
FilmArray, an Automated Nested Multiplex PCR System
for Multi-Pathogen Detection: Development and
Application to Respiratory Tract Infection
Mark A. Poritz1*, Anne J. Blaschke2, Carrie L. Byington2, Lindsay Meyers1, Kody Nilsson1, David E.

Jones1, Stephanie A. Thatcher1, Thomas Robbins1, Beth Lingenfelter1, Elizabeth Amiott1, Amy

Herbener2, Judy Daly3, Steven F. Dobrowolski1¤a, David H. -F. Teng1¤b, Kirk M. Ririe1

1 Idaho Technology, Inc., Salt Lake City, Utah, United States of America, 2 Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, United

States of America, 3 Primary Children’s Medical Center and Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America

Abstract

The ideal clinical diagnostic system should deliver rapid, sensitive, specific and reproducible results while minimizing the
requirements for specialized laboratory facilities and skilled technicians. We describe an integrated diagnostic platform, the
‘‘FilmArray’’, which fully automates the detection and identification of multiple organisms from a single sample in about one
hour. An unprocessed biologic/clinical sample is subjected to nucleic acid purification, reverse transcription, a high-order
nested multiplex polymerase chain reaction and amplicon melt curve analysis. Biochemical reactions are enclosed in a
disposable pouch, minimizing the PCR contamination risk. FilmArray has the potential to detect greater than 100 different
nucleic acid targets at one time. These features make the system well-suited for molecular detection of infectious agents.
Validation of the FilmArray technology was achieved through development of a panel of assays capable of identifying 21
common viral and bacterial respiratory pathogens. Initial testing of the system using both cultured organisms and clinical
nasal aspirates obtained from children demonstrated an analytical and clinical sensitivity and specificity comparable to
existing diagnostic platforms. We demonstrate that automated identification of pathogens from their corresponding target
amplicon(s) can be accomplished by analysis of the DNA melting curve of the amplicon.
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Introduction

The ability to rapidly detect and distinguish multiple infectious

organisms is critical for the accurate diagnosis of seasonal and

sporadic outbreaks, emerging pathogens and agents of bioterror-

ism [1,2,3,4]. Accurate pathogen identification allows clinicians to

determine the need for additional ancillary diagnostic testing,

antibacterial or antiviral therapy and can inform decisions

regarding hospitalization and infection control measures [5,6,

7,8,9].

Standard microbiological testing can require several days for

initial identification of a pathogenic organism, and many

organisms cannot be recovered using conventional techniques

[10,11]. Molecular methods, particularly the polymerase chain

reaction (PCR) have expanded the range of pathogens that can be

identified in clinical laboratories. However, existing diagnostic

assays and technologies are either limited in scope or highly

complex [12].

Although it has many advantages, the introduction of PCR

into the standard clinical microbiology and virology laboratory

has been associated with practical challenges [13] that have

limited routine use to large hospital or reference laboratories.

Specialized training and facilities are required for technicians to

perform PCR-based testing. For example, physically separated

locations for sample preparation, formulation of reagents,

reaction set up and amplification are needed to minimize the

potential for contamination which can lead to false positive

results. Even simple PCR platforms have instrument require-

ments that may challenge the capacity of clinical laboratories

[14,15,16,17].

PCR assays for infectious disease range from the relatively

simple, in which a pathogen is identified by the detection of a
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single positive amplification product, to multiplex assays for groups

of pathogens [18]. Multiplex PCR allows the potential amplifica-

tion of many nucleic acid targets within a single reaction [19,20,

21,22,23,24,25,26,27,28], and in theory is an ideal method for

multi-pathogen detection. However, multiplex PCR has several

practical limitations. Non-specific products generated through

primer-primer interactions interfere with amplification of the

actual targets and decrease sensitivity. In addition, as more true

targets are amplified, it becomes increasingly difficult to

distinguish the amplification products, although both bead-array

and microchips have been used to accomplish this [29,30,

31,32,33]. These constraints have limited the ability of multiplex

PCR to interrogate a large number of targets, and reports of

more than 8-deep multiplexing are uncommon [34,35,36,37,38,

39,40].

Despite the limitations, multiplex PCR strategies have already

demonstrated clinical utility, particularly for detection and

identification of pathogens causing respiratory tract infection

[17,35,38,39,41,42]. Multiplex PCR is an attractive diagnostic

option for respiratory infections for several reasons. The

differential diagnosis of respiratory infections, such as bronchi-

olitis and pneumonia, includes a large number of potential

pathogens that cause similar signs and symptoms [43,44,45].

Further, conventional diagnostic testing for respiratory pathogens

is limited by poor sensitivity or prolonged turnaround time of

antigen or culture-based testing. Finally the emergence of novel

pathogens that may result in severe disease, such as SARS and

swine-origin influenza A (H1N1-2009), requires the availability of

diagnostic testing with enough flexibility to introduce new targets

rapidly.

Sensitivity of detection is another important consideration when

developing diagnostic tests, as even very low levels of pathogen can

cause disease. Nested PCR is an exquisitely sensitive methodology

in which a target is amplified in a two-step process. In the first

stage, a template is amplified using a pair of ‘‘outer’’ primers. This

PCR product is diluted and subjected to a second stage

amplification using primers located within the first PCR amplicon.

The second stage product can be detected by real-time or end-

product analysis. Nested PCR increases sensitivity over conven-

tional PCR due to the ability to perform up to 50 or 60 total cycles

of PCR. Specificity of nested PCR is similar to that of probe-based

assays, as all 4 primers must match the template [1,46,47,48,

49,50,51]. Although the use of nested primer sets was described

very early in the history of PCR [52] it has not been widely

deployed in clinical settings because, in most systems, it is an open-

tube procedure that is highly subject to self-contamination.

An integrated system that can interrogate a clinical sample

for a broad range of pathogens is highly desirable in both

diagnostic laboratory and clinical settings [12,17,53]. Here we

describe a novel diagnostic platform, the ‘‘FilmArrayH’’, which

combines automated sample preparation, nucleic acid extrac-

tion and PCR-based detection of 31 separate targets from a

single unprocessed sample in one hour. It combines nesting and

multiplexing of the PCR (referred to here as nested multiplex or

‘‘nmPCR’’) together with DNA melting curve analysis [54] to

detect and distinguish multiple pathogens simultaneously.

Because the sample manipulations and reactions are performed

in an enclosed pouch, there is low risk of laboratory

contamination. We detail our validation of the system using

cultured respiratory pathogens and demonstrate its utility using

clinical samples obtained from children with respiratory

infections. The FilmArray and the FilmArray Respiratory

Panel (RP) pouch have since received FDA clearance for use

as an in vitro diagnostic (IVD) device.

