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Abstract

Protein-protein interactions (PPIs) are frequently mediated by the binding of a modular domain in one protein to a short,
linear peptide motif in its partner. The advent of proteomic methods such as peptide and protein arrays has led to the
accumulation of a wealth of interaction data for modular interaction domains. Although several computational programs
have been developed to predict modular domain-mediated PPI events, they are often restricted to a given domain type. We
describe DomPep, a method that can potentially be used to predict PPIs mediated by any modular domains. DomPep
combines proteomic data with sequence information to achieve high accuracy and high coverage in PPI prediction.
Proteomic binding data were employed to determine a simple yet novel parameter Ligand-Binding Similarity which, in turn,
is used to calibrate Domain Sequence Identity and Position-Weighted-Matrix distance, two parameters that are used in
constructing prediction models. Moreover, DomPep can be used to predict PPIs for both domains with experimental
binding data and those without. Using the PDZ and SH2 domain families as test cases, we show that DomPep can predict
PPIs with accuracies superior to existing methods. To evaluate DomPep as a discovery tool, we deployed DomPep to
identify interactions mediated by three human PDZ domains. Subsequent in-solution binding assays validated the high
accuracy of DomPep in predicting authentic PPIs at the proteome scale. Because DomPep makes use of only interaction
data and the primary sequence of a domain, it can be readily expanded to include other types of modular domains.
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Introduction

Cellular signal transduction is regulated by the formation and

dissolution of specific protein complexes. These complexes is often

mediated by modular protein-interaction domains such as the Src

homology 2 (SH2) or 3 (SH3) and the Post-synaptic density

protein, Disc large, Zonula occludens-1 (or PDZ) domain that are

capable of binding partner proteins via short peptide motifs [1].

While distinct families of modular domains differ in the three-

dimensional fold and ligand-binding specificity [2,3], members of

the same family are related by the same fold and similar specificity

[4,5]. Both extrinsic and intrinsic factors are thought to contribute

to the specificity of a modular domain. Extrinsic factors, which

include sub-cellular localization and contextual information [6,7],

are difficult to predict in silico. Intrinsic specificity determinants,

such as the amino acid sequence of a domain and the

characteristics of its ligand-binding site, are context-independent

because they are retained even in the isolated domains [8]. In fact,

much of our current knowledge on modular domain-ligand

recognition has been gleaned from studies using isolated domains

and short peptides [9,10,11]. For example, synthetic peptide

libraries and oriented peptide array libraries were used to gauge

the specificity of the SH2 domain [12] whereas phage-displayed

peptide libraries were employed to determine the specificity of the

PDZ and SH3 domains [13]. Recently, peptide and domain arrays

were employed for large-scale PPI identification [14,15]. The

resulting specificity data are invaluable not only for rationalizing

known interactions but for constructing in silico models to predict

novel PPI events [16,17].

Intrinsic specificity information of a domain, obtained from

sequence analysis and/or experimental data on domain-peptide

binding, may be harnessed for in silico prediction of binding

partners for that domain or for other members of the same domain

family. Scansite [18], NetPhorest [16] and SMALI [19] are but

three examples of the many approaches developed for prediction

of PPI events mediated by modular domains. The performance of

a given method depends on the quality of the prediction models,

which, in turn, is dictated by the quality and quantity of the

relevant experimental binding data. While sufficient experimental

binding data may be available for certain domains to build the

corresponding prediction models or classifiers, it may be scarce or

completely missing for other domains. To overcome this limitation

imposed by lack of experimental data, domains that share similar

specificities are often grouped together such that their binding

ligands may be pooled together to create a common classifier

[16,20]. A common classifier usually leads to improved predictive

performance because the number of positives and negatives used

in the training increases significantly when experimental binding

data from multiple domains are combined. Despite this apparent

advantage, currently there is no general standard that can be used

to identify domains with similar specificities. While domain

sequence identity (DSI) provides a good measure of the
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evolutionary distance between two domains, it is complicated by

the different threshold values used in different studies [21,22,23].

To overcome this potential problem, Xu et al. [20] and Miller et al.

[16] developed methods to classify and group domains based on

the phylogenic tree of the domain family. In this scheme, domains

from the same branch of the phylogenetic tree are considered

similar in specificity and therefore grouped together. Nevertheless,

DSI values differ widely from one branch to another, making it

difficult to define a cut-off value by which to discern whether two

domains belonging to the same branch of the phylogenic tree have

similar specificity or not. For example, members of Src family SH2

domains have greater than 50% DSI and form a branch in the

SH2 domain phylogenetic tree. In contrast, the SOCS family SH2

domains, which forms another branch, share ,25% DSI [24].

These limitations suggest that it is necessary to develop a new

strategy that integrates specificity information with sequence

identity to classify and group domains with related binding

properties.

While the above methods make use of specificity and sequence

information for PPI prediction, other approaches exploit the

binding site characteristics of the relevant domain-peptide com-

plex structures. For instance, a position-specific domain-ligand-

contact frequency matrix could be constructed from the contacting

residues in the corresponding domain-peptide complex structures

[25,26]. Machine learning algorithms, such as support vector

machine (SVM), have been developed using the same structural

information [27,28]. While a structure-based predictive algorithm

usually performs well for a domain whose binding pocket aligns

well with the template structure(s), its application is limited by the

quality of the template structure and by the accuracy of structure-

based sequence alignment. Moreover, the performance of these

structure-based predictive methods depends on the amount of

interaction data available for training because the number of

potential combinations of contacting residues between the domain

and the peptide may exceed the number of data points available

for training [25].

To overcome limitations of the existing methods for domain-

based PPI prediction, we developed DomPep. Unlike previous

methods that group related domains according to a single

parameter (e.g., DSI or branches in a phylogenetic tree), DomPep

identifies specificity-similar domains by combining two parame-

ters, namely DSI and Position-Weighted-Matrix (PWM) distance.

PWM, represented by the sequence logo of the bound peptides

[29], provides a measure of domain specificity based on

experimental binding data. PWM distance has been employed to

measure the difference in binding specificity between two domains,

independently of DSI [13]. Although PWM distance and DSI,

when used together, provide valuable information on the

relatedness of domain specificity, the corresponding threshold

values have to be defined. We therefore created a novel parameter

called ligand-binding similarity (LBS) by which to calibrate the

threshold values for DSI and PWM distance. The LBS of two

domains is positively correlated with the number of peptides from

the same pool that are recognized by both domains.

Using this new strategy of domain classification, we have built

DomPep prediction models for the SH2 and PDZ domains that

differ significantly in specificity. The accuracy of prediction in each

case was benchmarked against experimental data [13,16,20,21].

