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Abstract

DNA methylation plays an important role in carcinogenesis and the reversibility of this epigenetic modification makes it a
potential therapeutic target. To date, DNA methyltransferase inhibitors (DNMTi) have not demonstrated clinical efficacy in
prostate cancer, with one of the major obstacles being the inability to monitor drug activity during the trial. Given the high
frequency and specificity of GSTP1 DNA methylation in prostate cancer, we investigated whether GSTP1 is a useful marker of
DNMTi treatment efficacy. LNCaP prostate cancer cells were treated with 5-aza-29-deoxycytidine (5-aza-CdR) either with a
single high dose (5–20 mM), every alternate day (0.1–10 mM) or daily (0.005–2.5 mM). A daily treatment regimen with 5-aza-
CdR was optimal, with significant suppression of cell proliferation achieved with doses of 0.05 mM or greater (p,0.0001) and
induction of cell death from 0.5 mM (p,0.0001). In contrast, treatment with a single high dose of 20 mM 5-aza-CdR inhibited
cell proliferation but was not able to induce cell death. Demethylation of GSTP1 was observed with doses of 5-aza-CdR that
induced significant suppression of cell proliferation ($0.05 mM). Re-expression of the GSTP1 protein was observed only at
doses of 5-aza-CdR ($0.5 mM) associated with induction of cell death. Treatment of LNCaP cells with a more stable DNMTi,
Zebularine required at least a 100-fold higher dose ($50 mM) to inhibit proliferation and was less potent in inducing cell
death, which corresponded to a lack of GSTP1 protein re-expression. We have shown that GSTP1 DNA methylation and
protein expression status is correlated with DNMTi treatment response in prostate cancer cells. Since GSTP1 is methylated in
nearly all prostate cancers, our results warrant its testing as a marker of epigenetic therapy response in future clinical trials.
We conclude that the DNA methylation and protein expression status of GSTP1 are good indicators of DNMTi efficacy.
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Introduction

Prostate cancer is one of the most commonly diagnosed male

cancers in Western countries. Current therapies for clinically

localized disease include surgical removal of the prostate gland

(prostatectomy) and/or radiotherapy with or without androgen

deprivation therapy (ADT). Since the discovery, in the 1940s, that

prostate cancer is dependent on the male sex hormones [1],

initially castration and subsequently various forms of ADT, either

alone or combined with androgen receptor (AR) antagonists, have

been the main therapy for metastatic disease. After an initial

variable duration of tumor regression, most metastatic prostate

cancers progress to a ‘‘castration-resistant’’ stage that is unrespon-

sive to ADT. Currently there are limited treatment options

available for castration-resistant prostate cancer and consequently

there is a serious need to develop new therapies.

It is well-established that epigenetic alterations are common

events in carcinogenesis, including prostate cancer, which may

lead to aberrant expression of critical genes such as tumor

suppressors and oncogenes. Unlike DNA mutations, epigenetic

alterations are chemically reversible by agents known as epigenetic

inhibitors and are therefore potential therapeutic targets. Exam-

ples of epigenetic inhibitors that have shown success as therapeutic

agents include the DNA methyltransferase inhibitors (DNMTi), 5-

aza-cytidine (5-aza-CR or Vidaza) and its more potent analogue 5-

aza-29-deoxycytidine (5-aza-CdR or Decitabine). 5-aza-CR and 5-

aza-CdR are nucleoside DNMTi developed initially as cancer

chemotherapeutic agents that are currently being used for the

treatment of myelodysplastic syndromes (MDS) [2]. The demeth-

ylating actions of 5-aza-CR and 5-aza-CdR rely on their ability to

incorporate into replicating DNA and covalently bind to the

DNMT1 enzyme in an irreversible manner, which leads to

DNMT1 protein degradation [2,3]. As DNMT1 is required to

maintain DNA methylation during replication, the degradation of

DNMT1 subsequently results in a loss of DNA methylation.

Aberrant expression of epigenetic modifying enzymes involved

in the regulation of DNA methylation has been observed at all

stages of prostate cancer progression [4,5,6]. Global levels of 5-

methylcytosine and epigenetic modifying enzymes involved in

DNA methylation (i.e DNMTs) predict the likelihood of disease
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progression in prostate cancer. This finding suggests that DNA