Methods

The pouch
Each FilmArray pouch is comprised of an injection molded

polypropylene reservoir (the ‘‘fitment’’, 120 mm long, 10 mm

wide, 25 mm high, ‘‘A’’ in Figure 1B) heat welded to two sheets of

a polyester/polypropylene film containing a copolymer adhesive

layer. The sheets of film are welded together using heated plates to

form the pattern of channels and ‘‘blisters’’ (‘‘C’’ through ‘‘H’’ in

Figure 1B) comprising the sample processing stations and an area

containing a 102-well array for the second stage PCR. The fitment

contains 12 reservoirs (6 mm inner diameter on 9 mm spacing)

that hold the biochemical reagents. During pouch manufacture

three additional reagents are inserted into the appropriate blisters

of the pouch and the film is sealed shut under vacuum. Ceramic

beads are inserted into the sample lysis blister (‘‘C’’ in Figure 1). A

lyophilized pellet of silica-magnetic beads is inserted into blister

‘‘E’’ (Figure 1). A lyophilized pellet of the oligonucleotides (Idaho

Technology, Inc. (ITI)) used in the first stage multiplex PCR is

inserted into blister ‘‘G’’.

The second stage PCR array is manufactured from 0.5 mm

thick black polycarbonate plastic. 102 wells of 1 ml volume each

are drilled into the array (‘‘I’’ of Figure 1B and Figure 2).

Laminating film is heat-sealed to the back of each array and 96

arrays are placed on a platen on the bed of a piezo-electric

microarraying instrument (Nano-Plotter NP2.1e, GeSiM,

Großerkmannsdorf, Germany). The second stage primer sets are

dispensed into the wells of the array using the standard GeSiM

Nano-Tip. After spotting, the arrays are sealed with a second layer

of laminating film containing a matching array of holes (Figure 2)

and then attached to the outside of the pouch (‘‘I’’ in Figure 1)

using pressure sensitive adhesive film.

All of the other biochemical reagents are freeze-dried into the

12 wells of the fitment. Moving from left to right in Figure 1 the

wells contain:

Well 1: Process control material (Schizosaccharomyces pombe cells).

Wells 2, 3, 4, 5: Wash buffer

Well 6: Nucleic acid elution buffer.

Well 7: Reverse transcription/first stage PCR master mix:

Well 8: Dilution buffer

Wells 9, 10: Second stage PCR master mix: containing

LCGreenH Plus+ (ITI),

Well 11: empty

Well 12: Overflow reservoir for the second stage PCR mix.

After these reagents are loaded into pouches a ‘‘plunger tree’’

(‘‘B’’ in Figure 1B) is inserted into the fitment and the pouches are

placed in a Genesis Lyophilizer (VirTis, Gardiner, NY). At the end

of the lyophilization cycle, while the pouches are still under

vacuum, the plunger tree is pushed down into the fitment so as to

preserve the vacuum in each of the wells. To maintain the vacuum

(in the fitment and blisters) during long term storage, pouches are

packaged in a cylindrical aluminum can and sealed under vacuum

inside an aluminized polyester bag. Vacuum storage of the pouch

serves three functions. It helps to maintain the integrity of the

freeze dried reagents during long term storage, it enables sample

and hydration solution to be delivered in an unmetered fashion

and it minimizes the formation of air bubbles in the pouch, which

can be difficult to control or remove from microfluidic systems

[55].

The instrument
The FilmArray instrument is 39.1 cm long625.4 cm

wide616.3 cm high, weighs 8.2 kg (Figure 3) and runs on 120–

220 V AC power. It communicates with PC side software through

Automated Nested Multiplex PCR System
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USB and IEEE 1394 (FirewireTM) cables. The instrument contains

two Peltier devices to thermocycle the first and second stage PCR

reactions, a blue LED to illuminate the second stage PCR array

and a digital camera to record fluorescence generated in the

second stage PCR.

The movement of liquid through the pouch is controlled by

three pneumatic elements within the instrument. Pistons (located

behind ‘‘B’’ in Figure 1) depress the plungers in the top of the

fitment and thus inject reagents from the fitment into the pouch.

Silicone bladders inflate over the pouch blisters to move liquid

between blisters. Blunt edged pistons (‘‘Hard seals’’), positioned

over the channels connecting the blisters control liquid movement

between the blisters. Electronically controlled valves activate the

pistons, bladders and hard seals in a coordinated pattern to

regulate the flow of liquid through the pouch.

Nested PCR assay design
Organism related sequence information (complete genomes,

gene sequences and partial gene sequences) was obtained from

NCBI (http://www.ncbi.nlm.nih.gov). Regions containing large

conserved segments of protein sequence or conserved 59 UTR

sequences (for human Rhinovirus (HRV) and Bordetella pertussis (B.

per)) were selected for assay targets (Table 1). Nearest neighbor

information was obtained through the NCBI Taxonomy database

Figure 1. FilmArray pouch. (A) A FilmArray pouch was injected with
mock sample (here colored blue for illustrative purposes) in the left side
injection port and hydration solution (colored red) in the right side
injection port. (B) The blisters of a FilmArray pouch were filled with
different coloring (and the channels between the blisters heat sealed
shut). In this pouch the plunger tree was made from plastic dyed blue.
The fitment and film are normally at right angles to each other; for
clarity the pouch has been flattened. (C) A schematic of the pouch
showing a trace of the blisters, channels and array wells (black) and the
functional areas of the pouch (red).
doi:10.1371/journal.pone.0026047.g001

Figure 2. Schematic of second stage PCR mix entering the
array. The layers of film and adhesive attaching the array to the pouch
are separated to show the flow of liquid into the cells of the array
(figure is not to scale). From the top the layers are: 2nd pouch film, 1st
pouch film, array adhesive layer (orange), pricked cover film, array
(black, with wells), and array cover film. All of the actual layers are
transparent except for the array itself. Second stage PCR primers are
spotted into the cells during manufacture and air-dried (Methods).
Arrows show the flow of PCR master mix (without primers) entering the
array through a hole cut in the 1st pouch film.
doi:10.1371/journal.pone.0026047.g002

Figure 3. FilmArray instrument with pouch being loaded.
doi:10.1371/journal.pone.0026047.g003
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http://www.ncbi.nlm.nih.gov/Taxonomy [56,57] and used in

alignments to ensure specificity of assay design. Assays were

designed with a first stage PCR amplicon length of 145 to 450

(median 193) base pairs (bp). Primer sites for the second stage PCR

amplicons were located within the first stage PCR amplicon and

were designed to generate an amplicon of approximately 49 to 180

(median 88) bp. Primer lengths were between 17 and 37 bp and

the annealing temperatures ranged from 54uC to 72uC. Degen-

eracy of up to 64-fold was used in some primer designs in order to

accommodate sequence diversity but degenerate bases were not

allowed within 4 bases of the 39 end. In order to avoid higher

order degenerate primers, some assays utilize multiple indepen-

dent primers. When multiple primers were needed to achieve full

coverage of diverse organisms, they were either separated as pairs

in distinct wells of the array, or combined as a multiplex in single

wells.

