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Abstract

During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used
as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or
disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically
challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were
isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent
analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal
region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number
variations in single cell diagnostics.
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Introduction

During cancer formation and progression, cell populations with

distinct genetic aberrations arise that represent unique clinical entities

harbouring specific therapeutic targets [1,2]. A prominent example is

the gene locus of the epidermal growth factor receptor (EGFR), which

is a key player in tumor biology and an important target for

individualized cancer therapy. The DNA copy numbers for this single

locus significantly determine the phenotype of cancer cells and are

indicators for patient’s response to chemotherapy or radiotherapy [3].

Antibodies and small molecule inhibitors have been developed

impairing EGFR tyrosine kinase activity in various tumor types [1–3].

Most tumors can be completely removed by surgery and are

therefore unavailable for repeated sampling to monitor either

treatment response or treatment-induced changes in genomic

aberrations or disease progression, respectively. Recently, these

crucial processes can be assessed by the detection of blood-borne

cancer cells or disseminated tumor cells (DTCs) in bone marrow,

as prominent homing organ and major site of overt metastases in

cancer patients. The molecular analysis of these cells may reveal

unique information to tailor therapies preventing metastatic

progression [4,5].

Therefore, we developed an approach for a reliable high-

resolution quantitative genetic analysis of isolated single tumor cells

on the example of the EGFR gene. After enrichment, cells were

isolated by micromanipulation and subsequent linear whole genome

amplification was performed. Evaluation of this procedure has been

done by fine-tiling array-CGH and quantitative PCR in order to

accurately determine amplitude and extension of the EGFR

amplicon in single tumor cells.

Results

Micromanipulation and whole genome amplification of
single cells

The human mammary adenocarcinoma cell line MDA-MB-468

was selected as suitable model for method evaluation, since it

harbors an EGFR amplification and shows strong EGFR

overexpression as well as displays a stemness/committed progen-

itor cell phenotype [6,7]. However the level of amplification varies

between cells. For whole genome amplification (WGA), non-fixed

or slightly fixed cells were collected from the glass surface using a

micromanipulator equipped with a capillary designed to our

specific requirements. Cells were transferred in an aqueous

surrounding onto a C18-silane-coated glass stick carrying a spot

of dried complete cell lysis buffer (see online methods). The cell

lysate on the glass stick was directly transferred into a reaction tube

already prepared with the sample buffer for WGA to avoid any

loss of genomic material. The procedure is based on multi-

displacement amplification by the use of random hexamers and

the proofreading DNA polymerase Phi29 to ensure linear

amplification [8]. A single cell yielded in 2.04–2.96 mg PCR-

amplifiable DNA (average: 2.42 mg, SD 0.26), which is superior to

the results previously described [9].
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Transfer efficiency of micromanipulation and fidelity of the

WGA of one single cell including the EGFR locus of approximately

4.5 MB were validated with microsatellite PCR. Microsatellite loci

have been adapted from Tidow et al. [10] and detailed

information is provided as supplementary information (Table
S1, S2). All microsatellite loci could be verified.

Description of the EGFR amplicon in single cells by fine
tiling array CGH

To control for linear amplification of the DNA sequences by

WGA and to investigate the structure of the EGFR amplicon, we

analyzed the region harboring the EGFR gene by a high-resolution

two-color fine-tiling array-CGH (Roche NimbleGen Inc., Madi-

son, WI, USA). The custom-designed oligonucleotide arrays with

15 bp median probe spacing cover a genomic sequence of

approximately 4.7 Mbp on chromosome 7p11.2, including the

EGFR gene itself, and two reference regions on chromosome 2 and

chromosome 10 of about 200 kbp length each [11]. In general,

these reference regions show only minor genomic aberrations. A

correlation plot comparing the signal intensities between the

hybridization from the amplified DNA obtained from one single

cell compared to genomic DNA obtained from 500 cells indicates

the reliability of the preparation, pre-amplification steps and array

hybridization (figure 1c).