The performance of DomPep was compared to that of NetPhorest

using its artificial neural network (ANN) models [16] to identify

SH2-binding peptides/proteins. In the case of predicting PDZ-

ligand interactions, we evaluated DomPep against both SPSSM

(Structure-based PSSM) [25] and MDSM (Multi-Domain Selec-

tivity Model) [15] algorithms. DomPep compared favorably to

these existing methods when independent training and test sets

were used. Moreover, we used DomPep to predict, in silico,

ligands for the Scrib PDZ domains from the human protein

database. Subsequent binding assays on 56 candidate PDZ-

binding ligands indicated that DomPep was effective in distin-

guishing positive from negative binders. The current online

DomPep server could be used to predict ligands for 174 PDZ

domains and 97 SH2 domains from different species. We expect

DomPep to function as a bioinformatic platform for comparison of

domain specificity and as a discovery tool for in silico prediction of

domain-peptide interactions and the corresponding PPI networks.

Results

Definitions and calculations of PWM distance and LBS
DomPep employs both the DSI and PWM distance to assess the

similarity in specificity for two domains. The PWM of a domain is

a matrix (such as that represented by a sequence LOGO, [29])

generated by aligning all experimentally determined peptide

ligands for that domain. The PWM distance is defined as the

difference in PWMs for two domains. Since the PWM distance is

based on peptide binding data whereas DSI is calculated from

sequence information, they are complementary to each other in

identifying domain pairs with similar specificities. Nevertheless, a

critical question in applying these two parameters to identify

specificity-similar domains is how to set the corresponding

threshold values. To address this question, we introduced LBS

to provide an empirical measure of the relative specificity of two

domains by taking advantage of high-throughput domain-peptide

array data. We reasoned that, if the two domains are capable of

binding to the same set of peptides, they should possess the same

specificity. Therefore, we define LBS as the ratio of the number of

peptides commonly recognized by two domains over the total

number of peptides that have been experimentally tested (see

methods for details). We define two domains to have identical

specificity if LBS = 1. Conversely, a LBS value of 0 implies that the

specificity of the two domains under concern is non-overlapping.

Since the accuracy of the LBS and PWM distance values is

determined by the number of binding peptides, we calculated

these two parameters for a domain only when it has at least 10

experimentally identified binding peptides. We considered two

domains to have similar specificities when LBS $ 0.7 as this value

was a reasonable compromise between domain coverage and

stringency of prediction. This LBS value (i.e. 0.7) was used to

calculate the threshold values for DSI and PWM distance,

respectively. The latter parameters were then used to identify

domains with similar specificity based on the available binding

data, as outlined below. It should be emphasized, that due to the

limited size of available data on domain-peptide interaction, it is

not possible to build individual prediction models for all domains.

For a domain with only a few identified peptide ligands, a model

may be built by combining its binding data with those of

specificity-similar domains. Moreover, the accuracy of a model

may be enhanced by an increase in the training peptide set that

combine all related binding data.

The general scheme of DomPep
DomPep comprises two modules – model construction and PPI

prediction (Fig. 1). The model construction module includes two

parts: (i) determination of the thresholds of DSI and PWM distance

by LBS based on available domain-peptide binding data (Fig.1A–

D); (ii) identification and grouping of specificity-similar domains

using DSI and PWM distance (Fig. 1E–G). For the first part,

domains with a minimum of ten experimentally (ie. domain-peptide

DomPep—Predicting Domain-Peptide Interactions
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array binding) verified peptide ligands are retained for parameter

calculations (Fig. 1A &B). Specifically, LBS, PWM distance and DSI

values are calculated for all domain pairs (Fig. 1C). A LBS value of

0.7 is set as the cut-off to determine the threshold values of DSI and

PWM distance (Fig. 1D). All available experimental binding data

(ie. both in vitro or in vivo) are used to calculate the PWM distance

(Fig.1E & F). Domain pairs with PWM distance and DSI values

above the corresponding thresholds are considered to have similar

specificity. It should be noted that the integration of in vivo and in

vitro data for the identification of specificity-similar domains would

minimize the effect on predictive performance of non-specific

binding events (i.e. false positives) that can potentially originate from

in vitro array screening experiments. Based on available experi-

mental binding data (in vitro and in vivo), the specificity-similar

domains to a query domain are identified. These domains are

iteratively grouped together with the query and the binding data for

each group of the domains are employed to construct prediction

models. These models are compared, using leave-one-out cross-

validation, with the one constructed using the peptides of the query

itself and the model with the best accuracy is retained as the final

model for the query. The same procedure is repeated for every

domain for model construction. We employed the SVM algorithm

to build the DomPep models [27,28]. The combined use of the

three related parameters, LBS, DSI and PWM distance, makes it

possible to apply DomPep not only to domains with experimentally

derived models but also to those without any experimental binding

data. In the latter case, the sequence of the query domain is used to

search for a ‘‘similar’’ domain in the family that has a DSI value

above the threshold (Fig. 1H). The model for the latter domain is

then used for PPI prediction for the query domain.

The utility of the DomPep was demonstrated on the PDZ and

SH2 domain families that have distinct specificities and for which

comprehensive binding data are available from large-scale

proteomic analysis and conventional experiments [13,16,25,30].

We evaluated DomPep through direct comparisons with three

recently developed prediction programs and by a genome-scale

prediction of PDZ binding ligands followed by experimental

validation. Results from these studies are described below.

Application of DomPep to the PDZ domain family
We analyzed the specificity of PDZ domains based on published

data. MacBeath and colleagues recently conducted a study to

characterize the specificity of 157 mouse PDZ domains using 217

peptides representing potential physiological PDZ-binding sites

[15]. Interactions identified from the PDZ protein array screening

were further analyzed by quantitative fluorescence polarization.

When a Kd cutoff of 100 mM was applied, 731 positive

interactions and 1,361 negative interactions were identified that

involved 85 PDZ domains and 181 peptides [15]. This set of

quantitative binding data was directly employed in our analysis

and the same Kd cutoff was adopted. The five C-terminal residues

of the bound peptides were considered in our analysis as they were

shown to be the major specificity-determinants in PDZ binding

[13] and were found to provide a good balance between false-

positive and false-negative predictions in previous studies [15].