1st and 2nd stage assays were initially tested separately to ensure

that they produced the expected amplification product, and that

RNA assays were dependent on the presence of reverse-

transcriptase in the reaction mix. An additional criterion was that

all 1st and 2nd stage primers must function well at the same

annealing temperature. First and 2nd stage assays were then

combined to form a singleplex, nested assay and tested for

efficiency, sensitivity and specificity using quantification cycles (Cq,

[58]) as the readout. The first stage primers from nested assays

with good overall amplification efficiency were subsequently

combined as a multiplex. The Cqs for each assay performed

either as a singleplex or multiplex in the first stage were then

compared. For most assays the Cqs were quite similar. For the few

cases where this was not true, moving one or the other primer a

few nucleotides along the target sequence was sufficient to rescue

the performance in the first stage multiplex PCR. After each

redesign all assays were retested as described.

Performing a FilmArray run
Pouch preparation. The freeze-dried reagents in the

fitment are resuspended with hydration solution using a 3 ml

syringe fitted with a blunt metal cannula. The cannula is inserted

into the hydration port (‘‘X’’ in Figure 1B) where it breaks a

septum in the port. The vacuum in the fitment draws liquid to fill

wells 2 through 11 (,80 ml each). Sample to be tested (a

nasopharyngeal aspirate (NPA) in PBS or a nasopharyngeal swab

(NPS) in viral transport medium) is mixed with two volumes of a

denaturing sample buffer and injected into the pouch through the

sample injection port (‘‘Y’’ in Figure 1B). Well 1 draws in 300 ml

of this mixture). The loaded pouch is then inserted into the

FilmArray instrument, and the pouch and sample are identified

to the instrument by the operator using a hand-held bar code

reader. After the run is started all further steps are performed by

the instrument.

Table 1. FilmArray RP Pouch Pathogens, Gene Targets and LOD95.

Organism Gene Target(s) Straina LOD95
b

AV Hexon Type 1 300

BoV NP-1 Clinical Sample 4000

B. per Toxin A639 4,000

C. pne ompA TW183 3000

CoV 229E Polymerase VR-740 4

CoV HKU1 Nucleoprotein PCMC 6123 1.96106

CoV OC43 Nucleoprotein VR-759 600

CoV NL63 Nucleoprotein NR-470 5

EV 59 UTR Echovirus 6 30,000c

hMPV Nucleoprotein hMPV-16/IA10-2003 Type A1 2

HRV 59UTR 1A 1

Flu A (H1N1) Matrixd, NS1d, HA1 A/Brisbane/59/07 200

Flu A (H1N1- 2009) Matrixd, NS1d, HA1-2009 A/SwineNY/03/2009 100

Flu A (H3N2) Matrixd, NS1d, HA3 A/Wisconsin/67/2005 5

Flu B Hemagglutinin B/FL/04/06 60

M. pne Toxin M129 – Type 1 30

PIV 1 Hemagglutinin Type 1 500

PIV 2 Fusion Type 2 10

PIV 3 Fusion Type 3 10

PIV 4 Fusion Type 4a 5,000

RSV Matrix RSV Type A 2

aSee Table S1 for the source of the organisms.
bLoD concentrations are expressed in CFU/ml and TCID50/mL for bacteria and viruses respectively except for C. pne and BoV (DNA copies/mL) and CoV-HKU1 (RNA

copies/ml) respectively (Methods).
cThe LoD for Enterovirus (30,000 TCID50/ml) is based on positive results for the Entero1 or Entero2 assays. A final result of Human Rhinovirus/Enterovirus based on the
combination of 6 different assays (HRV1–4, Entero1 and Entero2) can be obtained at much lower concentrations (,300 TCID50/mL).

dThe Flu A Matrix and NS1 gene assays are referred to as ‘‘pan1’’ and ‘‘pan2’’ respectively in the text.
AV, Adenovirus; B. per, Bordetella pertussis; BoV, Bocavirus; C. pne, Chlamydophila pneumoniae; CoV, Coronavirus; EV, Enterovirus; FluA, Influenza A ; FluB, Influenza B;
hMPV, Human metapneumovirus ; HRV, human Rhinovirus; M. pne, Mycoplasma pneumoniae; PIV1–4, Parainfluenza viruses 1–4; RSV, Respiratory Syncytial Virus.
doi:10.1371/journal.pone.0026047.t001
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Sample injection into the pouch is performed in a biosafety

cabinet following the appropriate biohazard guidelines for working

with potentially infectious samples. For the RP pouch, the

FilmArray instrument may be operated on a laboratory bench

or inside a biosafety hood.

Sample lysis. Well 1 of the fitment contains the sample

together with S. pombe yeast cells freeze-dried into the well as a

processing control. A piston adjacent to the fitment forces the

contents of well 1 into the large cell lysis blister (‘‘C’’ of Figure 1)

where viruses and bacteria (as well as the yeast control material

freeze dried into well 1) are mechanically disrupted by 60 seconds

of vigorous agitation with ceramic beads. The force for this

disruption comes from a rotating metal bar located behind the

plane of the pouch shown in Figure 1.

Nucleic acid purification. Total nucleic acid in the sample

is isolated by moving the sample lysate across the silica-magnetic

beads particles present in well ‘‘E’’. A retractable permanent

magnet (located behind blister ‘‘E’’ in Figure 1) is used to collect

the magnetic beads in this blister. Magnetic beads are

concentrated in blister ‘‘E’’ with the magnet and washed 3 times

with buffer from wells 3, 4 and 5. After the nucleic acid binding

step, blister ‘‘C’’ serves as a waste container for later steps in the

process. Nucleic acid is eluted with buffer brought in from well 6

and all of the eluted material is moved through blister ‘‘F’’ into

blister ‘‘G’’ where the mixture serves to resuspend the freeze dried

pellet of first stage PCR primers.

cDNA synthesis and outer multiplex PCR. Reverse

transcription and first stage PCR occur in blisters ‘‘F’’ and ‘‘G’’.