methylation may be important in progression of prostate cancer

and therefore DNMTi should be considered as a potential

treatment option [7,8,9]. While in vitro experiments and animal

models have shown that 5-aza-CdR has anti-tumor activities in

several cancers including prostate cancer [10,11,12,13,14], clinical

trials of 5-aza-CdR for the treatment of solid tumors have not been

successful due to drug related adverse events such as myelosup-

pression, nausea and vomiting [15,16,17]. In addition to toxicity

issues, the efficiency of delivery and uptake of 5-aza-CdR to the

tumor tissues, there is uncertainty about the optimal dose-schedule

for specific tumor types [18]. To date, only one small phase II

study with 5-aza-CdR in prostate cancer has been published,

approximately a decade ago [16]. While there are ongoing clinical

trials for 5-aza-CdR in various solid tumors, none of these trials

are cancer-specific nor do they include prostate cancer (National

Institutes of Health, US, clinicaltrials.gov). In vitro studies

investigating the effects of 5-aza-CdR in prostate cancer cell lines

(see Table S1) have used various treatment regimes and different

definitions for low and high 5-aza-CdR doses, making it difficult to

compare between studies and define the optimal treatment regime,

including dose-schedule, for prostate cancer. Surprisingly, very few

of the in vitro studies (Table S1A) have investigated the effects of 5-

aza-CdR on the proliferation and survival of prostate cancer cells,

but rather have investigated the effect of 5-aza-CdR on gene

expression in order to identify candidate epigenetically-regulated

genes (Table S1B).

The aim of this study was to investigate the dose-dependent

effects of 5-aza-CdR in prostate cancer cells with view to providing

a basis for developing an optimal 5-aza-CdR treatment regime for

prostate cancer. We also investigated the relative toxicity of 5-aza-

CdR and Zebularine in LNCaP prostate cancer cells. Zebularine is

a cytidine analogue that has similar functions to 5-aza-CdR as a

demethylating agent, but is less toxic and has a more stable half life

(,508 hours at 37uC, pH 7) than 5-aza-CdR (12 hours at 37uC,

pH 7) [19,20]. Identification of a good marker of DNMTi efficacy

for clinical trials, much like the measurement of serum PSA levels

to monitor the efficacy of ADT [21], would have the potential to

aid clinical management of prostate cancer patients treated with

epigenetic therapies. To investigate the efficacy of 5-aza-CdR and

Zebularine in prostate cancer cells, we examined DNA methyl-

ation and expression status of the glutathione-S-transferase P1

(GSTP1) gene. GSTP1 is hypermethylated in nearly all human

prostate cancers and its promoter DNA methylation level is able to

differentiate between benign prostatic hyperplasia and different

grades of prostate adenocarcinoma [6,22,23,24,25]. While current

studies have focused on using GSTP1 as a potential marker for the

early detection of prostate cancer, we propose that assessing DNA

methylation of the GSTP1 promoter region, as well as expression

of GSTP1, has the potential to be a useful tool for determining

DNMTi efficacy in prostate cancer.

Materials and Methods

Measurement of cell viability
LNCaP and PC3 human prostate carcinoma cells (American

Type Culture Collection, ATCC) were maintained in RPMI 1640

supplemented with 5% or 10% fetal bovine serum (FBS). 5-aza-

CdR and Zebularine (Sigma, A3656 and Z4775) were dissolved in

dimethylsulfoxide (DMSO) and Hank’s buffered salt solution

respectively. For the single and every alternate day treatment with

5-aza-CdR, cells were seeded in triplicate in 24-well plates at a

density of 2.56104 cells per well in 1 mL of RPMI medium. For

the 5-aza-CdR daily treatment and Zebularine treatment, cells

were seeded in triplicate in 12-well plates at a density of

16104 cells per well in 1 mL of RPMI medium. Cells were

allowed to attach for 241h or 48 h, once cell confluency was

reached and then incubated with medium containing 5-aza-CdR

at concentrations of 0–20 mM or Zebularine at concentrations of

50–1000 mM. For subsequent or additional treatments, fresh 5-

aza-CdR or Zebularine diluted in media was added to the cells.

Media containing the respective agents were freshly prepared from

10 mM 5-aza-CdR and 70 mM Zebularine stocks before each

treatment. Cells were trypsinized and counted using a hemocy-

tometer at the specified time-points after initiation of treatment

and cell viability assessed by Trypan blue dye exclusion as

previously described [26]. Data are expressed as the mean +/2 SE

of triplicate wells and are representative of at least two

independent experiments.

Immunoblotting
LNCaP cells were seeded in 6-well plates at a density of

26104 cells per well in 2 mL of RPMI medium containing 10%

FBS. Cells were allowed to attach for 24 h before medium was

replaced with medium containing treatments. Cells were lysed by

adding radioimmunoprecipitation assay lysis buffer (10 mM Tris-

HCL, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100)

containing mini-complete protease inhibitor pellets (Roche).

Lysates (15–30 mg) were electrophoresed through 5% or 12%

polyacrylamide gels, transferred to nitrocellulose membrane

(Amersham Biosciences), and blocked in 5% non-fat milk powder

in TBS containing 0.05% Tween20 overnight. Immunodetection

was performed with the specific primary antibody diluted in 1%

non-fat milk powder in TBS containing 0.05% Tween20. GSTP1

antibody (Chemicon, AB8902) was used at a dilution of 1:5000

and overnight incubation at 4uC. Hsp90 antibody (Santa Cruz

Biotechnology) was used at a dilution of 1:1000 and 30 min

incubation at room temperature. Horseradish peroxidase-conju-

gated anti-rabbit secondary antibody (DAKO, E0432) was used at

a dilution of 1:2000 and 30 min incubation at room temperature.