Data analyses of cell lines carrying EGFR amplifications (MDA-

MB-468, A431, and BT20) revealed an amplicon on chromosome

7 that consists of a main part containing the entire EGFR gene.

This central element is extended in the telomeric direction with a

sharp border at the end (figure 1 a, b), which indicated that the

amplicon is initiated at a distinct DNA sequence. From single cell

analysis of MDA-MB-468 cells displaying different EGFR copy

numbers, the precise amplicon borders were calculated by the

smoothing function of the Quantsmooth algorithm [12]. A further

extension of the amplicon was found in MDA-MB-468 cells with

the highest copy number gain (32 copies), showing an additional

sequence extension on the centromeric site (figure 1b). The data

were validated by quantitative SYBR-green PCR using LINE1

repetitive sequences as an intrinsic constant copy control [13]

(Table S3 and S4). This approach allows reproducible absolute

DNA quantification in a single cell, which has not been reported

so far.

Description of the EGFR amplicon in single cells by qPCR
Our next goal was the development of a reliable assay that can

assist therapy decisions in clinical routine. The results of the fine-

tiling array-CGH have shown that the amplified regions differ in

length dependent on the level of amplification of the whole region

(figure 1), but in all cases, the EGFR gene itself is included. Based

on the copy number levels determined by fine-tiling array analysis,

we standardized absolute qPCR measurements for the EGFR

exons 4, 7, 9, 15, and 21 and the non-coding 59-sequence of the

amplicon at position 54,485,000 in a SYBR green assay to

accurately describe EGFR amplifications in one single cell

(TableS5). The PCR efficiency ranged between 98.07% and

99.02% (average: 98.78%, SD 0.36). All assays showed consistent

results as presented in figure 2a. In clinical routine, where a simple

and robust assay is desirable, the reduction of these PCR reactions

to exon 7 and 9 and at the 59-end-sequence is sufficient.

Genomic heterogeneity in blood-borne cancer cells and
DTC populations from individual patients

To investigate, whether this integral approach developed and

optimized by using MDA-MB-468 cells, as model is also suitable

for the analyses of patient samples, we tested blood samples and

bone marrow samples of patients with metastatic breast cancer.

Cells were prepared as previously described [5,14]. Cytokeratin

and EpCAM antibodies are used as markers for the detection of

blood-borne or disseminated cancer cells [5]. We isolated several

single cells, stained with the antibody A45B/B3, from different

patient samples by micromanipulation and performed WGA as

described above. The WGA yielded in 1.96–2.84 mg DNA

(average: 2.36 mg, SD 0.25), which is comparable with the yield

obtained from single cultured cells. WGA was controlled by the

use of LINE1 DNA [13], which yielded in a mean of 330 ng

(range 3 ng–621 ng, SD 211) amplification product and allowed

the precise calculation of the PCR-amplifiable DNA in each

sample. From every patient sample, we analyzed four cells by

qPCR for exons 7 and 9 (figure 2) and the 59-end-sequence (data

not shown). The values of the EGFR measurements in non-tumor

cells have a median of about 0.9 in both qPCR assays, which is

expected to reflect the normal copy number of 2 (box plots of

figure 2c). Compared to these values, one third of the cells showed

a high EGFR amplification of at least 5-fold (p,0.0001), and about

25% of the samples showed a gain between 2- and 3-fold

(p,0.001). The detailed results for the single cells are shown in

figure 2c and 2d. One sample did not show consistence between

the measurements in exons 7 and 9. For this sample, we performed

additional qPCR measurements on exons 4, 15, and 21, which all

show a normal copy number for the respective locus. No single

tumor cell presented with a ‘‘normal’’ gene copy number. Cancer

cells without amplification of the EGFR gene showed low copy

number values (,0.7). These values are rather expected to be

caused by variation in the WGA procedure than by technical

artifacts of the qPCR, since the calculated starting amount of DNA

from most samples applied to the qPCR reaction (.40 pg) is

sufficient for reliable measurements and is in the range of the

calibration curves as shown for LINE1 intrinsic control (figure 2d).