PCR master mix (containing the reverse transcriptase) from well 7

of the fitment is pushed into blister ‘‘F’’. Bladders push both

blisters against a Peltier device behind the pouch. A mechanical

hot start is achieved by holding the contents of the two blisters

separate (using a hard seal between them) until they reach 54uC.

Reverse transcription occurs during an initial 3 minute hold at

54uC. The first stage PCR consists of 26 cycles of 94uC for

4 seconds followed by 60uC for 19 seconds. During reverse

transcription and PCR cycling the contents of the reaction are

mixed by moving the liquid between blisters ‘‘F’’ and ‘‘G’’. At the

end of cycling the reaction is diluted approximately 225-fold into

second stage PCR master mix by two successive dilution steps, first

with TE buffer from well 8 and then with PCR master mix from

wells 9 and 10.

Nested PCR. The second stage PCR occurs in the wells of

the array (‘‘I’’ in Figure 1). A mechanical hot start is achieved by

holding the second stage PCR master mix/diluted template

mixture at 90uC while the array is heated to 75uC. The array is

then flooded with this mixture (shown schematically in Figure 2)

which hydrates the inner primers in their individual wells. To seal

the PCR wells shut, a clear plastic bladder in the instrument is

inflated over the array after it is flooded. Second stage PCR

cycling conditions are 94uC for 4 seconds and 63uC for 19 seconds

for 30 cycles. Ramp rates are approximately 1.7uC/sec. Images

can be acquired once per PCR cycle in order to generate

conventional real-time PCR amplification curves.

Amplicon melt analysis. After the final PCR cycle the

sample is held at 63uC for 5 sec followed by a linear ramp in

temperature from 68uC to 95uC at a nominal rate of 0.5uC/

second. Images are acquired 10 times per second.

FilmArray data analysis
The FilmArray instrument is capable of collecting fluorescence

images and corresponding temperature data during the temper-

ature ramp performed after the second stage PCR. The melt

curve, defined as the average fluorescence intensity of each well as

a function of temperature, is the basis for the automated organism

detection algorithm described below. During the development of

the system, the instrument was also programmed to acquire

images once per PCR cycle in order to generate conventional real-

time PCR amplification curves and corresponding Cq values.

However the amplification data are not used in the automated

organism calls for the commercial FilmArray system (see Results).

For the automated analysis, a hierarchy of calls is made: first for

individual wells, then for individual assays (when specific primers

are replicated in multiple wells of the array) and finally for each

organism. This analysis is first performed on the control assays. If

the controls return positive results, the analysis proceeds to the

pathogen assays and the results are reported. If controls assays

return a negative result, the run is declared ‘Invalid’ and no

organism results are reported.

For each well, curve shape and peak location analyses of the

melt curve are used to make a ‘‘Positive’’ (amplicon present) or

‘‘Negative’’ call. If two or more replicate wells are Negative for any

one assay, then assay is called ‘‘Negative’’. Next, if two of the

melting temperatures (Tms) for positive replicates are within assay-

specific limits (see Results) then the software assigns a positive call

to the assay. For organisms with a single associated assay the final

test result of ‘Detected’ or ‘Not Detected’ is based on the assay call.

For influenza A and Rhinovirus/Enterovirus, the final test result is

based on the integration of all associated assays.

Sources of viruses, bacteria and clinical samples
Viruses and bacteria used in this study are indicated in Table

S1. Growth, quantification and verification of viral and bacterial

cultures were performed by Zeptometrix (Buffalo, NY). Bocavirus

(BoV) and Coronavirus (CoV) HKU1 could not be grown in

culture. Instead, well-characterized clinical specimens were

utilized and quantified in copies per ml by real-time PCR against

a standard curve of synthetic template.

Residual clinical NPA specimens (stored frozen at 280uC) came

from children younger than 18 years who had NPA collected for

respiratory viral testing by direct fluorescent antibody (DFA) and

culture at Primary Children’s Medical Center (PCMC), Salt Lake

City, UT between 2006 and 2008. Approximately half of the NPA

specimens chosen for analysis were negative by DFA and viral

culture. FilmArray testing was performed at both PCMC and ITI.

PCR results were not used to inform clinical management or

reported to microbiology technicians performing DFA and viral

culture.

FilmArray data used for tuning the melt calling algorithm were

acquired at sites performing beta testing of the instrument. The

data used to validate the algorithm were acquired during clinical

trials of the FilmArray system and RP pouch at the Medical

University of South Carolina (Frederick S. Nolte, PhD), Detroit

Medical Center (Hossein Salimnia, PhD), and Children’s Medical

Center of Dallas (Beverly Rogers, M.D.).

The institutional review boards of the University of Utah and

PCMC approved this study and granted a waiver of informed

consent because the patient samples were de-identified. All

external clinical studies were performed with appropriate IRB

approval. Data from these sites were de-identified before being

sent to Idaho Technology.

Direct Fluorescent Antibody testing and viral culture
The PCMC microbiology laboratory performs DFA for seven

respiratory viruses: Influenza A (FluA), Influenza B (FluB),

Respiratory Syncytial Virus (RSV), Parainfluenza viruses 1–3

(PIV 1–3) and Adenovirus (AV) using a panel of DFA assays

(Simulfluor respiratory screen, Light Diagnostics, Temecula, CA)

Automated Nested Multiplex PCR System
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with reflex to viral culture. Human metapneumovirus (hMPV) is

detected with a specific hMPV monoclonal antibody (Diagnostic

Hybrids, Athens, OH).

Viral cultures are performed using a single cell line (R-Mix-Too;

Diagnostic Hybrids) with an exit stain at 72 hours. The sensitivity

of DFA testing, compared with viral culture, was 90% for FluA,

72% for FluB, 99% for RSV, 77% for PIVs, and 92% for hMPV,

with specificity of 90% for all of the viruses in the PCMC

laboratory [59,60]. Technicians at ITI and PCMC were blinded

to DFA results while evaluating NPA samples using FilmArray.

Reproducibility was not evaluated in this study.

Statistical analysis of the FilmArray versus DFA results
McNemar’s test is used to compare the DFA results to the

FilmArray results [61]. The test compares the number of

discordant results, shown in the off diagonals of the paired

262 table (Table 2), to estimate the probability that the two

methods have equal sensitivity and specificity. We chose to use

the terms positive % agreement and negative % agreement to

report the test characteristics of the FilmArray respiratory panel.