Results were visualized on Hyperfilm (GE Healthcare) using

enhanced chemiluminescence detection (GE Healthcare).

DNA methylation analysis
After cell viability assessment, the remaining LNCaP cells were

collected for genomic DNA extraction using TES (10 mM Tris-

HCL at pH 8, 0.1 M NaCl, 1 mM EDTA) buffer, proteinase K

and 20% SDS as described previously [27]. DNA (1–2 mg per

sample) was bisulfite modified with the MethylEasyTM DNA

Bisulphite Modification Kit (Human Genetic Signatures Pty Ltd)

according to the manufacturer’s protocol. A total volume of 25 ml

or 50 ml PCR reaction mix was made up with 3–5 ml of the

bisulfite modified DNA and 2.5 units of HotstarTaq DNA

polymerase (Qiagen). GSTP1 Methylation-Specific Polymerase

chain reaction (MSP) [28] and COmbined Bisulfite Restriction

Analysis (COBRA) [29] primers were purchased from Gene-

Works (South Australia, Australia). GSTP1 MSP primer sequenc-

es were as described previously [24] and all primer sequences

used in this study are provided in Figure S1. The annealing

temperatures for the respective primers were: 40 cycles at 64.3uC
for methylated GSTP1 MSP primers; 45 cycles at 61.6uC for

unmethylated GSTP1 MSP primers; 45 cycles at 56.8uC for

GSTP1 COBRA primers. PCR products from the GSTP1

COBRA analyzes were digested with restriction enzymes BstUI

and HhaI (New England BioLabs). PCR products were visualized

by agarose gel electropheresis with the AlphaImager 2200 gel

documentation system (San Leandro).

GSTP1 and DNMTi Efficacy in Prostate Cancer
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Statistical analysis
One-way analysis of variance (ANOVA) with a post-hoc

Dunnet’s multiple comparison test was used to compare cell

viability between treatments and the vehicle control when a single

time-point was assessed. Two-way ANOVA with a post-hoc

Bonferroni test was used to compare cell viability between

treatments and the vehicle control when multiple time-points

were assessed. Analyses were performed with the GraphPad Prism

5 software (GraphPad Software, Inc., CA USA) and statistical

significance was set at p,0.05 (two-sided).

Results

Daily 5-aza-CdR treatment is required to induce optimal
inhibition of proliferation and induction of cell death in
LNCaP prostate cancer cells

To investigate the efficacy of different 5-aza-CdR treatment

schedules, we performed cell proliferation and viability assays on

LNCaP prostate cancer cells and compared the following: a single

treatment, alternate day treatments and daily treatments. When

compared to the control (vehicle), a single treatment of 5-aza-CdR

effectively suppressed LNCaP prostate cancer cell proliferation at

all concentrations used (5-20 mM) (Figure 1A, Day 4: p,0.001 for

5 mM and p,0.0001 for 10, 20 mM, Day 6: p,0.0001 for all

doses) but did not induce significant cell death 6 days after

treatment (Figure 1B). When 5-aza-CdR was added every second

day (alternate day treatment), lower doses of 5-aza-CdR (0.1, 0.5

and 2.5 mM) compared to doses used in the single treatment

schedule resulted in a significant dose-dependent inhibition of cell

proliferation when compared to vehicle treated LNCaP cells

(Figure 1C, Day 4 and 6: p,0.0001 for all doses). Only doses of 5-

aza-CdR of 2.5 mM or greater induced significant cell death when

compared to that of vehicle treated cells (Figure 1D, Day 6:

p,0.001 for 2.5 mM and p,0.0001 for 10 mM). In contrast, daily

treatment of 5-aza-CdR achieved significant inhibition of

proliferation at lower concentrations (0.05 mM) (Figure 2A, Day

6: p,0.05 for 0.05 mM, p,0.001 for all doses 0.5 mM or greater,

Day 8: p,0.05 for 0.01 mM and p,0.001 for all doses 0.05 mM or

greater) and increased cell death in LNCaP cells (Figure 2B, Day

8: p,0.001 for doses 0.5 mM or greater) compared to similar doses

given every second day. Dose-dependent inhibition of proliferation

Figure 1. Single and alternate day 5-aza-CdR treatment of LNCaP prostate cancer cells. LNCaP prostate cancer cells (2.56104 cells per well
in 24-well plates) were treated with increasing doses of 5-aza-CdR (5–20 mM) administered (A–B) once on day 0 or (C–D) with increasing doses of 5-
aza-CdR (0.1-10 mM) replenished on alternate days for up to 6 days. (A) and (C) cells were counted at regular intervals using a hemocytometer and the
number of viable cells was assessed by Trypan blue dye exclusion. (B) and (D) the number of dead cells is expressed as a percentage of the total
number of cells counted. Data at each time-point represents the mean +/2 SE of triplicate wells. *Two-way ANOVA: p,0.0001 for (A), (C) and (D)
(10 mM); p,0.001 for (D) (2.5 mM) when compared to vehicle control (veh) on last day of treatment.
doi:10.1371/journal.pone.0025634.g001
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Figure 2. Daily 5-aza-CdR treatment of LNCaP and PC3 prostate cancer cells. (A–B) LNCaP and (C–D) PC3 prostate cancer cells (16104 cells
per well in 12-well plates) were treated with increasing doses of 5-aza-CdR (0.005–2.5 mM) replenished daily for up to 8 days. (A) and (C) cells were
counted at regular intervals using a hemocytometer and the number of viable cells was assessed by Trypan blue dye exclusion. (B) and (D) the
number of dead cells is expressed as a percentage of the total number of cells counted. (E) and (F) relative cell viability following 6 or 8 days of
treatment with 5-aza-CdR was presented as the percentage of viable cells compared to vehicle control (veh) and relative cell death as the fold of

GSTP1 and DNMTi Efficacy in Prostate Cancer
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was achieved with 5-aza-CdR daily doses of 0.05 mM or greater

resulting in a 62% reduction in cell number when compared to

vehicle treated cells and complete inhibition of proliferation at

doses of 0.5 mM or greater (Figure 2A and 2E, p,0.0001). At the

doses that caused complete inhibition of proliferation, there was

also a significant increase in cell death, of approximately 3-fold,

when compared to vehicle control (Figure 2B and 2F, p,0.0001).

Effects of 5-aza-CdR on prostate cancer cell viability is
independent of the AR

To determine if the effects of 5-aza-CdR in LNCaP cells were

dependent on a functional AR, a daily treatment schedule, was also

performed in PC3 cells, which lack a functional AR. When treated

with 5-aza-CdR at doses of 0.005–2.5 mM, there was a similar dose-

dependent inhibition of proliferation and induction of cell death in

PC3 cells as there was in LNCaP cells (Figure 2A–D). Whereas an

approximate 3-fold induction of cell death was seen with 0.5 mM 5-

aza-CdR in both cell lines (Figure 2F), in the PC3 cells, lower doses

of 5-aza-CdR (0.005 mM and 0.01 mM) resulted in a significant

reduction in cell number (p,0.0001, Figure 2E), and this occurred

at an earlier time-point (4 days) when compared to LNCaP cells (6

days) treated identically (Figure 2A and 2C). Since 5-aza-CdR relies

on dividing cells for incorporation to elicit its effects, the difference

in doubling time between the 2 cell lines, approximately 24 hours in

PC3 cells compared to 48 hours in the LNCaP cells, may explain the

increased potency of 5-aza-CdR on PC3 cell viability. The

androgen-independent inhibition of proliferation and induction of

cell death by 5-aza-CdR in prostate cancer cells was further

confirmed by cell viability assays performed in LNCaP cells cultured

in steroid-depleted medium (Figure S2).

Prolonged 5-aza-CdR treatment results in similar cell
death regardless of the treatment regime

To further characterize the differences between the alternate day

and daily treatment regime, the highest alternate day treatment

(10 mM) and the highest daily treatment (2.5 mM) were compared in

an extended growth curve (Figure 3). LNCaP prostate cancer cells

were treated with vehicle control or 5-aza-CdR replenished on

alternate days or daily, as above. Cell viability and cell death were

assessed after 6 days of treatment. One set of cells then continued to

receive 5-aza-CdR replenished on alternate days or daily until day

12 (denoted as 10 mM-12d or 2.5 mM-12d; Figure 3) while the other

set of cells received media containing vehicle control (denoted as

10 mM-6d or 2.5 mM-6d; Figure 3). After 6 days of treatment, both

the alternate day and daily treatment regimes induced growth

suppression compared with vehicle control but only the daily

treatment resulted in cell death (Figure 3). As the control cells had

reached confluency by day 6, these cells were excluded for the

remainder of the experiment. With continued treatment on either

regime the amount of cell death continued to increase for the 12

days, reaching 61.4% for the alternate day treatment and 68.6% for

the daily treatment. Interestingly, the cells that only received

treatment for 6 days displayed equivalent levels of cell death to those

that received treatment for 12 days (Figure 3).

GSTP1 promoter DNA methylation status and protein re-
expression as markers of 5-aza-CdR efficacy

To investigate how the anti-proliferative effects of 5-aza-CdR

relate to its demethylating activity, MSP was performed to assess

the DNA methylation status of the GSTP1 promoter (Figure 4A).