Discussion

The aim of the study was the development of a protocol that

allows the quantitative genomic analysis of single tumor cells.

Primary tumor cells of epithelial origin are heterogeneous. It has

been speculated that only a small proportion of these cells show

specific ‘‘stem cell – like’’ features and may give rise to metastases

(reviewed in [15]). These cells may be characterized by specific

genomic aberrations that would provide them with growth

advantages and a more aggressive phenotype. This view is

supported by data from EGFR inhibitor studies as such, EGFR-

mutated adenocarcinoma represent a unique clinical entity

necessitating molecular diagnostics for therapy guidance [1].

Moreover, the generation of therapy resistant cell clones harboring

additional EGFR mutations or amplifications during therapy as

well as the overexpression and amplification of EGFR regulating

genes, e.g. ERFI1, have already been reported [2,16] Therefore,

the genomic investigation of single tumor cells that either reside in

the blood or in the bone marrow may help to improve predictive

molecular diagnostics. Particular in breast cancer, EGFR signaling

seems to be upregulated in basal-like tumors (triple-negatives),

especially in cells with stem cell like features [6,7,17,18].

Preliminary experimental data exist that benetits from EGFR

targeted therapy by cetuximab or laptinib are related to EGFR

amplification level [6].

Several research groups have investigated the possibility to

analyze a single tumor cell on the molecular level [19,20]. It has

been shown that the genome wide detection of aberrations by the

use of BAC arrays is possible in leucocytes and cell line cells [21].

Quantitative Genomic Analysis of Single Cells
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Furthermore, the studies of Stoecklein et al indicated a divergence

between the primary and systemic disease [19] in esophageal

cancer patients, which strikingly shows the need of the analysis of

single disseminated tumor cells.

In our study, we chose the MDA-MB-468 cell line model to

develop the protocol because of different stable EGFR amplifica-

tion levels in different clones of this cell line. By this, these cells

somehow mimic the heterogeneous in vivo situation and serve as a

well balanced control for the determination of gene copy levels.

We can show that the amplified DNA obtained from a single cell is

of sufficient quality to be used in a high-resolution fine-tiling array

analysis. The profiles of single cells show more background, but

compared to profiles from genomic DNA of the cell population the

same amplicon borders can be clearly identified. Genome wide

arrayCGH analysis gives an excellent overview about the genome

wide aberrations within a single cell, but the quantification of the

genomic changes is limited. A qPCR approach cannot be used to

screen for new aberrations, but enables us to quantify known,

potentially clinical relevant amplification and deletions. By the use

of the qPCR technique, differences in gene copy number could be

Figure 1. Fine-tiling array-CGH analyses. a: Array-CGH plots of genomic DNA of different breast carcinoma cell lines with different EGFR gene
copy numbers. b: Array-CGH plots of WGA amplified DNA from 500 MDA-MB-468 or single MDA-MB-468 cells (purchased at ATCC), respectively. The
region of the EGFR gene is depicted in green. c: Correlation plot of the signal intensities after array hybridization comparing the signals of the DNA
from one single MDA-MB-468 cell to the signals obtained from the DNA isolated from 500 MDA-MB-468 cells. Spots depicted in yellow represent the
signals outside the amplicon region, whereas spots indicated by the blue color represent the signals obtained by the amplicon region on
chromosome 7.
doi:10.1371/journal.pone.0026362.g001
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clearly distinguished as well on the level of genomic DNA of a pool

of cells as on the amplified DNA obtained from one single cell. We

could show that cells obtained from an individual patient are

heterogeneous concerning their EGFR gene amplification. The

analysis of only one or two cells per blood sample can therefore

lead to results that may not reflect the true clinical situation.