Positive percent agreement (sensitivity) is the percent of time that

FilmArray RP detected a virus when DFA detected it. Similarly,

negative percent agreement (specificity) is the percent of time

that FilmArray RP did not detect a virus when DFA did not

detect it.

If the sensitivity and specificity of the two methods are equal, the

two off diagonals should be approximately equal and the estimated

probability of being the same should be high. If one method is

more sensitive or specific than the other, one of the off diagonal

cell counts would be larger than the other and the estimated

probability that the two methods have the same sensitivity and

specificity would be low. The test does not provide the user with

the information to determine that one method is more sensitive or

the other is more specific, rather only gives them the power to say

that they are different.

Results

Optimization of the FilmArray chemistry
Initial development of the system was performed using DNA

and RNA targets from Saccharomyces cerevisiae and Schizosaccharomyces

pombe. To optimize the amplification of RNA targets we used

intron-spanning primers to detect mRNAs and to exclude genomic

DNA. Nested assays developed on conventional PCR instruments

were moved into the FilmArray platform. Whole organisms or

purified nucleic acid were tested in different steps of the pouch to

evaluate both the nucleic acid purification and nmPCR portions of

the process.

To maximize the sensitivity of the system, we determined the

number of cycles in the first stage PCR that are needed to enter

the plateau phase of the reaction [62,63]. For the first 25 cycles of

the 1st stage multiplex reaction, amplification of specific product is

efficient, and each additional 1st stage cycle reduces the Cq in the

nested reaction by one. After this point there is diminished

efficiency of the first stage PCR and for this reason, the first stage

PCR is run for 26 cycles.

The completed first stage PCR mixture is diluted and then

mixed into fresh PCR reagents. We determined empirically that

two successive dilutions of ,15 fold were necessary and sufficient

to minimize primer carryover from the first stage PCR. Dilution of

less than 100 fold generated nonspecific amplification products in

the second stage PCR. Dilution of more than 300 fold caused a

reduction in sensitivity.

The second stage PCRs are performed in individual wells of a

high-density polycarbonate array (‘‘I’’ in Figure 1 and shown

schematically in Figure 2). The format of the array is analogous to

Table 2. Comparison of FilmArray RP to DFA.

FilmArray RP DFA
Positive Percent
Agreement

Negative Percent
Agreement

Discordance
P Valuec

Posa Nega (95% CI)b (95% CI)b

AV Pos 22 32 84.6 (65.1–95.6) 89.4 (85.4–92.6) ,0.001

Neg 4 270

hMPV Pos 4 10 66.7 (22.3–95.7) 96.9 (94.4–98.5) 0.021

Neg 2 312

Flu A Pos 14 2 100 (76.8–100) 99.4 (97.7–99.9) 0.50

Neg 0 312

Flu B Pos 1 8 100 (2.5–100) 97.6 (95.2–98.9) 0.008

Neg 0 319

PIV1 Pos 6 0 54.5 (23.4–83.3) 100 (98.8–100) 0.063

Neg 5 317

PIV2 Pos 10 8 90.9 (58.7–99.8) 97.5 (95.1–98.9) 0.039

Neg 1 309

PIV3 Pos 19 28 95.0 (75.1–99.9) 90.9 (87.1–93.9) ,0.001

Neg 1 280

RSV Pos 37 9 94.9 (82.7–99.4) 96.9 (94.2–98.6) 0.035

Neg 2 280

aPositive or Negative test result comparing FilmArray RP (new test) to DFA (reference standard subject to error). (N = 328)
bClopper-Pearson 95% confidence Interval.
cMcNemar test, comparing discordant cells (FilmArray positive, DFA negative) vs (FilmArray negative, DFA positive).
doi:10.1371/journal.pone.0026047.t002

Automated Nested Multiplex PCR System

PLoS ONE | www.plosone.org 6 October 2011 | Volume 6 | Issue 10 | e26047



that of a microarray, in which analyte assays are spatially

separated for identification. In contrast to a standard microarray,

PCR amplification is performed in each well. Specific primers that

nest within a particular first stage PCR amplicon are dried into

each well; each assay is present in triplicate within the array. The

double-stranded DNA binding dye LCGreenH Plus [54,64] is used

to monitor fluorescence changes during PCR amplification and

during a post-PCR amplicon melt.

The FilmArray pouch incorporates three controls to assess the

performance of key steps in the system. As an RNA process

control, the yeast S. pombe is freeze dried into the first well of the

fitment. Outer and inner primers targeting a spliced mRNA from

S. pombe are included in the pouch. A positive result for this assay

provides evidence that all steps of the pouch completed correctly.

A double stranded DNA oligonucleotide in the first stage PCR

master mix and the appropriate nested assay monitors all steps

from the first stage PCR forward. A different DNA oligonucleotide

is spotted into the array along with the appropriate forward and

reverse primers to monitor the second stage PCR.

Development of respiratory pathogen assays for the
FilmArray

In parallel with the development of the FilmArray instrument

and pouch we designed a panel of assays to detect viruses and

bacteria known or suspected to cause upper respiratory tract

infection in humans. Pathogens were chosen in consultation with

pediatric infectious disease experts (AJB, CLB). Primers were

designed to amplify conserved regions of the targets using standard

software and alignment tools. The assays were initially optimized

in conventional PCR instruments, using as template either

organism from reference collections or pediatric NPA samples

that tested positive for respiratory viruses by conventional (DFA)

testing or the assays described here. Sequencing was used to

confirm target identity. A successful set of assays for 23 targets

from 21 pathogens was transferred to the pouch. The final

FilmArray RP pouch contains 61 primers in the outer multiplex (of

which four are for controls) and 31 inner second stage PCR assays

(spotted in triplicate on the array with nine empty wells as negative

controls). Pathogens and gene targets in the optimized RP pouch

are listed in Table 1. The yeast RNA process control and the

second stage PCR control are used to catch failures in the different

steps of the pouch.

Detection of virus and bacteria using the FilmArray
instrument and pouch

Typical amplification and melt curves generated using a

research version of the FilmArray instrument and RP pouch are

shown in Figure 4. FluA H1 virus (200 Tissue Culture Infectious

Doses-50% (TCID50)) injected into an RP pouch produced

amplification products in the wells of the array containing PCR

primers specific for all of the FluA H1 specific targets (Figure 4A).

Melting curves generated from wells for a given assay have Tms

that are characteristic of the amplicons from those targets

(Figure 4B). The FluA H3 assay, which should not be positive

for this virus, does not show evidence of amplification or melt

peaks. Figure 4E and F show the result of injecting a very high

level of another organism, B. per, into a FilmArray pouch. The

amplification curves for the B. per assay replicates have a Cq of 5.