Hypermethylated GSTP1 promoter DNA was present in LNCaP

cells treated with vehicle control. In contrast, unmethylated GSTP1

promoter DNA was detected in LNCaP cells treated daily with

0.05 mM or greater 5-aza-CdR, but completely demethylated

GSTP1 promoter DNA was not observed with even the highest

concentration of 5-aza-CdR. Demethylation of the GSTP1

promoter by 5-aza-CdR at doses great than or equal to

0.05 mM coincided with the ability of 5-aza-CdR to substantially

inhibit cell proliferation at these concentrations (Figure 2A-B).

To further examine the relative DNA methylation status of the

GSTP1 promoter in the 5-aza-CdR treated LNCaP cells, COBRA

was performed using BstUI and HhaI restriction enzymes

(Figure 4B–C). The unmethylated GSTP1 promoter present in

MDA-MB-231 breast cancer cells was not digested by BstUI or

HhaI (Figure 4B). Consistent with the MSP results, methylated

GSTP1 promoter was detected in vehicle treated (control) and 5-

aza-CdR treated LNCaP cells at doses of 0.005–0.5 mM.

Considerable GSTP1 promoter DNA demethylation was only

seen in response to 0.5 mM 5-aza-CdR, which is the lowest 5-aza-

CdR dose sufficient to induce complete inhibition of LNCaP cell

proliferation and cell death demonstrated in the cell viability

assays (Figure 2A–B). These findings suggest that the efficacy of

0.5 mM 5-aza-CdR is due to its ability to induce greater DNA

demethylation of GSTP1 compared to lower doses.

The greater demethylating effect of 0.5 mM compared to

0.05 mM 5-aza-CdR corresponds with GSTP1 protein re-expres-

sion observed at 0.5 mM 5-aza-CdR or greater (Figure 4D).

Consistent with this, the 5-aza-CdR doses that result in re-

expression of GSTP1 protein also induce significant cell death in

LNCaP cells (Figure 2B and 2F).

Zebularine inhibits proliferation of prostate cancer cells
but has limited effects on cell death

LNCaP cells were treated with Zebularine (0–1000 mM; highest

dose used in previous studies [30]), while PC3 cells were treated

with Zebularine doses of up to 400 mM. Zebularine was given on

day 0 and replenished again halfway through the treatment

period. Zebularine caused a dose-dependent inhibition of

proliferation in both LNCaP and PC3 prostate cancer cells

(Figure 5A and 5C, p,0.0001), suggesting that Zebularine has a

similar AR-independent growth inhibitory mechanism of action

on prostate cancer cells as 5-aza-CdR. A significant reduction in

the number of viable cells was observed with 100 to 200 mM

Zebularine, and complete inhibition of cell proliferation was

observed at 400 mM or greater in both LNCaP and PC3 cells

(Figure 5A and 5C, p,0.0001). Whereas Zebularine failed to

induce cell death at any dose in LNCaP cells (Figure 5B),

significant cell death was induced by 400 mM Zebularine in PC3

cells (Figure 5D, p = 0.0004).

Zebularine has weaker demethylating actions on the
GSTP1 promoter compared to 5-aza-CdR

To investigate the demethylating activity of Zebularine, MSP

was performed to examine the DNA methylation status of the

GSTP1 promoter in LNCaP cells (Figure 6A). After 8 days of

treatment, methylated GSTP1 was present in the vehicle control

and all Zebularine treated samples (0–400 mM), while demethyl-

ation of the GSTP1 promoter lacked dose-dependency (Figure 6A).

percent of dead cells compared to the veh control. Data at each time-point represents the mean +/2 SE of triplicate wells from at least two
experiments. *Two-way ANOVA: p,0.05 for (A) (0.01 mM); p,0.001 for (A) (0.05–2.5 mM), (B) and (D) (0.5 mM); p,0.0001 for (C) and (D) (1, 2.5 mM)
when compared to vehicle control (veh) on last day of treatment.
doi:10.1371/journal.pone.0025634.g002
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When the relative DNA methylation status of the GSTP1 promoter

region in these Zebularine-treated LNCaP cells were compared by

COBRA using BstUI and HhaI restriction enzyme digestion, no

unmethylated GSTP1 was detected (Figure 6B). The weak and

inconsistent demethylating actions of Zebularine on LNCaP cells

was also reflected in the lack of GSTP1 protein re-expression after

8 days of treatment (Figure 6C).

Discussion

While the DNMTi 5-aza-CdR is effective in the treatment of

hematologic conditions, clinical trials in solid tumors and in

prostate cancer have shown limited or no efficacy. The failure of

previous clinical trials in solid tumors has been attributed to

inappropriate dose regimens, leading to toxicity-related adverse

events. In part, this is due to a poor understanding of the

mechanistic actions of 5-aza-CdR in solid tumors. In this study, we

demonstrate that 5-aza-CdR, at a dose of 0.5 mM given daily,

completely inhibited cell proliferation and induced cell death in

prostate cancer cells, and was associated with demethylation of the

GSTP1 promoter and re-expression of GSTP1 protein. These

findings suggest that a daily low-dose 5-aza-CdR treatment

regimen may be more effective than a less frequent or single

high-dose schedule for the control of prostate cancer cell growth.