Analysis of as many cells as possible is essential to identify those

cells that may not be targeted by a specific therapy due to the

heterogeneity of the cell population. This finding, if confirmed in a

larger cohort of samples, could provide new insights in the biology

of metastasis and may help to explain failure of targeted therapies

in a significant proportion of patients.

The use of a quantitative PCR assay displays a robust and cost-

effective method that can be established under routine conditions.

Compared to the use of fine-tiling-microarrays, which are more

cost intensive and less robust concerning the interpretation of the

data, this methods could potentially be used in clinical routine for

the molecular investigation of single cells. This method for the first

time displays a straightforward approach to quantify the DNA

amount of a specific genomic region from one single cell.

By this, we present a reliable method for the absolute

quantitative determination of gene copies in single cancer cells

isolated from peripheral blood or bone marrow of cancer patients.

This method may not be limited to investigate the biology of

disseminating tumor cells, but may also become a new tool for the

assessment of single cell genomics with wide applicability in many

areas of experimental research. Moreover, future clinical applica-

tions can be envisaged. Beyond the investigation of the EGFR

gene, our method can be adapted to assess other molecular targets

(e.g. HER2 [21]), and to analyze cancer cells in other cytological

samples, where the low percentage of tumor cells limits the

genomic analyses by current methods.

Materials and Methods

Ethics Statement
From patients who provided blood samples, written informed

consent has been obtained. From bone marrow samples collected

after autopsy, written approval was given by the family members.

The use of medical records, blood and bone marrow was approved

by the ethics committee of the Medical Board Hamburg (reference

number #190504).

Cell Lines and Culturing
The breast cancer cell lines MDA-MB-468, BT-20, and MCF-7

as well as the carcinoma cell line A431 were obtained from the

American Type Culture Collection (ATCC) and cultured in

DMEM with 5% heat-inactivated fetal calf serum at 5% CO2.

Figure 2. Quantitative PCR. a: Quantitative PCR assays for different EGFR exons in MDA-MB-468 clones b: Calibration curves of the qPCR assays for
the LINE-1 control and EGFR exons 7 and 9, which indicate that amplification efficiencies of the control as well as sample DNA are similar. c, d: Results
of the qPCR analysis of exon 7 and 9 in single tumor cells from cancer patients. c: Boxplots of qPCR measurements of 10 non-tumourous cells from 3
different patients. The median of the values measured in non-tumour cells is about 0.9 (horizontal line in boxes). Values above 95% confidence limits
1.377 and 1.679 are considered to be gain of exon 7 and 9, respectively. The single black dots represent the values measured in tumor cells from
patient samples, according to the table given in d.
doi:10.1371/journal.pone.0026362.g002
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Cells were grown to 70% to 80% confluency before harvest and

transfer to slides for single cell picking.

Immunocytochemistry
Cells were incubated for 45 minutes with the primary antibody

A45B/B3 (Micromet, Munich, Germany), followed by a washing step

and a 30 minutes incubation with a rabbit-anti-mouse bridging

antibody (Z0259, Dako, Glostrup, Denmark). Detection has been

performed with the monoclonal mouse-APAAP complex (Dako,

Glostrup, Denmark) and BCIP/NBT as chromogenic substrate

according to the manufacturer’s protocol (BioRad, Hercules, CA,

USA).

Patient samples
Patient material was obtained from the University Medical Center

Hamburg-Eppendorf, Germany. Archival bone marrow samples on

cytospins were used. From patients who provided blood samples,

written informed consent has been obtained. These samples were

obtained from patients undergoing autopsy and of which the family

members had given written approval to take bone marrow samples

for research purposes. This procedure has been approved by the

local ethical committee. From patients who provided blood samples,

written informed consent has been obtained.