We first investigated the relationship between LBS and DSI. To

ensure that the calculation for LBS and subsequently, for PWM

distance was accurate, PDZ domains with fewer than 10

experimentally verified ligands were omitted (Fig. 1B). As shown

in Figure 2A, PDZ pairs with DSI$50% had an average LBS

Figure 1. A schematic representation of the DomPep methodology.
doi:10.1371/journal.pone.0025528.g001
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value of 0.85. No significant difference in LBS was observed

between pairs with DSI = 50-59% or those with DSI.60%. This

suggests that domain pairs with sequence identity greater than

50% share the same pool of ligands and are therefore similar in

specificity. In contrast, domain pairs with DSI,30% had the

smallest average LBS (0.40), suggesting that domains with diverse

sequences have distinct specificity. These analyses demonstrate

that DSI and LBS are correlated in such a way that the greater the

domain sequence identity, the greater the similarity in ligand-

binding. While this observation is in agreement with previous

findings [13], the correlation deteriorated rapidly with decreasing

DSI value. This suggests that, for a model constructed based on

DSI, caution should be taken with regard to the minimum DSI

value at which homology modeling may be applied. Because PDZ

domains with different specificity may still share a certain number

of binding peptides, it is not suitable to include the peptides that

bind to one PDZ domain in the negative training set of peptides

for other PDZ domains. Therefore, we generated the negative

training set by randomly selection of peptides from the Swiss-Prot

protein database when constructing DomPep models (see Methods

for details).

To further explore the relationship between DSI and binding

specificity, we calculated the PWM distances (see Methods). PWM

distances range from 0 to 1, in which ‘‘0’’ suggests identical

specificity and ‘‘1’’ suggests completely different specificity. We

graphed LBS against PWM distance and grouped together pairs of

domains belonging to the same DSI group (Fig. 2B). As expected,

LBS generally decreased with an increase in PWM distance.

However, this reverse correlation between LBS and PWM

distance, two parameters that measure domain specificity, was

seen to be largely independent of DSI. For instance, the pairs with

PWM distance of 0.1 to 0.2 have similar LBS values (ie. 0.85)

although the corresponding DSI values range from ,30% to

.50%. Additionally, some PDZ domains display low DSI but

high LBS and small PWM distance. For example, the second PDZ

domain of DLG3 [or DLG3(2/3)] shares 17% sequence identity

with the second PDZ domain of MAGI3 [or MAGI3(2/5)], yet

they have a short PWM distance ( = 0.16) and a large LBS ( = 0.94)

because they share 15 of 16 peptide ligands tested. This

phenomenon is also observed on data obtained using phage-

displayed random peptide libraries [13]. For instance, the

MAGI3(4/6) and MAGI1(5/6) PDZ domains were found to have

similar specificity and therefore classified into the same group [31]

despite of a low DSI (24%). These two domains showed a small

PWM distance of 0.22 in our analysis (For more examples, see

Figure S1).

To characterize the relationship between domain sequence

identity and ligand-binding specificity, we plotted the percentile

Figure 2. Correlation of LBS, DSI and PWM distance with each other and with the specificity of the PDZ domain. (A) The relationship
between ligand binding similarity (LBS) and domain sequence identity (DSI) for PDZ domain pairs based on domain-peptide array binding data. DSI
values were calculated according to the ClustalW2 program [45]. (B) The relationship between PWM distance and LBS for PDZ domain pairs in
different DSI groups. LBS appears more closely related to PWM distance than to DSI. (C) The relationship of PWM distance to DSI. The percentage of
PDZ pairs within a given DSI group was plotted against the corresponding PWM distance. (D) A strategy for the identification of specificity-similar
domains for a PDZ domain. This strategy takes advantage of results generated from (A) and (B).
doi:10.1371/journal.pone.0025528.g002
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distribution of different DSI groups against the PWM distance. As

shown in Fig. 2C, while PDZ pairs with high DSI values generally

exhibit small PWM distances, the reverse is not true. With

decreases in the DSI, the variations in the PWM distance become

wide. However, many domain pairs that share low sequence

identity still exhibit small PWM distance values. For example, 28%

of PDZ domains in the SI = 30-39% group had PWM distance of

0.2-0.3. Even for the most sequence-diverse group (i.e.

DSI,30%), 17% of PDZ pairs have PWM distances within this

range. These data indicate that low sequence identity between two

PDZ domains does not necessarily imply distinct specificities

[13,15].

PDZ domains with 10 or more binding peptides identified from

the arrays were analyzed in pairs to generate the corresponding

DSI, PWM distance and LBS values. We used the corresponding

LBS value to calibrate DSI and PWM distances. To this end, we

arbitrarily set LBS = 0.7 as the cutoff to assign two PDZ domains

similar (when LBS $ 0.7) or dissimilar (when LBS,0.7). This

cutoff value was used, in turn, to determine the threshold values

for DSI and PWM distance (Fig. 1D). In the case of the PDZ

domains, LBS$0.7 corresponds to DSI$50% (Fig. 2A) or PWM

distance ,0.3 (Fig. 2B). These cutoff/threshold values were

subsequently applied to the PDZ domain family to identify domain

pairs with similar specificity (Fig. 2D). Specifically, a PDZ domain

was sequence-aligned to another domain in the PDZ family and

the corresponding DSI value was calculated. If DSI $ 50%, the

corresponding pair of domains was considered similar in

specificity. If the query domain had more than 10 experimentally

verified binding peptides, the PWM distance was used to identify

another domain that also had at least 10 known ligands. Two

domains of this category that have the PWM distance ,0.3 were

considered specificity-similar. The specificity-similar domains

(based on DSI and/or PWM distance) were iteratively grouped

with the query domain and their peptides were pooled to form the

positive training set for prediction models. The negative training

peptides were chosen randomly from the C-termini of proteins in

the Swiss-Prot database [15,25]. The negative training set was, in

general, five times greater in number than the positive set [16].

The prediction models for these groups were compared, based on

leave-one-out cross-validation, with the model of the query that

was constructed using the peptide ligands of the query itself. The

model that has the best performance is retained as the final

prediction model for the query. For a PDZ domain without a

prediction model, we performed the prediction using the model of

a related domain with DSI .50%.

Comparison of DomPep with other methods for
predicting PDZ domain-ligand interactions

We compared DomPep to two methods developed recently by

MacBeath and coworkers [15,25] for accuracy in predicting

PDZ-ligand interactions. The first method, multi-domain selec-

tivity model or MDSM is a variation of PSSM [15]. In contrast to

PSSM that measures the weighted contribution of a residue to

binding at a given position of the ligand, MDSM captures the

difference in selectivity for different PDZ domains [15]. The

second method, called SPSSM, contains structure-based position-

specific scoring matrices derived from 38 pairs of interacting

residues in a reference PDZ domain-peptide complex structure

[25]. While the MDSM models could be used to predict binding

ligands for 74 mouse PDZ domains, the SPSSM model is

capable, in principle, of predicting interactions for any PDZ

domain.