We have also demonstrated that a daily low-dose 5–aza-CdR

treatment regimen is more effective than one using the more stable

DNMTi, Zebularine. Most importantly, we provide evidence that

the increased potency of 5-aza-CdR compared to Zebularine in

prostate cancer cells is closely related to its demethylating activity

and identified GSTP1 as a potentially useful biomarker for

assessing DNMTi efficacy in prostate cancer.

Several studies have demonstrated that 5-aza-CdR reduces cell

proliferation and induces re-expression of specific genes in various

cancers (Table S1). Different cancer types respond to 5-aza-CdR

differently, but a wide range of 5-aza-CdR doses and treatment

regimens have been used in previous studies, and the end-points

Figure 3. Prolonged alternate day or daily treatment with 5-aza-CdR in LNCaP cells results in similar cell death. (A) and (C) LNCaP
prostate cancer cells (2.56104 cells per well in 24-well plates) were treated with 10 mM 5-aza-CdR or vehicle control, replenished on alternate days. (B)
and (D) LNCaP prostate cancer cells (16104 cells per well in 12-well plates) were treated with 2.5 mM 5-aza-CdR or vehicle control, replenished daily.
Following 6 days of treatment, control cells were ceased and the remaining cells either continued to receive 5-aza-CdR (10 mM-12d or 2.5 mM-12d,
respectively) or received fresh media containing vehicle (10 mM-6d or 2.5 mM-6d). (A) and (C) cells were counted at day 6, 8 and 12 using a
hemocytometer and the number of viable cells was assessed by Trypan blue dye exclusion. (B) and (D) the number of dead cells is expressed as a
percentage of the total number of cells counted.
doi:10.1371/journal.pone.0025634.g003
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and analysis were different in the various studies. Nine published

studies have investigated the effects of 5-aza-CdR on the viability

of prostate cancer cell lines (Table S1A) [10,11,31,32,33,

34,35,36,37]. Comparisons among these studies are difficult due

to the reasons listed above. For instance, Walton et al [11]

reported approximately 30% inhibition of cell proliferation

compared to vehicle control in the LNCaP prostate cancer cells

after treatment with 8.8 mM 5-aza-CdR, while Pulukuri et al [10]

reported 70% inhibition of cell proliferation compared to vehicle

control in the same cell line with a high dose of 10 mM 5-aza-CdR

treatment. In contrast, our prolonged 5-aza-CdR daily treatment

regime resulted in approximately 62% inhibition of cell prolifer-

ation in LNCaP cells treated with 0.05 mM 5-aza-CdR, a dose

200-fold lower than what was used by Pulukuri et al [10] to

achieve a similar level of inhibition on cell proliferation.

Therefore, it would appear that administration of a low daily

dose of 5-aza-CdR is optimal for inhibition of prostate cancer cells

by this DNMTi.

In our one-time high dose 5-aza-CdR treatment of prostate

cancer cell lines, we chose a range of doses commonly used in

previous studies and found that while these doses of 5-aza-CdR

inhibited prostate cancer cell proliferation, they did not induce cell

death. This is consistent with the study by Walton et al, where 5-

aza-CdR failed to induce cytotoxicity in prostate cancer cell lines

even at a very high dose of 100 mM [11]. However, by increasing

the frequency of administration of 5-aza-CdR, we increased its

efficacy such that previously ineffective low doses of 5-aza-CdR

became sufficient to both inhibit cell proliferation and induce cell

death. As 5-aza-CdR is degraded within 12 hours [19,20,30], it is

not able to incorporate into replicating DNA to elicit its

demethylating actions in the single treatment regime. Replenish-

ment of 5-aza-CdR daily ensures that sufficient levels of the drug

are sustained throughout the treatment period to improve efficacy.

While previous studies have performed similar 5-aza-CdR daily

treatments in other cancer cell lines, the treatment period (3–4

days only) was relatively short and did not achieve the same

efficacy in terms of cell proliferation and cell death when

compared to the treatment regimen used in our study [38,39].

The rationale for a low dose daily 5-aza-CdR treatment regime

for prostate cancer in vitro is similar to that for the prolonged low

dose treatment used in hematological malignancies [40,41,42,43].