This is the earliest Cq observed in the system and represents

dilution and second stage amplification of an outer amplicon that

has fully entered plateau in the first stage reaction.

FilmArray can detect multiple targets in a single assay, and in

particular, detect a low-copy target in the presence of a different,

high-copy target. Figure 4C and D shows the results from a pouch

in which both the high-titer B. per and low-titer FluA were injected.

The B. per is detected early (low Cq), as expected. In addition, all of

the Flu A target amplicons are detected, with similar Cqs and Tms

as found for the FluA sample alone.

Figure 4E and 4F also show the RNA process control and the

second stage PCR control. The assays amplify and produce the

expected characteristic melts indicating that 1) all of the different

steps of the pouch performed as expected and 2) the sample did

not inhibit the pouch chemistry.

Pre-clinical evaluation of the FilmArray with pediatric
NPA samples

To determine whether the FilmArray system would detect

organisms in patient samples, we performed a study using

pediatric NPA samples previously tested for respiratory infection

at PCMC by DFA. Pre-clinical testing was performed at ITI and

also during a 2-month placement of an instrument within the

PCMC microbiology laboratory. Positive organism calls were

made by expert users examining the amplification and melt curves.

Three hundred and twenty eight samples were tested by both DFA

and FilmArray. The results were compared for those viruses

identified by both testing methods. When analyzed separately,

similar results were obtained from both the research and clinical

laboratories (data not shown) and thus combined data is presented.

The FilmArray, with 21 respiratory pathogen assays, identified

significantly more pathogens than DFA in these pediatric samples

(Figure 5). FilmArray testing decreased the number of clinical

samples with no pathogen identified from 63% by DFA to 19% by

FilmArray (p value,0.0001). For the pathogens tested by DFA,

the concordance between FilmArray and DFA testing was high.

Positive percent agreement with DFA ranged from 55%–100%,

although for most the agreement was .90% (Table 2). The two

pathogens with the lowest percent agreement were PIV1 (55%)

and hMPV (67%). Some samples that were PIV1 positive by DFA

were PIV3 positive by FilmArray and were confirmed to be PIV3

by sequence analysis. Because the FilmArray testing was done

retrospectively, DFA could not be repeated. For hMPV, there

were too few positive samples to fully interpret discordant results.

Using amplicon melting to automate analysis of the
assay results

A diagnostic system that automates the technically demanding

steps of nucleic acid isolation and PCR amplification would benefit

from automated analysis of the PCR results. FilmArray runs

generate large amounts of data in the form of real time

amplification curves and the associated melt curves. In similar

systems the properties of the amplification curve are used to make

a positive or negative call for that assay [65]. In the course of

analyzing the FilmArray data from reference strains and clinical

samples, we observed that the amplicon melt curve shapes and

Tms were highly specific to the organism targeted by the nested

PCR and thus could provide an additional filter for detecting each

organism. For high or moderate titer organisms, the FilmArray

system produces both robust amplification and melt curves with a

high signal-to-noise ratio (Figure 4A and B). For very low titer

organisms, the amplification curve is often obscured by the noise

inherent in thermocycling. For example, Figure 6 shows the

amplification and melt curve data from a pouch injected with a

very low level FluA sample (1/200th of that in Figure 4). Of the

three assays in the pouch that can detect this organism, neither the

FluA pan2 nor the FluA H1 pan amplification curves show a rise

above baseline; only the FluA pan1 assay produced significant
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Figure 4. Real-time amplification and melt curves from the array. Respiratory Pathogen pouches were injected with viral transport medium
spiked with 200 TCID50 FluA H1-seasonal (panels A and B), 46106 cfu B. per and 200 TCID50 FluA-H1 (panels C and D), or 46106 cfu B. per (panels E and F) and
run on the FilmArray instrument. Real time amplification curves (panels A and C and E) and post-amplification melt curves (panels B and D and F) for selected
wells on the array are shown. Assays are spotted in triplicate: FluA-pan1 (orange), FluA-pan2 (pink), FluA-H1-pan (red), FluA-H3 (black), B. per (Green), Yeast RNA
process control (dark blue), Second stage PCR control (light blue). For clarity the controls are shown in panels E and F only.
doi:10.1371/journal.pone.0026047.g004
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amplification. By contrast, a robust signal can be detected in the

melt curves for the same sample (Figure 6B). The automated

analysis of the melt curves produced a positive result for the FluA

pan1 and pan2 assays (2 or more of the 3 replicates were positive)

and a negative result for the FluA H1 pan assay (only one melt

curve was positive).

To compare the sensitivity of a detection algorithm based on

melt curve analysis to one based on amplification curves, we had

expert users annotate a total of 18,156 amplification and melting

curves as positive or negative. Automated analysis of the data using

both the amplification and melt profiles produced a sensitivity of

94.7%, a specificity of 99.95%, and an error rate of 4.15%

compared to the expert user’s annotations. By comparison,

analysis of the melt curves alone produced a sensitivity of

97.49%, a specificity of 99.6%, and a total error rate of 2.92%

compared to the expert calls. The higher error rate of the

combined analysis is explained by false negative calls for weak

amplification curves. Therefore we proceeded to develop an

automated analysis of the FilmArray data using only the melt

curves.

To maximize the specificity of melt curve analysis, we

determined the range of possible Tms for amplicons from each

different organism assay. The theoretical melting temperature of a

DNA sequence on the FilmArray instrument was calculated using

the model (modified from [66]):

Tm~T0zTGC � GC{TL=L, ð1Þ

where GC is the mole fraction of G and C bp in the sequence, L is

the length of the amplicon, and To, TGC, and TL are empirically fit

parameters estimated using FilmArray data from samples of

known sequence. GenBank was searched for sequence variants of

each organism and these data were trimmed to the inner PCR

product of the nmPCR. Predicted Tms for these variants were

calculated using the mathematical model determined above (the

data for hMPV are shown in Figure 7A). This distribution of Tms

was used to establish the expected melt range for each assay. These

ranges were expanded beyond the minimum and maximum

predicted Tms to account for system variability (determined by the

Tms of the control assays) and the Tms obtained from initial

clinical testing (Figure 7B). To validate these predictions, the

distributions of Tm data from testing of reference strains

(Figure 7C) and from further clinical evaluations (Figure 7D) were

compared to the initial melt range. The overlap in distribution of

Tms between the different sample sets suggested that the melt

ranges adequately, capture the full diversity of amplicon Tms for

this organism. Narrowing the melt window in this way eliminates

some false positives due to nonspecific amplification (data not

shown).