The training set was previously employed to construct both the

MDSM and SPSSM models [15,25].Based on this training set, 66

DomPep models and 74 MDSM models were constructed, of

which 54 were common for both methods. The independent test

set was composed of 48 mouse PDZ domain-containing proteins

[15]. It covers 52 of the 54 PDZ domains shared by both DomPep

and MDSM and these 52 domains were therefore selected for the

comparison of DomPep and MDSM. The performance of a model

was evaluated by calculating the area under a receiver operating

characteristic curve (AROC). The average AROC (0.81) of the 52

DomPep models was significantly greater than that (0.75) of the

MDSM models (p-value = 7.961024, Wilcoxon signed-rank test;

Table S1). Additionally, we investigated whether the favorable

performance of DomPep is due to the inclusion of more peptides

from specificity-similar domains that were identified based on the

DomPep strategy. To this end, we constructed models for

individual PDZ domains using the experimentally-verified binding

peptides (Table S1) and compared them with the related DomPep

models. The above training and test sets were employed for this

comparison. Indeed, the DomPep models had better accuracy (p-

value = 761024). Therefore, we concluded that the DomPep

strategy leads to improved prediction accuracy.

Ideally a prediction method for domain-ligand interactions

should be capable of identifying binding partners not only for

domains included in the training set but also for family members

not included in training. We therefore compared the perfor-

mance of DomPep with that of SPSSM, a method that can be

used for predicting binding partners of an untrained PDZ domain

[25]. In this case, the independent test set was composed of

interactions between human or worm PDZ domains and peptides

identified from screening phage-displayed peptide libraries [13].

A query PDZ domain was aligned to the mouse PDZ domains in

the training set in order to identify a matching mouse PDZ

domain that share significant sequence identity with the query.

Ten PDZ domains (four from human and six from worm) were

found to have matching mouse PDZ domains with moderate DSI

values (50–80%), and this group of PDZ domains was used as the

final test set. For a query PDZ domain in the test set, we used

peptides identified as specific binders from phage display as the

positives and peptides that bound to other PDZ domains in the

set, but not to query domain, as negatives. The average AROC of

the DomPep models was greater than that of the SPSSM models

(p-value = 4.561023, Table S2). Because the same dataset was

used to train both DomPep and SPSSM [25], our data suggests

that DomPep is more accurate than SPSSM in identifying

binding peptides for a PDZ domain that shares moderate

sequence identity (e.g., DSI = 50–80%) to a domain included in

the training set.

Application of DomPep to the SH2 domain family
The specificity of SH2 domains was systematically analyzed by

probing an array of 6,200 phosphotyrosine-containing peptides

respectively with 66 human SH2 domains [16]. This dataset was

employed to build ANN models in NetPhorest, a collection of

linear motifs recognized by phosphotyrosine-binding modules such

as the SH2 and PTB domains [16]. The dataset of binding

peptides was downloaded from http://netphorest.info/and used to

evaluate the accuracy of DomPep in predicting SH2-peptide

ligand interactions. We selected peptide sequences corresponding

to residues from positions –2 to +4 with respect to the

phosphotyrosine (pY) because these residues are sufficient in

conferring specificity to most SH2 domains studies [12,32,33].

While in rare cases, such as in PLCg1, an SH2 domain may bind

to a residue beyond P+4 [34] in addition to its recognition of the

sequence within the -2 to +4 window, the vast majority of SH2

domains recognize residues in this window. We used 50 SH2

DomPep—Predicting Domain-Peptide Interactions
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domains to screen oriented peptide array libraries with the

degenerated sequence of XX-pY-XXXX (-2-pY-+4) or XXX-pY-

XXXXXX (-4-pY-+6), where X represents a mixture of natural

amino acids, but found no significant difference in binding

patterns for an SH2 domain (Huang et al MCP, 2008; and

unpublished data). Moreover, we extended the sequence coverage

beyond the -2-pY-+4 motif in our model building, but found no

significant improvement in predictive performance (data not

shown). Since each of the 66 SH2 domains covered by the

peptide-array experiment bound to more than 10 peptides [16],

they were included in characterizing the relationships of the three

parameters- LBS, DSI and PWM distance. As shown in Figure 3A,

we calculated LBS and DSI for each SH2 domain pair and plotted

them against each other. Domain pairs with DSI$60% were

found to have the highest average LBS (0.92). Significant

difference was observed between pairs with DSI,40% and those

with DSI.40% (p value = 5E-15, permutation test). The average

LBS value (0.74) for the pairs with DSI = 40-49% is similar to

those in the DSI = 50–59% group (LBS = 0.67), suggesting that for

two SH2 domains that share 40-59% sequence identity, their

binding peptides have an approximately 70% chance to overlap.

Moreover, SH2 domains with low DSI values (,30%) share on

average 25% of binding peptides. The standard deviation,

however, is high (,20%), indicating that the peptide-overlapping

is spread out over a large range of values. Therefore, when a

prediction model for a SH2 domain is constructed, the negative

training peptides may not be selected from the pool of peptides

bound to other SH2 domains. We therefore randomly chose

peptides from the Swiss-Prot database as negatives to construct the

SH2 models (see Methods for details).

We further investigated the relationship between PWM distance

and LBS for SH2 domain pairs grouped according to DSI

(Fig. 3B). A reverse correlation of LBS with PWM distance was

noted, which is similar to that observed for the PDZ domains.

However, when PWM distance is within the range of 0.1–0.3, a

larger DSI value correlates with a greater LBS, and vice versa. It is

also observed that all pairs in the DSI$60% group had a PWM

distance smaller than 0.3 and LBS greater than 0.9, except for the

pair of SH2D3C and BCAR3 (DSI = 68%; PWM distance = 0.47).

For the DSI = 40–59% group, a LBS value greater than 0.7 was

obtained for pairs with PWM distance smaller than 0.3. We

inspected the distribution of DSI groups along the PWM distance

axis (Fig. 3C). In general, we found that domain pairs that share a

high sequence identity possess smaller PWM distance. Specifically,

96% of SH2 domain pairs with DSI$60% had PWM distance

smaller than 0.3. This is in contrast to 80% of domain pairs in the

DSI = 40–59% and 45% in the DSI,40% categories that had

PWM distances smaller than 0.3. In addition, the PWM distance

for SH2 domain pairs ranges from 0 to 0.7, which is narrower than

for the PDZ domains (PWM = 0–0.9, Fig.1C), suggesting that SH2

domains may share binding peptides even when they are

significantly different in sequences. Indeed, three SOCS2, SOCS3

Figure 3. Correlation of LBS, DSI and PWM distance with each other and with the specificity of the SH2 domain. (A) Correlation of DSI
and LBS in SH2 domain pairs based on domain-peptide array data. (B) Correlation of PWM distance and LBS for SH2 domain pairs within different DSI
groups. It is apparent that LBS is related to both PWM distance and DSI. (C) The distribution of SH2 domain pairs along PWM distance for different DSI
groups. (D) A strategy for the identification of similar domains for an SH2 domain.
doi:10.1371/journal.pone.0025528.g003
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and SOCS7 SH2 domains have DSI values of 20–30% but

recognized almost the same peptides in the array [16].

Similar to PDZ domains, we considered SH2 pairs with

LBS$0.7 as having similar specificity. This threshold was used

to determine the cutoffs for DSI and PWM distance, respectively.