Enrichment procedure for blood-borne cancer cells and
DTC

Bone marrow samples and peripheral blood samples have been

processed by a Ficoll-density gradient to enrich mononuclear cells

and possibly epithelial tumor cells as previously described [12].

Shortly, bone marrow samples were obtained from the upper iliac

crest by needle aspiration and stored in heparin-treated tubes.

Mononuclear cells including tumor cells were separated by Ficoll-

Hypaque density-gradient centrifugation with a density of

1.077 g/ml. 76105 cells were cytospun onto glass slides, dried at

room temperature and stored at 280uC.

Transfer of single cells
1. Silanisation of glass sticks. The glass sticks with a

diameter of 1.9–2.3 mm were rinsed for one hour in 85uC in a

solution of 10% Neodisher Laboclean FT (Dr. Weigert, Hamburg,

Germany). HPLC-clean water was used for all dilution and washing

steps. After drying, the sticks were swayed in H2SO4 (98%, Merck,

Darmstadt, Germany) for one hour at room temperature and rinsed

in water. Sticks were allowed to dry for 15 minutes at 110uC and

subsequently swayed in 0.5% octadecyltrichlorsilane in octane

fraction (Fluka, Erlangen, Germany) for two hours. After

incubation in 96% ethanol for one hour, residues of ethanol and

silane were removed by rinsing with water thoroughly and vigorously.

Sticks can be stored dry and dark for up to eight weeks.

2. Lysis buffer. The lysis buffer is composed of 0.25% N-

lauroyl sarcosine, 2 M guanidinium thiocyanate, 0.01 M sodium

citrate pH 7.0, and 1% dimethylsulfoxide in HPLC-clean water.

The buffer was sterilized by filtration through a 0.2 mm PES filter

(VWR, Darmstadt, Germany) and stored at 220uC until use.

3. Stick preparation. Before use, DTT was added to the lysis

buffer at a final concentration of 60 mM. The complete lysis buffer

was diluted 1:10 with HPLC-clean water. To one end of each glass

stick, 0.2 ml of complete lysis buffer was applied and allowed to dry at

room temperature until complete dryness. The remaining salts now

form the so-called ‘Lysospot’.

4. Single cell picking. Subsequently, cells were collected by

the use of a micromanipulator: The microinjector Celltram Vario

and micromanipulator TransferMan NKII (Eppendorf Instruments,

Hamburg, Germany) were equipped with a custom-designed, flexible

capillary customTip type III with an inner diameter of 40 mm and a

bevelled end (45u), developed in close collaboration with Eppendorf

Instruments. Cells were transferred from the glass slide under visual

control by a nuclear fluorescent DAPI-staining to ensure that whole

nuclei were captured. To prevent loss of material during transfer and

cell lysis, cells were placed directly out of the capillary on the silane-

coated glass stick carrying the Lysospot. Due to the silane coating,

DNA binding to the glass will be prevented. Furthermore, the salts of

the Lysospot are concentrated to a very small area because of the

changes in surface tension due to the coating. The complete Lysospot

becomes activated by resolution due to the aqueous surrounding

during the transfer of the manipulated cell. The cell-containing glass

stick was transferred into a 200 ml PCR reaction tube containing 9 ml

of sample buffer of the Genomiphi V2 amplification kit (GE

Healthcare Europe, Freiburg, Germany) and transferred to 280uC
for 15 minutes. After thawing, 0.1 ml protease solution (Qiagen,

Hilden, Germany) was added, followed by an incubation step of

15 minutes at 50uC for protein digestion and an additional

incubation step of 15 minutes at 75uC for enzyme deactivation.

Whole Genome Amplification
Whole genome amplification was performed with the Genomiphi

V2 kit (GE Healthcare Europe, Freiburg, Germany) according to the

manufacturer’s protocol with the following modifications: The glass

stick remains in the reaction tube during amplification. The

amplification reaction was allowed to run for 150 minutes at 30uC
in a total volume of 20 ml. The WGA product was cleaned up with

NucleoSEQ spin columns (Macherey-Nagel, Düren, Germany) and

DNA concentrations were measured by the Nanodrop1000 (Peqlab,

Erlangen, Germany).