To maximize sensitivity and specificity of the melting curve

detection algorithm we optimized it using a large training dataset

comprising 1566 RP pouch runs performed both at Idaho

Technology (900 runs) and at external sites (666 runs) (Methods).

The majority of the data generated at Idaho Technology was

derived from contrived samples spiked with dilution series of the

various target organisms (Table S1). Data from external sites was

primarily composed of residual archived clinical samples evaluated

during beta testing of the system. Using a semi-automated process,

Figure 5. Detection rates of the FilmArray RP pouch compared to DFA. Pediatric NPA samples (N = 328) were tested either by DFA at PCMC
(yellow bars) or on the FilmArray (Blue bars). The percent of samples in which no virus (Negative) or one of the indicated viruses was detected is
shown. The viruses are grouped into those in which both DFA and FilmArray assays are available or only the FilmArray assay is available.
doi:10.1371/journal.pone.0026047.g005
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the detection algorithm was tuned so that the sensitivity and

specificity are greater than 99% (Table 3, Training Set). To

validate the performance of the detection algorithm, a second

independent dataset consisting of 511 FilmArray runs of clinical

samples was annotated by expert users. As shown in Table 3

(Validation Set), the detection algorithm is able to differentiate

positive and negative melt curves with a high degree of accuracy

(.99.5%).

Using the same training and validation data set, the FilmArray

automated analysis was compared to expert calls for the assay

results (Table 4). Data from the triplicate wells of each assay were

combined to produce a ‘‘Positive’’ or ‘‘Negative’’ assay call. In this

case the results of the automated analysis of the FilmArray RP

system resulted in sensitivity and specificity .99.6%.

Determination of the analytical Limit of Detection for the
FilmArray RP system

To determine at what level the PCR assays in the FilmArray

system could correctly and consistently identify organisms, titered

viral and bacterial respiratory pathogens were spiked into negative

NPS sample matrix collected from healthy individuals or into a

simulated NPS matrix consisting of viral transport medium (VTM)

and a human epithelial cell line. Serial dilutions of the viruses and

bacteria were spiked into NPS samples, both singly and in

combinations of up to 5 organisms per sample. The spiked NPS

samples were then tested on the FilmArray instrument. Quanti-

fication by TCID50 is a measure based on infectivity or

cytotoxicity rather than number of organisms or copies of nucleic

acid. LoD determined in TCID50/mL may not be an accurate

indicator of the relative sensitivity of detection between different

organisms.

An initial estimate of the system Limit of Detection (LoD95, or

the concentration of organism that can be reliably detected in 95%

or more of the samples tested) was based on the serial dilutions.

Additional samples were then prepared and tested at the estimated

LoD concentration and 10-fold lower to confirm that the correct

organism was detected in at least 95% of the samples at LoD and

in less than 95% of the samples containing 10-fold less organism. A

positive organism detection was determined according to the

automated analysis performed by the FilmArray software. For

multi-assay organism calls such as FluA subtypes, all relevant

assays were required to be positive at the LoD95 level. Column C

in Table 1 shows the FilmArray LoD95 for each pathogen.

The sensitivity of detection was comparable between samples

containing a single organism and those containing up to five

different organisms. Subsequent clinical evaluations determined

that the sensitivity of each assay was appropriate for accurate

detection of clinically relevant pathogen levels in NPS specimens.

It is worth noting in this regard that the LoD concentration for

Coronavirus HKU1 (1.96106 RNA copies/mL) is below the

published viral load detected in acute Coronavairus HKU1

infection (8.5–9.66106 RNA copies/ml during the first week of the

illness [67]). A full description of the clinical evaluation of the

FilmArray RP pouch for testing NPS samples, performed using the

automated calling algorithm described above, will be published

elsewhere.

Discussion

In the last decade advances in diagnostic testing have led to

changes in clinical laboratory evaluation that have translated

into improved clinical care [60,68,69,70,71,72,73,74]. Despite

these advances, limitations remain in the arena of rapid testing

for multiple pathogens and the ability to move molecular testing

into clinical laboratories, particularly those unable to perform

high-complexity testing. The FilmArray system addresses these

concerns in that it has the capability for high-order multiplex

testing, yet is simple to use and requires minimal hands-on time.

Here we have demonstrated that the system can accurately

detect and identify both DNA and RNA targets from whole

organisms, including those contained within clinical respiratory

specimens. The FilmArray can also effectively detect multiple

targets in a single sample. We have developed and tested the

performance of a clinically relevant panel of respiratory

pathogens, including both viruses and bacteria, and shown

good performance of the system when compared to standard

laboratory methods.

Figure 6. Amplification and melt curves at low target levels. Respiratory Pathogen pouches were injected with viral transport medium spiked
with 1 TCID50 of the FluA- H1 seasonal virus used in Figure 4, and run on the FilmArray instrument. Real-time amplification curves (A) and post-
amplification melt curves (B) for selected wells on the array are shown. Assays are spotted in triplicate: FluA-pan1 (orange), FluA-pan2 (pink), FluA-H1-
pan (red). The ordinate scales are the same as in Figure 4.
doi:10.1371/journal.pone.0026047.g006
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FilmArray implements nmPCR in a closed ‘‘lab-in-a-
pouch’’ format

The FilmArray is a realization of a ‘‘Lab-on-a-Chip’’ or mTAS

system (micro total analysis system, [75,76]). It implements the

highly sensitive and specific technique of nested multiplex PCR in

an enclosed disposable, the FilmArray pouch. This enables the

considerable benefits of this form of PCR to be realized in settings

where even moderate contamination risk of pathogen or of

amplicon is unacceptable. Ultimately, this ‘‘Lab-on-a-Chip’’-type

format could allow complex molecular methods to be adopted in

‘‘point-of-care’’ settings or field situations, where the patient

presents initially to the healthcare provider [17,77,78,79].

Although the FilmArray pouch manipulates relatively large

volumes of liquid for a mTAS system, it shares several advantages

with such systems. The steps of the system are automated which

reduces operator work-load and error. The process is rapid: the

time lag between one step of the chemistry and the next is

Figure 7. Tm data used to establish assay specific melt windows. Histograms of the theoretical or observed Tms of the hMPV assay are shown.
Tm data for the FilmArray runs includes each of the three replicates of the second stage PCR. A: Tms calculated from 13 sequence variants published
in the NCBI databases. B: Tm data generated during the system beta-testing with 37 banked hMPV-positive patient samples. C: Tm data generated
during the inclusivity testing with 10 hMPV strains representing subtypes A1, A2, B1 and B2. Multiple FilmArray runs of these strains are included in
this data set. D: Tm data from 74 hMPV-positive patient samples collected during the clinical evaluation.
doi:10.1371/journal.pone.0026047.g007

Table 3. Performance of the FilmArray RP melt curve
detection algorithm compared to expert interpretation.