According to the above analysis (Fig. 3A–C), LBS$0.7 corre-

sponds to DSI$60%, or PWM distance,0.1, or DSI$40% and

PWM distance,0.3 (Fig. 3D). We constructed models for SH2

domains using the same method as employed for the PDZ

domains.

Comparison of DomPep with ANN models in NetPhorest
We evaluated the performance of SH2 DomPep models by

comparing them to Netphorest [16]. NetPhorest combines a

domain-family phylogenetic tree with a backtracking algorithm to

organize available in vitro and in vivo binding data and derive

prediction models for domains. It currently contains prediction

models for 179 kinases and 104 phosphorylation-dependent

binding domains, including 93 SH2 domains [16]. NetPhorest

comprises both ANN and PSSM models that are based on

specificity data from pTyr-peptide array binding and OPAL

screens [12], respectively. Since ANN models were constructed

using the peptide array binding data that could be employed for

the construction of DomPep models, we compared DomPep with

the ANN models in NetPhorest.

The training set was based on the published SH2 domain-

peptide array data [16]. The test set was based on binding data for

eight randomly chosen human SH2 domains for which peptide

arrays were employed to experimentally determine their specific-

ities (Table S3). The average AROC of the DomPep models (0.71)

was greater than that of the ANNs (0.61) (P value = 0.018,

Wilcoxon signed-rank test). For the 8 SH2 domains tested, we

found that DomPep models performed better than ANN models

except for the GRB2 SH2 domain for which the same result was

obtained from both methods (Table S3).

Several differences between the two methods may have

contributed to the improved performance of DomPep over

NetPhorest for the eight SH2 domains tested. For example, the

two methods employ different strategies for the identification of

specificity-similar domains. Furthermore, while DomPep random-

ly selected negative peptides of the training set from the Swiss-Prot

protein sequence database, NetPhorest used positive peptides of

other domains with small DSIs as negative training peptides for

the query domain (Miller, et al., 2008). We found that the

difference in performance originated largely from the different

strategies by which the negative peptide training set was selected.

DomPep showed comparable performance to NetPhorest when

the same negative peptide sets were used as in the latter (data not

shown). This is consistent with our observation (Figure 3A) that

two SH2 domains with a small DSI value may share a non-

negligible number of binding peptides.

Application of DomPep models to predicting PDZ
binding ligands on the genome scale

Because DomPep compared favorably to MDSM in identifying

ligands for a PDZ domain included in the training set and to

SPSSM in identifying binding peptides for an untrained PDZ

domain, we next tested it whether it could reliably PPIs mediated

by a PDZ domain on the genome scale. To this end, we

employed three DomPep models to predict interactions between

the Scrib PDZ domains and human proteins from the Swiss-Prot

protein database. The three prediction models, which were

generated for the mouse Scrib PDZ-1, PDZ-2 and PDZ-3

domains, were trained with 6, 5 and 30 positive peptide,

respectively (Table S1). Searching the protein database with

these models yielded a list of potential PDZ ligands. We selected a

group of 56 ligands with a wide range of prediction scores and

measured their respective affinities (Kd) for the Scrib PDZ

domains (Table 1). This experiment identified 14, 14, and 38

positives for the PDZ-1, -2, and -3 domains, respectively (Table 1).

The AROC values for the three DomPep models were 0.90, 0.85

and 0.89, respectively, suggesting a high accuracy for identifying

true positive interactions using our models (Figure 4). Impor-

tantly, we identified four peptides that were not included in the

training set as physiological binders to the Scrib PDZ domains.

The corresponding proteins, namely APC, LPP, VANGL2 and

ZO2, were previously reported to interact with Scrib in vivo via

its PDZ domains [35,36,37,38,39]. Our peptide-domain binding

studies indicated that all four proteins are capable of binding to

the PDZ-1 and PDZ-3 domains whereas two bind to PDZ-2

(Table 1). We standardized the prediction scores as Z scores

based on the human protein database and found that the average

Z score for the corresponding ten peptide-PDZ interactions

(Z = 3.4) was greater than the average Z score for the whole set of

positives (Z = 3.0) (Table 1). This result demonstrate the ability of

the DomPep method in identifying physiological relevant

interactions despite the fact that the prediction models were

partly based on in-vitro array binding data that may contain non-

specific binding events.

Framework of the DomPep server
To ensure that the DomPep method is freely accessible to the

signaling community, we created the first online version of the

DomPep server (http://lilab.uwo.ca/DomPep.html) to predict

binding ligands for the PDZ and SH2 domains (Figure 5). The

server comprises two core components: model construction and

user interface. The online models were built using all available

interaction data for the PDZ or SH2 domains from current PPI

databases (e.g., PDZbase for the PDZ domain and phospho.ELM

for the SH2 domain) (Figure 1E) [12,13,15,16,19,30,40]. The pool

of positive peptides used in training a model is expanded according

to the strategy illustrated in Fig. 2D and Fig. 3D. The current

version of DomPep contains 174 PDZ models and 87 SH2 models

(covering 97 SH2 domains). The BLAST search program linked to

the server allow onsite sequence alignment to identify domains

that are similar to the query domain when necessary [24]. The

user may input a query protein sequence and select for the domain

of interest (i.e. PDZ or SH2). If the query domain has a built-in

DomPep model, potential interactions will be predicted and listed

in the output file. If no built-in model exists for the query domain,

the sequence of the query domain will be used as input in BLAST

to find homologous or similar domains (ranked according to DSI

values) that have DomPep models. The top 10 domains with

DSI$40% are displayed for the user to select as substitutes for the

query domain. Our study suggests that a substitute model can be

used for PDZ domains with DSI$50% and for SH2 domains with

DSI$60%. DomPep provides ‘high’, ‘medium’ and ‘low’

stringency prediction, corresponding to true positive rate of

70%, 50% and 30%, respectively, in the average ROC curve

generated from data obtained for PDZ or SH2 domain family

(Tables S1 and S3).

Discussion

We described a novel method called DomPep based on

sequence information and experimental data to predict PPIs that

involve the recognition of linear peptide motifs by modular

domains. Unlike existing sequence-based methods in which a
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Table 1. Scrib PDZ1/2/3 domain-ligand interactions predicted by DomPep and the corresponding PDZ-peptide binding affinities.

