: (i) As described in [16] only a

subset of trials was selected for further analysis to minimize a

potential effect of variable head position at the start of pattern

motion on the final pitch response. We accepted only those trials for

further analysis with a head orientation that deviates by less than

5 deg. from a reference orientation (for definition of reference

orientation see [16]). For the present study we readjusted the time

interval for determining these head orientations by calculating the

mean across a 30 ms interval starting 20 ms before and ending

10 ms after stimulus motion onset. (ii) The measured head

orientation traces of all selected trials were aligned to have zero

mean in the same time window starting 20 ms before and ending

10 ms after the onset of stimulus motion. This procedure was

applied to each fly separately. Both readjustments served to

standardize the time windows, but do not affect the conclusions

drawn in the previous account.

In the behavioral experiments the halteres served only indirectly

as the indicator of the activity state. Instead head jitter movements

were found to be highly correlated with haltere movements and

served as the indicator of the behavioral state [16].

Visual stimulation
The visual motion stimulus applied in the electrophysiological

experiments of the present account was identical to the stimulus

which was presented to flies in behavioral experiments in a

previous study [16]. Flies were mounted in front of a CRT

monitor with a resolution of 6406480 pixels and a refresh rate of

240 Hz. The stimuli were programmed and presented utilising a

Visage stimulus generator (Cambridge Research Systems, Cam-

bridge, UK), Matlab and a standard PC. The monitor was

positioned symmetrically in front of the fly enabling the stimulus

pattern to span an elevation from –25 deg. (ventral) to +45 deg.

(dorsal) and an azimuth from 245 deg to +45 deg. with respect to

a straight head position of the fly (0 deg., 0 deg.). We used a

random dot pattern as the visual stimulus. The pattern consisted of

40 randomly positioned bright dots (65 cd/m2) of 2 deg.

horizontal and 2 deg. vertical extent in front of a dark background

(0.0 cd/m2). In each experiment, the same stimulus was presented

repeatedly to a fly. During each trial in an electrophysiological

experiment, the stimulus pattern moved downwards for 200 ms at

168 deg. s21 after a stationary pattern had been shown for

1000 ms. The stationary pattern was preceded by a 300 ms flicker

stimulus. The flicker did not serve any particular purpose in the

electrophysiological experiments, but was applied in the behav-

ioral experiments to reset the head position after the preceding

trial. To employ the same stimulus conditions in the electrophys-

iological and the behavioral experiments we presented the reset

stimulus in both cases. In the behavioral experiments not all flies

experienced flicker as reset stimulus, some experienced upwards

directed motion. We do not have any indication that any specific

reset stimulus affects the signal-to-noise ratio (SNR) of the

behavioral experiments.

Modelling
To compare the variability of head optomotor movements with

the variability of neuronal responses we applied a simple modelling

approach. We predicted head movements from neuronal record-

ings and compared the variability of predicted and actually

observed head movements. For predicting head movements we

applied either a first-order low-pass filter or a second-order low-

pass filter to the neuronal recordings, depending on whether we

aimed to simulate head movements of a fly being in a state of

elevated or reduced motor activity (see Results section). The filter

windows were 2600 ms in length. The first-order low-pass filters

had time constants of 50 ms, 100 or 150 ms. The time constants of

the second-order low-pass filters comprised all combinations of the

three time constants used for the first-order filters.

Reliability analysis
To compare the reliability of actually observed head pitch

movements with the reliability of the neuronal responses we

determined the signal-to-noise ratio (SNR) of the observed head

movements and the predictions based on the neuronal responses.

For this we calculated the mean across trials for each single fly and

divided the mean by the corresponding standard deviation. To
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reduce variability originating from variable recording quality, we

only used sequences of trials with a rather stable resting potential

not deviating by more than 2.5 mV from the other trials of the

same sequence. The resting potential was determined from the

average across 1.5 s prior to visual stimulation when the monitor

was dark. Moreover a sequence of at least seven successively

recorded trials was required for further analysis. For some flies we

evaluated more than a single sequence of consecutive trials. In

these cases we calculated the SNR for each individual sequence of

consecutive trials and then determined the mean SNR for that

particular fly across the SNRs determined for the individual

sequences.
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