Expert Interpretation Melt Detector Call

Percent
agreement
(95% CI)

Positive Negative

Training Set Positive 37,614 231 99.39 Pos
(99.31–99.47)

Negative 141 108,529 99.87 Neg
(99.85–99.89)

Validation Set Positive 8,153 30 99.63 Pos
(99.48–99.75)

Negative 17 39,323 99.96 Neg
(99.93–99.97)

doi:10.1371/journal.pone.0026047.t003
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measured in seconds. The physical separation of reagents between

the fitment and the blisters also enables a hot start for both the first

and second stage PCRs (see Methods). This eliminates the expense

and inefficiency associated with using chemical or biochemical

means of inhibiting Taq. A physical hot start also has the

additional, unique, advantage that the reverse transcriptase is

prevented from interacting with primers below the desired

temperature of the reaction. This minimizes the formation of

primer dimers or other nonspecific products in the deep multiplex

of the first stage PCR.

The FilmArray lab-in-a-pouch is also an efficient solution to the

‘‘sample to assay’’ problem that many microfluidics systems must

solve [80,81,82]. Typically, for low abundance pathogens,

sensitivity comes from testing a large input sample volume.

However, for multiplex testing, sample will often be limiting and to

keep reagents costs down, the many individual tests must be done

in small volumes. The FilmArray first stage multiplex PCR uses all

of the nucleic acid recovered from the input material (100 ml of

patient sample). The second stage amplification then allows

specific detection of the analytes in individual 1 ml PCRs without

the loss of sensitivity common in small volume PCRs.

In addition to its increased sensitivity and specificity, nested

PCR simplifies the development of complex multiplex PCR

panels. In order to detect viruses with great sequence diversity (e.g.

AV and HRV) the first stage PCR contains moderately degenerate

primers, or multiple primer sets. Unlike the common observation

with single-stage multiplex PCR reactions [83,84], we observed no

loss of assay sensitivity when comparing nested PCR with the full

complement of primers in the first stage versus a single set of

primers in the first stage (data not shown). For every primer set

that did show a loss of sensitivity, a redesign of the first stage assay

was enough to restore sensitivity without perturbing other assays.

Whiley et al [85] have argued that multiple independent nucleic

acid tests are required to ensure adequate sensitivity for detecting

organisms that have significant sequence variation. Nesting of the

PCRs allows a high level of multiplex in the first stage PCR, which

addresses this concern. We have tested FilmArray multiplex

designs that include 40 different assays and see no loss of sensitivity

compared to single assay formats (M. Rogatcheva, unpublished

data). In the FilmArray RP pouch described here, there are two

pan-influenza A assays (pan1 and pan2 for the MA and NS2 genes

respectively). This increases the likelihood that a novel pandemic

influenza will be detected by the system (as a ‘‘non-subtypeable’’

FluA) because there is a high probability that either one or the

other pan assay will be reactive.

nmPCR is also highly resistant to target competition (Figure 4).

An organism present at very high concentration (10,0006LoD95,

calculated from the data in Table 1) does not inhibit the detection

of a second organism present at low concentration (106 LoD95).

This occurs because the first stage PCR is not the direct readout

for the presence of each analyte. Instead it gives the lower

concentration organism adequate amplification boost, (i.e. enrich-

ment) for detection in the second stage PCR.

Detecting organism based on amplicon melts
The automated analysis of FilmArray data is robust to sequence

variation in the target amplicon as well as potential instrument and

pouch variation. The combination of melt detection in individual

wells of the array together with the redundancy provided by the

well-to-well comparison of replicate melt curves results in

exceptionally sensitive and specific organism detection.

We have observed that melting curve analysis is more sensitive

than amplification curves analysis for the detection of input

material. The amount of data collected during the gradual

temperature ramp of the amplicon melt greatly exceeds that

collected during the relatively dynamic temperature cycling of the

second stage PCR. The resulting melt curves have a higher signal

to noise ratio than that of the amplification curves. For several

reasons (e.g. loss of resolution at the high end of dynamic range,

lack of a standard curve on a single sample instrument) the

FilmArray Cq is not a meaningful measure of organism load in the

sample. For this reason, amplification curve data are not reported

in the commercial version of the instrument.

Clinical utility of the FilmArray system
The initial testing of the FilmArray RP pouch with clinical

samples demonstrates a successful real-world application of this

technology. When compared to DFA using pediatric NPA

samples, the platform showed high percent agreement. The most

common reason for discordance was the detection of pathogens by

FilmArray in DFA-negative samples. We believe this is due to the

increased sensitivity of PCR when compared to DFA. In addition,

the ability to test for a much larger panel of pathogens led to a

decrease in the number of negative samples when compared to

conventional testing, and increased the number of instances in

which more than one pathogen was detected in a sample. Other

multiplex PCR-based studies have reported similar findings [86].

The FilmArray instrument and a subset of the assays in the RP

pouch have recently been cleared by the FDA for IVD use and an

initial comparison of the FilmArray instrument with the xTAG

RVP (Luminex Corporation, Austin TX) and conventional

detection methods have been reported [87]. The clinical studies

performed to support the FilmArray application to the FDA used

NPS as the sample matrix. Because the data presented here were

generated on a development version of the instrument and pouch

we do not know the true clinical sensitivity and specificity of the

FilmArray system when using NPA samples.

The advent of diagnostic platforms with the capability of

medium level multiplexing [38,39,88,89,90,91] opens up the

potential for development of a set of multi-pathogen panels that

Table 4. Performance of the FilmArray RP system automated analysis as compared to expert interpretation.

Expert Interpretation RP system Assay Call Percent agreement (95% CI)

Positive Negative

Training Set Positive 12,596 34 99.73 Pos (99.62–99.81)

Negative 4 35,912 99.99 Neg (99.97–100.00)

Validation Set Positive 2,713 8 99.71 Pos (99.42–99.87)

Negative 1 13,119 99.99 Neg (99.96–100.00)

doi:10.1371/journal.pone.0026047.t004
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are focused on a specific disease indication rather than a specific

organism. FilmArray assay panels under development will target

organisms associated with sepsis, meningitis, diarrhea, sexually

transmitted infections, or bioterrorism, as well as genes conferring

antibiotic resistance.

Supporting Information

Table S1 Source of Virus and Bacteria used in this
study.
(TIF)
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