Index Protein name Gene ID C-termini Kd (mM) DomPep score (Z score)

PDZ1 PDZ2 PDZ3 PDZ1 PDZ2 PDZ3

1 ABR NM_001092.3 RNTLYFSTDV 12.5 +/2 0.6 10.4 +/2 0.6 2.9 +/2 0.1 20.09 (2.3) 0.3 (3.4) 20.01 (2.3)

2 ACBD6 NM_032360.1 VLQRHTTGKA NB NB NB 21.39 (21.2) 21.36 (21.2) 22.6 (21.7)

3 AHDC1 BC002677.1 PEDTFTVTSL 19.2 +/2 1.5 NB 10.4 +/2 0.6 0.43 (3.7) 0.32 (3.4) 0.31 (2.8)

4 ANKS4B NM_145865.1 QPGQLVDTSL NB NB 28.2 +/2 2.0 0.58 (4.1) 0.43 (3.7) 0.31 (2.8)

5 APC* NP_000029 HSGSYLVTSV 12.3 +/2 1.4 9.5 +/2 0.6 6.7 +/2 0.4 0.31 (3.4) 0.27 (3.3) 0.8 (3.6)

6 ARD50 BC024725.1 SFNYKKETPL 23.6 +/2 1.2 34.3 +/2 4.6 1.5 +/2 0.1 0.83 (4.7) 0.71 (4.5) 1.2 (4.2)

7 ARHGEF16 NM_014448.2 MERLRVETDV 27.5 +/2 2.4 7.7 +/2 0.3 2.1 +/2 0.1 0.75 (4.5) 1 (5.3) 1 (3.9)

8 BEGAIN NM_020836.2 KAQLYGTLLN NB NB NB 21.91 (22.6) 21.94 (22.8) 22.2 (21.1)

9 b-PIX NP_003890 NDPAWDETNL 5.3 +/2 0.5 16.8 +/2 1.5 4.9 +/2 0.4 1 (5.2) 0.97 (5.2) 1 (3.9)