Microsatellite Detection
The allele status of the polymorphic repeats was investigated by

PCR amplification followed by separation on either a 2% agarose gel

or capillary electrophoresis. The reactions were performed in a total

volume of 10 ml under the conditions given below (Table S1) on a

Mastercycler gradient (Eppendorf Instruments, Hamburg, Ger-

many). The annealing temperature was adapted according to the

primers used as shown in Table S2. The separation was performed

using a four-color laser induced fluorescence capillary electrophoresis

system (AbiPrism 3130; Applied Biosystems, Wilmington, GE, USA)

utilizing GeneScan Standard ROX-500 for fragment length

evaluation. Evaluation was performed using Genemapper v2.03

evaluation software (Applied Biosystems, Wilmington, DE, USA).

Fine Tiling Array Analysis
The fine tiling array was designed by Nimblegen (Roche

NimbleGen Inc., Madison, WI) as described before [22] according

to our custom parameters (Table S6). Bases that are part of repetitive

elements have been removed from being considered for probe design.

Furthermore, the selected probes were not allowed to contain

ambiguous nucleotide codes. Additional criteria were: Annealing

temperature of 76uC, probe length between 50–75 bp, the probe was

allowed to only match once in the whole genome according to

Human genome assembly March 2006 (hg18), http://genome.ucsc.

edu (Table S6), and the probes ideally started with an offset of 15 bp.

With these specifications, about 395.000 probes can be spotted on

one array. The borders of the amplicons for the different MDA-MB-

468 cell clones were calculated by the smoothing function of the

Quantsmooth algorithm [12] and validated afterwards by quantita-

tive real-time PCR. For this purpose, a total amount of 53 SYBR

green assays were designed flanking the calculated start- and

endpoints sharing the same specifications. The assays were designed

Quantitative Genomic Analysis of Single Cells
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to amplify singular genomic sequences of 50–150 bps in length to

ensure specific quantification. Chromosome 2 and chromosome 10

were used as stable reference regions according to Naylor et al. [11]. If

necessary, the calculated start- and endpoints were corrected based

upon the array CGH plot and the qPCR results.

Quantitative RT-PCR
The quantification of the average gene copy number of EGFR

was performed using specific primers targeting singular sequences

of 50–150 bps within different exons of the EGFR gene as given in

Table S3. The PCR-reactions were performed on a Mastercycler

epgradientS Realplex4 under the conditions given in Table S4in a

total volume of 15 ml. Each sample was measured in triplicate. A

separate calibration curve was generated for each as say in each

run using leukocyte DNA from the same patient ranging from 10–

0.15 ng per reaction. DNA concentrations were normalized

referring to the constant copy number reference LINE1 [13].

Melting analyses were performed after each run to verify singular

product amplification.

EGFR gene copy numbers have been determined by calculating

the ratio between the DNA amount in the EGFR region divided by

the DNA amount in the reference region. A normal, diploid gene

copy number is ideally reflected by 1 (2n/2n), three copies of the

EGFR gene would be expected around 1.5 (3n/2n). To calculate

the cut-off for calling a sample gained, 95% confidence limits of

the reference values were used (�xxz2s). All measurements above

the upper limit were considered an EGFR gene copy number gain.

Supporting Information

Table S1 PCR protocol of the microsatellite PCR.
(PDF)

Table S2 Overview of the sequences of the microsatel-
lite primers.
(PDF)

Table S3 PCR primer pairs for the qPCR of the EGFR
gene.
(PDF)

Table S4 PCR protocol for the EGFR-qPCR.
(PDF)

Table S5 PCR primer pairs on chromosome 7.
(PDF)

Table S6 Contigs for array design.
(PDF)
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