The initial development of 5-aza-CdR as an anti-leukemic agent

started when ‘pioneer’ studies demonstrated its efficacy in

leukemic cell lines and mouse models [44,45]. 5-aza-CdR was

able to influence leukemic cell differentiation and induce gene

expression that was associated with its DNA demethylating activity

[2]. This led to initial clinical trials with 5-aza-CdR in patients

with acute leukemia in the 1980s, branching later into clinical

trials with several hematopoietic malignancies including myelo-

dysplastic syndrome (MDS), sickle cell anemia and solid tumors

[15,46,47]. However, results of these trials were not promising and

were limited by poor pharmacokinetics, toxicity and an ineffective

dose schedule. It was not until the late 1990s when a prolonged

low dose schedule of 5-aza-CdR was introduced that promising

results were achieved in clinical trials for the treatment of

hematopoietic malignancies [40,41,42,43]. The new dose sched-

ule, based on an improved understanding of 5-aza-CdR

mechanisms, was crucial for the development of 5-aza-CdR as a

therapeutic agent. Other studies have shown that 5-aza-CdR is an

S-phase specific agent, and that low and high doses of 5-aza-CdR

have differential actions. Most importantly, low doses of 5-aza-

CdR were sufficient to induce demethylation and re-expression of

genes, without the cytotoxicity associated with higher doses

[48,49].

In addition to its demethylating activity, previous studies have

shown that 5-aza-CdR is involved in several signaling pathways

including cell cycle, DNA damage repair, apoptosis and

angiogenesis [50]. For instance, 5-aza-CdR anti-tumor activities

are p53-dependent [10,51]. Studies by both Pulukuri et al and

Karpf et al demonstrated that p53 positive cancer cell lines were

more sensitive to 5-aza-CdR compared to p53 negative cell lines

[10,51]. We, however, observed similar 5-aza-CdR responses in

the p53 positive LNCaP and p53 negative PC3 prostate cancer

cells lines, suggesting that p53 independent mechanisms were

Figure 4. GSTP1 DNA methylation and protein expression in
LNCaP cells after daily 5-aza-CdR treatment. DNA and proteins
were extracted from LNCaP cells treated with increasing doses of 5-aza-
CdR (0.005–2.5 mM). Cells were treated daily and DNA and protein
harvested after 6 days of treatment. (A) MSP was performed on
bisulfite-modified DNA with primers targeting bisulfite-modified
methylated GSTP1 promoter or unmethylated GSTP1 promoter. (B–C)
the relative methylation status of the GSTP1 promoter following 5-aza-
CdR treatment was further assessed by COBRA using two restriction
enzymes, BstUI and HhaI. MDA-MB-231 breast cancer cells were used as
a control for unmethylated GSTP1 promoter. (D) Immunoblot was
performed to analyze GSTP1 protein expression. Detection of Hsp90
was used as a loading control.
doi:10.1371/journal.pone.0025634.g004
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invoked by the low dose daily treatment regime utilized in this

study.

In this study, we also provide evidence that 5-aza-CdR does not

require expression of a functional AR to elicit its effects in prostate

cancer cells. The AR is critical for the maintenance of normal

prostate function and the development and progression of prostate

cancer, and is the main target in current treatments for prostate

cancer. 5-aza-CdR anti-tumor activities were similar in LNCaP

and PC3 cells, the latter lacking a functional AR. 5-aza-CdR

remained effective in reducing cell viability in LNCaP cells in the

absence of androgens, suggesting an androgen-independent

mechanism. These findings are supported by in vivo studies of 5-

aza-CdR in the TRAMP mouse model of prostate cancer [13,14].

Upon castration, the TRAMP mouse develops ‘‘castration-

resistant’’ prostate tumors similar to that seen with the recurrence

of human prostate tumor growth after androgen-deprivation

therapy. Treatment with 5-aza-CdR was found to increase

survival of TRAMP mice and delayed prostate cancer progression,

including the recurrence of prostate tumor growth after castration

[13,14]. Together, these results infer a potential role for epigenetic

therapies such as 5-aza-CdR in the treatment of prostate cancer

regardless of AR or androgen status.

While there remains controversy as to whether the anti-tumor

activity of 5-aza-CdR is due to its demethylating activity or

formation of DNA adducts [52,53] one hypothesis is that low doses

of 5-aza-CdR and high doses of 5-aza-CdR act via different

mechanisms to elicit their anti-tumor effects. A major finding in

this study is the correlation between 5-aza-CdR demethylation

activity with inhibition of cell proliferation and GSTP1 protein re-

expression and induction of cell death. Although past studies have

shown that 5-aza-CdR was able to demethylate and re-express

GSTP1 in prostate cancer cells [54,55,56], our results are the first

to demonstrate that GSTP1 methylation and protein status was

indicative of 5-aza-CdR treatment efficacy using a daily low-dose

Figure 5. Effects of Zebularine treatment on LNCaP and PC3 prostate cancer cell viability and cell death. (A-B) LNCaP and (C–D) PC3
prostate cancer cells (16104 cells per well in 12-well plates) were treated with increasing doses of Zebularine (0–400 mM, up to 1000 mM for LNCaP
cells) replenished once on day 4 for a period of 6 days for PC3 cells, and 8 days for LNCaP cells. (A) and (C) cells were counted at regular intervals using
a hemocytometer and cell viability was assessed by Trypan blue dye exclusion. (B) and (D) the number of dead cells is expressed as a percentage of
the total number of cells counted. Data at each time-point represents the mean +/2 SE of triplicate wells. *One-way ANOVA; p,0.0001 for (A) and (C);
p = 0.0004 for (D) compared to vehicle control (veh).
doi:10.1371/journal.pone.0025634.g005
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treatment regime. These results support the hypothesis of a