10 C11orf52 NM_080659.1 RYDSKNGTLV NB NB 26.5 +/2 2.4 20.31 (1.7) 20.07 (2.4) 0.16 (2.6)

11 C19orf57 BC012945.1 PRGDPPWREL NB NB NB 20.67 (0.7) 20.69 (0.6) 21.02 (0.7)

12 DIRAS1 NM_145173.1 DRVKGKCTLM NB NB NB 20.3 (1.7) 20.24 (1.9) 20.44 (1.7)

13 DSC54 NM_016644.1 ILRKSTTTTV NB NB 40.1 +/2 5.2 20.21 (2) 0 (2.5) 20.52 (1.5)

14 EPHA2 PV3688 DQVNTVGIPI NB NB NB 20.87 (0.2) 20.84 (0.2) 21.46 (0)

15 EPHA3 PV3359 TQSKNGPVPV 129 +/2 188 NB NB 21.04 (20.3) 20.89 (0.1) 21.11 (0.6)

16 EPHA5 PV3840 VQLVNGMVPL NB 75.7 +/2 35.0 45.6 +/2 8.7 20.8 (0.4) 20.84 (0.2) 21.04 (0.7)

17 EPHA7 PV3689 LHLHGTGIQV NB NB NB 20.78 (0.4) 20.58 (0.9) 21.53 (20.1)

18 EPHA8 PV3844 DPELEALHCL NB 24.9 +/2 4.0 38.8 +/2 6.3 20.73 (0.6) 20.75 (0.5) 21.19 (0.5)

19 FAM105B NM_138348.3 PVRVCEETSL 1.9 +/2 0.14 17.6 +/2 2.0 3.4 +/2 0.2 0.88 (4.9) 0.66 (4.4) 1.24 (4.3)

20 FAM126B NM_173822.1 SFNMQLISQV NB NB 39.3 +/2 5.1 20.73 (0.6) 20.73 (0.5) 20.42 (1.7)

21 FLT1 NM_002019.1 SVVLYSTPPI NB NB NB 21.25 (20.8) 21.24 (20.9) 21.76 (20.4)

22 FOXl1 NM_144769.1 VLYPREGTEV NB 24.7 +/2 2.7 11.7 +/2 0.8 20.19 (2) 0.07 (2.7) 0.31 (2.8)

23 GLO1 BC001741.1 LNPNKMATLM NB NB 59.5 +/2 6.6 20.45 (1.3) 20.38 (1.5) 20.36 (1.8)

24 KCNA6 NM_002235.2 YAEKRMLTEV NB NB 34.8 +/2 3.6 20.02 (2.5) 0.21 (3.1) 0.51 (3.1)

25 KCNJ10 BC034036.1 SALSVRISNV NB NB 13.2 +/2 1.0 20.56 (1) 20.37 (1.5) 20.04 (2.3)

26 KIRREL2 BC007312.1 PSHPRLQTHV NB NB 21.3 +/2 2.4 0.33 (3.4) 0.36 (3.5) 0.08 (2.5)

27 LIMD1 NM_014240.1 SSTALHQHHF NB NB NB 20.68 (0.7) 20.68 (0.7) 21.92 (20.7)

28 LPP* NP_005569 VLTAKASTDL 24.2 +/2 3.9 NB 11.3 +/2 0.5 0.02 (2.6) 0.2 (3.1) 20.13 (2.1)

29 MAPK12 PV3654 GARVSKETPL 20.3 +/2 2.0 56.1 +/2 10.1 1.7 +/2 0.1 0.83 (4.7) 0.71 (4.5) 1.2 (4.2)

30 MCM7 BC009398.1 NASRTRITFV NB NB 24.1 +/2 2.4 20.07 (2.3) 0.13 (2.9) 0.41 (3)

31 MPG BC014991.1 DRVAEQDTQA NB NB 186 +/2 51 20.31 (1.7) 20.22 (1.9) 20.76 (1.1)

32 MTERFD1 NM_015942.3 QDFEKFLKTL NB NB NB 20.65 (0.8) 20.71 (0.6) 21.39 (0.2)

33 MUSK PV3834 CERAEGTVSV NB NB 143 +/2 43.1 20.75 (0.5) 20.74 (0.5) 21.01 (0.8)

34 PACAP BC021275.1 EKVSATREEL NB NB 88.1 +/2 29.5 21.01 (20.2) 20.84 (0.2) 21.4 (0.1)

35 PDGFRA NM_002609 PRAEAEDSFL NB NB 52.0 +/2 7.1 20.84 (0.3) 20.84 (0.2) 20.32 (1.8)

36 PDGFRB NM_002609 PRAEAEDSFL NB NB 59.6 +/2 11.9 20.84 (0.3) 20.84 (0.2) 20.32 (1.8)

37 PRKCA P2227 FVHPILQSAV 17.4 +/2 2.1 46.0 +/2 3.7 9.8 +/2 0.5 20.51 (1.2) 20.49 (1.2) 20.14 (2.1)

38 PRKCB1 P2281 YTNPEFVINV NB NB NB 20.57 (1) 20.34 (1.6) 20.71 (1.2)

39 PSMA8 BC042820.1 AEKKKSKKSV NB NB 177 +/2 85.9 20.43 (1.4) 20.41 (1.4) 21.35 (0.2)

40 PTE1 NM_005469.2 VKPQVSESKL NB NB NB 20.28 (1.8) 20.44 (1.3) 0.28 (2.8)

41 RASL11B NM_023940.1 SAKVRTVTSV NB NB 30.0 +/2 3.5 0.32 (3.4) 0.43 (3.7) 0.36 (2.9)

42 RPS6KA1 NM_001006665 RVRKLPSTTL NB NB 27.0 +/2 3.2 20.06 (2.4) 20.05 (2.4) 20.39 (1.7)

43 RPS6KA2 NM_001006932 GMKRLTSTRL NB 62.7 +/2 19.8 25.2 +/2 2.1 20.02 (2.5) 20.01 (2.5) 20.31 (1.9)

44 SRC NM_005417.3 EPQYQPGENL NB NB 48.6 +/2 4.4 20.77 (0.5) 20.74 (0.5) 21.55 (20.1)

45 STK16 BC053998.1 PAPGQHTTQI NB NB 52.2 +/2 5.6 20.45 (1.3) 20.38 (1.5) 20.49 (1.6)

46 STK29 BC024291.1 KVATSYESSL NB NB 3.2 +/2 0.2 0.29 (3.3) 0.01 (2.6) 0.59 (3.3)

47 SYNJ2BP BC007704.1 WAFMRYRQQL NB NB 32.0 +/2 1.8 20.81 (0.4) 20.68 (0.7) 21.82 (20.5)

48 TANK NM_133484.1 VDIASAESSI 102 +/2 40 NB 13.6 +/2 0.6 20.08 (2.3) 20.29 (1.7) 0.49 (3.1)

49 TBK1 PV3504 DGGLRNVDCL 77 +/2 21.1 NB 67.8 +/2 16.5 20.76 (0.5) 20.75 (0.5) 20.49 (1.6)
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common model is constructed for a group of domains, the

DomPep method contains models for individual domains

constructed from experimental data of the query domain and/or

specificity-similar domains identified by sequence identity and/or

closeness in specificity profiles. DomPep employs a novel

classification strategy to identify domains that are ‘‘similar’’.

Two parameters, namely DSI and PWM distance, are used

together to identify specificity-similar domains based on experi-

mentally verified binding peptides. The threshold values of DSI

and PWM distances are calibrated against LBS, or ligand binding

specificity, obtained from domain-peptide array binding data. To

ensure the accuracy of calibration, a LBS value is derived only

from domain pairs each of which has more than 10 positive

peptides. To maximize the dataset for prediction model training,

peptides that bind specifically to either the query domain or

specificity-similar domains that display a greater-than-the-thresh-

old value of DSI or PWM distance are pooled to form the positive

peptide set for the query domain.

While DomPep compares favorably in identifying PDZ- or

SH2-binding ligands to existing algorithms, it should be

cautioned that a few limitations may affect the performance of

DomPep models. First, DomPep depends on large-scale domain-

peptide array interaction data. However, this problem will

become less of a concern as peptide and protein arrays are

becoming increasingly popular and the reservoir of proteomic

data is rapidly increasing in size with the application of these and

other proteomic technologies to the study of PPIs. Second, unlike

NetPhorest that makes use of all forms of array-binding data [41],

DomPep is limited to using data from peptide array-domain

binding experiments only. Although this problem is difficult to

solve given the specific parameters (ie., LBS, PWM distances) that

have to be defined, future versions of DomPep should seek ways

by which to explore all forms of experimental data for model

training and testing. It should be noted also that the current

version of DomPep cannot be used to predict binding partners for

a mutated domain with significantly altered specificity. In this

regard, structure-based methods would be more suitable for

ligand identification if the mutated residues are located at the

binding interface. We expect that DomPep, when used in

conjunction with other sequence- or structure-based algorithms,

would provide a powerful tool for in silico identification of

domain-ligand interactions.

To the best of our knowledge, DomPep contains the largest

number of prediction models for modular interaction domains in

all the algorithms published to date. Although the current version

of DomPep is limited to predicting PPIs mediated by the PDZ or

SH2 domains, the general strategy we described here may be

applied to other protein-interaction domains such as SH3, WW,

and FHA [4,5,8]. There are approximately 261 PDZ domains

and 120 SH2 domains in the human genome. Together with

other interaction domains, they represent a prevalent feature of

the human proteome. Because of their pivotal roles in regulating

cellular functions [8], understanding how these domains are used

to connect proteins in a specific signaling pathway or to form

elaborate PPI networks is a key to understanding normal cell

physiology and the molecular basis of human diseases [42,43].

We expect DomPep to provide a useful tool to suggest novel PPIs

for experimental validation and for large-scale network analysis.

Index Protein name Gene ID C-termini Kd (mM) DomPep score (Z score)

PDZ1 PDZ2 PDZ3 PDZ1 PDZ2 PDZ3

50 TPM2 NM_003289.3 DNALNDITSL NB NB 54.4 +/2 11.1 0.6 (4.1) 0.48 (3.9) 0.25 (2.7)

51 TRIM21 NM_003141.2 NIGSQGSTDY NB NB 116 +/2 24.0 20.68 (0.7) 20.43 (1.4) 20.74 (1.2)

52 UBXD1 NM_025241.1 ELLSAIEKLL NB NB NB 20.03 (2.4) 20.22 (1.9) 20.38 (1.7)

53 VANGL2* NP_065068 VMRLQSETSV 21.6 +/2 4.6 8.7 +/2 0.5 8.8 +/2 0.5 0.86 (4.8) 0.83 (4.8) 1.25 (4.3)

54 ZADH2 NM_175907.3 ELPHSVNSKL NB NB NB 20.63 (0.8) 20.69 (0.6) 20.99 (0.8)

55 ZNF654 NM_018293.1 SSAQPSETIL NB 32.1 +/2 4.6 18.3 +/2 1.0 0.6 (4.1) 0.48 (3.9) 0.91 (3.8)

56 ZO2* NP_004808 QSARYDTEL 16.0 +/2 2.5 NB 13.7 +/2 0.6 0.06 (2.7) 0.08 (2.8) 0.2 (2.6)

a Kd value of 100 mM was applied as the binding cutoff, referred from previous study 15.
*Proteins that have been identified to interact with Scrib protein in vivo via its PDZ domains.
doi:10.1371/journal.pone.0025528.t001

Table 1. Cont.

Figure 4. Application of DomPep to the prediction of PDZ-
binding ligands. ROC curves of DomPep prediction for the
three Scrib PDZ-1/2/3 domains using 56 peptides selected
from the human protein database as the test set. The respective
affinities of the three domains for the 56 peptides were measured by
fluorescence polarization (Table 1).
doi:10.1371/journal.pone.0025528.g004
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Materials and Methods

Ligand Binding Similarity (LBS)
We created a parameter, LBS, to measure relative specificity

between two domains based on interaction data from the same

peptide pool (i.e. domain- or peptide-array data). LBS is defined as

the percentage of peptides commonly selected by a domain pair i

and j as in,

Bij

BijzBiNBjzBjNBi

Where Bij is the number of peptides selected by both domains i

and j, BiNBj is the number of peptides that bind to domain i but

not to domain j. LBS ranges from 0 to 1, where ‘‘1’’ indicates that

both domains have the same set of binding and non-binding

peptides, or identical specificity. This formula, suitable for

processing the MacBeath dataset on the PDZ domain, needs to

be modified to accommodate the SH2 domain-peptide array

binding data used in NetPhorest [16]. In the SH2 domain-peptide

array binding data, the ABL1 SH2 domain bound to four times

more peptides than the ABL2 SH2 domains (i.e. 173 binders for

the former compared to 40 for the latter), due likely to variations in

signal strength between the two binding experiments. If we

counted the common ligands and calculated the LBS according to

the above formula, a low LBS value of 0.23 would have been

produced. However, this is unlikely to be true. Since the two SH2

domains share 91% sequence identity and that every ligand of the

ABL2 SH2 domain was also recognized by the ABL1 SH2

domain, they must have identical specificity. This assertion is also

supported by data from oriented peptide array library screening

[12]. In the NetPhorest program the two domains were considered

as similar and the binding peptides for both domains were

combined to build a single model [16]. To resolve this

contradiction, we modify the LBS formula for the SH2 domain as

Bij=(Bijz2| min (BiNBj ,BjNBi))

According to this formula, the LBS value for the ABL1 and ABL2

SH2 domains increases to 1 ( = 40=(40z2|min(133,0))),
indicating identical specificity.

Position weight matrix (PWM) distance
PWM distance was used to measure the difference in specificity

between two domains. The PWM was calculated by aligning the

amino acid sequence of all binding peptides for a domain, where

the element PWMi,j contains the percentage of amino acid residue

j at position i in the aligned peptides. The PWM distance between

domains A and B is calculated using the formula

D a,bð Þ~ 1
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where a = PWM for domain A. b = PWM for domain B. S= 20

amino acids used in PWM. w = number of columns in the PWM.

For instance, w is 5 (corresponding to residues P-4 to P0) for PDZs

and 6 (corresponding to pY-2 to pY+4 except pY) for SH2s.

The PWM distance ranges from 0 to 1, where 0 represents

identical PWMs and suggests identical specificity. In order to

derive accurate PWM distance, domains with fewer than 10

binding peptides were excluded from the analysis.

In this formula, we took inverse cosine of the inner product of

the two unit vectors which is equivalent to the angle between the

two unit vectors. We did not use the inner product directly because

it is the cosine of the angle which will excessively reward very

similar vectors and excessively penalize dissimilar vectors.

Construction of DomPep models
We used the Support Vector Machine (SVM) program

SVMlight with the conventional linear kernel to build prediction

Figure 5. Framework of the DomPep program. DomPep contains three components- a Graphical user interface (GUI), a local BLAST server and a
set of embedded domain-peptide binding predictors. The GUI allows a user to input protein sequences and choose predictors for specific domains. If
the query domain does not have an embedded predictor, a substitute query domain with a known predictor can be identified from domains that
exhibit the highest DSI from a BLAST search. The output of a DomPep prediction consists of a list of peptides with prediction scores arranged in a
descending order from top to bottom. The corresponding proteins are listed in a separate column.
doi:10.1371/journal.pone.0025528.g005
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models [44]. According to previous analyses [12,15,32], the

DomPep model for a PDZ domain took into account of five C-

terminal residues of the peptide ligands and the model for an SH2

domain was derived for six residues (from pY-2 to pY+4, pY set as

residue ‘‘0’’) of the peptide. Residues at each position were coded

using the conventional orthogonal method by 20 dimensions of 0-1

vectors [28]. Consequently, peptides for PDZ domains were coded

by 100-dimension binary vectors while peptides for SH2s were

coded by 120-dimension vectors. We constructed models for

domains with at least three positive ligands in the training set.

Peptide arrays for SH2 domain binding analysis
Peptide arrays were synthesized following established protocols

[19]. A total of 720 pY-containing peptides covering positions -2 to

+4 with respect to the pY were arrayed on cellulose membranes.

The printed membranes were incubated, respectively, with four

SH2 domains (i.e., HSH2D, TNS4, GRB7 and GADS) fused to

glutathione S-transferase (GST) or with the GST protein, used as a

negative control. After washing, the bound domains were detected

by an anti-GST Far-Western blot. After background subtraction

and removal of 18 GST-binding peptides identified as false

positives, each binding experiment yielded 702 data points that

form the peptide recognition profile of a given SH2 domain

(Figure S2, Table S4). The same strategy used previously to

differentiate between binding and nonbinding peptides [19] was

applied to the four domains. A spot value cutoff of 80/50/120 was

used for the GADS/GRB7/HSH2D SH2 domains, respectively.

Supporting Information

Figure S1 Phylogenetic tree of the human PDZ Domains. 5

pairs of domains with similar specificities selected as example are

shown with different colors. They are the first PDZ domain in

protein ZO2 (ZO2/1) and HtrA3 with SI = 15% (pink), DLG3/2

and MAGI3/2 with SI = 17% (grey), SHANK1 and PDZK1/1

with SI = 23% (blue), MAGI1/5 and MAGI3/4 with SI = 24%

(green), LRRC7 and SCRIB/2 with SI = 36% (red). The first three

pairs are identified by DomPep which have BS.0.7 based on

PDZ domain arrays [15] and the rest are identified elsewhere [13].

It is noted that MAGI proteins are detected by SMART to contain

6 PDZ domains which are shown in this figure [45]. The figure is

prepared with iTOL [46].

(TIF)

Figure S2 Respective binding profiles for the SH2 domains from

HSH2D (A), GRB7 (B), GADS (C) and for control GST (D) on

arrays of phosphotyrosine-containing peptide ligands. These

peptides are derived from the PhosphoSite database and were

predicted to be highly connected to the four SH2 domains using

SMALI program [19]. The sequences of the peptides and the

binding signal values are provided in Tables S4.

(TIF)

Table S1 Comparison of DomPep with MSMD on predicting

PDZ domain-ligand interactions.

(DOC)

Table S2 Comparison of DomPep with SPSSM for ability to

predict PDZ domain-ligand interactions for PDZ domains in other

species than Mus musculus.

(DOC)

Table S3 Comparison of DomPep with Netphorest with ANN

models on predicting SH2 domain-ligand interactions.

(DOC)

Table S4 Peptides tested for binding the SH2 domains of

GADS, GRB7 and HSH2D in the peptide array experiment.

(DOC)
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