differential mechanism between ‘‘low’’ (inhibition of cell prolifer-

ation only) and ‘‘high’’ (induction of cell death) doses of 5-aza-

CdR. Interestingly, the presence of GSTP1 protein itself does not

influence prostate cancer cell proliferation [54], yet its DNA

methylation and protein status seems to be indicative of the

efficacy of DNMTi treatment. Furthermore, the DNA methylation

and protein status of GSTP1 was indicative of the poor treatment

response with Zebularine. Even though Zebularine effectively

reduced prostate cancer cell number, it was unable to induce

significant cell death, possibly due to its weak demethylating

activity and inability to reactivate silenced genes such as GSTP1.

Although initial studies suggested that Zebularine may be a better

DNMTi than 5-aza-CdR for clinical use, this and other studies

suggest that Zebularine is not as effective as 5-aza-CdR as a

demethylating agent [39,57].

One of the obstacles in previous clinical trials with DNMTis such

as 5-aza-CdR, was the inability to investigate the efficacy of the drug

in patients until the conclusion of the trial. Based on the findings of

this study, we propose that GSTP1 is a marker of DNMTi treatment

efficacy in prostate cancer. The ability to track efficacy of the drug

using tissue biopsies or circulating tumor cells at earlier time-points

will greatly assist future clinical trials. Firstly, it has the potential to

improve the assessment of drug efficacy, thus reducing both the

duration and cost of a clinical trial, and secondly to improve the

welfare of patients in clinical trials by minimizing unnecessary

exposure. Another advantage of using GSTP1 as a marker of DNMTi

efficacy is that it can be easily measured in a patient’s serum [58] or

circulating tumor cells which will facilitate its use as a biomarker in

future clinical trials. GSTP1 status after neoadjuvant treatment with

DNMTi may also be a useful prognostic marker, similar to the

prognostic significance of Ki67 after neoadjuvant treatment with

endocrine and chemo-therapies in breast cancer [59,60].

Supporting Information

Figure S1 GSTP1 COBRA and MSP primers specific for
bisulfite modified unmethylated and methylated GSTP1.
The capital T defines thymines that are converted from cytosine

residues by bisulfite modification. Unmethylated CpGs become

TpG (Tg) and methylated CpGs (cg) remain unchanged upon

conversion. The GSTP1 COBRA primers were designed to target

both unmethylated and methylated GSTP1. Following PCR

amplification, PCR products were digested with either BstUI or

HhaI restriction enzymes. The restriction sites identified by BstUI

(CG_CG) are highlighted by bold lines while the restriction sites

for HhaI (C_CGC) are highlighted by dashed line. The GSTP1

MSP primers consist of one set of primers specific for unmethylated

GSTP1 and another set of primers specific for methylated GSTP1.

The start site of GSTP1 exon1 is indicated as +1.

(TIF)

Figure S2 5-aza-CdR daily treatment of LNCaP and PC3
cells in steroid-depleted culture environment. (A–B) LNCaP

and (C–D) PC3 cells were cultured in steroid-depleted medium and

treated with increasing doses of 5-aza-CdR (0.005–2.5 mM)

replenished daily for a period of 8 or 6 days respectively. (A) and

(C) cells were counted at regular intervals using a hemocytometer

and cell viability was assessed by Trypan blue dye exclusion. (B) and

(D) the number of dead cells is expressed as a percentage of the total

number of cells counted. Data at each time-point represents the

mean +/2 SE of triplicate wells. *One-way ANOVA; p,0.0001 for

(A) and (C); p = 0.007 for (D) compared to vehicle control (veh).

(TIF)

Table S1 Summary of studies investigating 5-aza-cyti-
dine (5-aza-CR) or 5-aza-29-deocycytidine (5-aza-CdR) in
prostate cancer cells.
(DOCX)
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Figure 6. DNA methylation status and protein expression of
GSTP1 in LNCaP cells after Zebularine treatment. DNA and
proteins were extracted from LNCaP cells after 8 days of treatment with
increasing doses of Zebularine (0–400 mM). (A) DNA was bisulfite-
modified and MSP was performed with primers targeting bisulfite-
modified methylated GSTP1 or unmethylated GSTP1. (B) The relative
DNA methylation status of the GSTP1 promoter following Zebularine
treatment was assessed by COBRA using two restriction enzymes, BstUI
or HhaI. (C) Immunoblot was performed to analyse GSTP1 protein
expression in LNCaP cells after 8 days of Zebularine treatment. Proteins
were extracted from LNCaP cells treated with increasing doses of
Zebularine (0–400 mM). PC3 cells express endogenous GSTP1 protein
and were used as positive control.
doi:10.1371/journal.pone.0025634.g006
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