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Abstract

Regenerative strategies that facilitate the regrowth and reconnection of neurons are some of the most promising methods
in spinal cord injury research. An essential part of these strategies is an increased understanding of the mechanisms by
which growing neurites seek out and synapse with viable targets. In this paper, we use computational and theoretical tools
to examine the targeting efficiency of growing neurites subject to limited resources, such as maximum total neural tree
length. We find that in order to efficiently reach a particular target, growing neurites must achieve balance between pruning
and branching: rapidly growing neurites that do not prune will exhaust their resources, and frequently pruning neurites will
fail to explore space effectively. We also find that the optimal branching/pruning balance must shift as the target distance
changes: different strategies are called for to reach nearby vs. distant targets. This suggests the existence of a currently
unidentified higher-level regulatory factor to control arborization dynamics. We propose that these findings may be useful
in future therapies seeking to improve targeting rates through manipulation of arborization behaviors.
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Introduction

Search and pursuit problems have been studied extensively,

leading to optimal strategies, for example search for food in an

unpatterned landscape [1], pursuit of a duck in a circular pond [2]

or search along persistent random walks [3]. In this paper, we

study the search by neurons of viable targets during regeneration.

As we will show, this problem presents particular issues that

distinguish it from other historical search exercises – for instance, a

single axon can branch to produce multiple search avenues, and

an axon probing a fruitless avenue can die back, recovering

cellular resources.

During normal development, controlled growth and elaboration

of neuronal extensions (axons, dendrites, and synaptic connections)

are central to establishing a functional nervous system [4–5].

Accordingly, deficits and alterations in the programmed neural

architecture caused by trauma lead to impaired function. After

spinal cord injury, for example, injury to both the central nervous

system (CNS) and peripheral nervous system (PNS) lead to loss of

motor and sensory capabilities. Consequently, re-establishing

functional connections is essential to successful post-traumatic

repair of the nervous system.

Axonal connectivity between neurons is complex and varied,

involving morphologies that facilitate connections to very different

types of targets [6–7]. For many neurons, this means that

exuberant axonal projections generated during development must

be differentially regulated so that beneficial branches are elongated

while aberrant branches are eliminated [8–9]. For other neurons,

direct, unwavering axonal trajectories are abruptly and purpose-

fully eliminated after their collaterals have reached an appropriate

target. This large scale axon degeneration has been documented

and studied in a variety of developmental systems, for example in

retinotopic mapping in chick and the superior colliculus of mice

[10]. The relationship between neuronal morphology and synaptic

connectivity is exemplified by the heterogeneous population of

neurons found in the dorsal root ganglion (DRG), where

complexity and variability in geometric shapes of sensory neurons

are observed, thus reflecting the diverse range of modalities served

by DRG neurons [11]. In the present work, we focus on one piece

of this puzzle: the interplay between branching and branch-

elimination processes in establishing appropriate synaptic partner-

ships.

Mathematical and computational studies within the field of

neuroscience have previously been used to examine the spatio-

temporal organization of post-synaptic potentials within a

dendritic network. For example, quantitative models of the

detailed branching patterns in dendritic trees have investigated

the impact of network topology on firing patterns and neuronal
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signal processing [12–15]. Several modeling approaches have

been used in the in silico synthesis of dendritic trees as well. These

can be characterized either as Growth Models or Reconstruction

Models. Growth Models are based on principles of dendritic

development, utilizing rules of outgrowth associated with

dynamic growth-cone behavior, microtubule-mediated neurite

elongation, and actin meshwork branch formation [16–19]. In

contrast, Reconstruction Models use an algorithm based on a

canonical set of elementary properties which are originally

derived from characterizing an existing dendritic structure [20–

21]. Although generated from minimalistic rules, the emergent

arbor morphologies of the reproduced neurons are statistically

indistinguishable from a sample of real neurons. Note that

Reconstruction Modeling is a purely descriptive approach which

uses minimal rules to ‘‘synthesize’’ topologically-realistic neurons.

In contrast, Growth Modeling adopts an exploratory approach by

using biological rules of development and observations of the

outgrowth process to explain or predict variations in full-grown

arbor structures [22]. This paper introduces a conceptually new

approach to Growth Modeling by incorporating a pruning

function into the algorithm and evaluating the growth of the

neurons in the context of a target-search problem. In contrast to

both growth and reconstructionist modeling which focus on the

finalized structure of a neuron, our approach examines the

evolution of a neuron through its time-steps of development and

addresses the potential for its intermediate morphologies to

establish connections. As a result, the focus or our research shifts

from faithfully mimicking the neural structures obtained in within

the in vitro experiments toward asking the question: how successful

are neurons with similar growth properties in reaching their

targets?

Two types of optimization strategies present themselves when

context-dependent constraints are placed on a neuron during

growth. In the first scenario, neurites may aim to reach targets

in the shortest time possible. Strategies which minimize search

time may be at work in certain developmental stages, e.g.

during pyramidal [23] or optic [24] decussation where axons

must cross the midline within a specified time window. In this

paper, however, we focus on search strategies which are of

significance to ongoing in vitro studies and potential future

therapies involving adult CNS regeneration. For these purpos-

es, time may be less of an issue than limitations in resources. In

order to maximize the space explored under this constraint, a

neuron that seeks to reach a target could branch as often as

possible and prune as seldom as possible. In practice, however,

this would create an arbor whose cumulative length of all of its

branches would grow exponentially rapidly and which would at

some point inevitably exhaust any cell’s resources. In the

present paper, therefore, we focus on optimal search strategies

for a neuron with a fixed resource limitation; that is, for a

neuron that produces an arbor with a specified maximum

cumulative length.

The issue of neural connections across extended spatial scales

has been also examined in depth in the context of neural wiring

for the brain structures, such as hippocampus or cortex, [25–29].

In such situations, the overall neural structure is the result of a

local optimization problem which seeks to minimize the

associated metabolic costs at each branching point. We note

here that the re-establishment of the communication pathways

for spinal cord injury occurs at different spatial scales, and the

resulting neural structures are significantly less compact as the

ones from the brain regions mentioned in the context of the

neural wiring research.

Methods

In vitro branching and pruning effects
Illustrative examples of both branching and branch elimination

are shown in Fig. 1 from in vitro studies of Dorsal Root Ganglia

were dissected from the lumbar region of embryonic chicks at day

E11. Dissociated neurons and glial cells were isolated by digestion

in 0.25% trypsin followed by mechanical trituration through a

polished glass pipette and purification through a 10% BSA in PBS

gradient. Neuro-glial suspensions were plated onto Poly-L-lysine/

laminin coated plates and grown at 5% CO2/37uC in N3

complete serum-free media. Time-lapse movies of cocultures were

acquired at 15 minute time intervals, 24–48 hours post-plating,

with a 106 objective (N.A. 0.35) using an inverted Zeiss 200 M

deconvolution microscope mounted with an on-stage incubation

chamber and heating plate. Neurite tracing and morphometric

analysis of live-cell phase contrast images were performed using

ImageJ software. For each neuron, individual neurites were

tagged, tracked, and traced across time frames. In the Figure 1,

we show cases in which: a single neurite splits to form two or more

secondary neurites (Fig. 1(a)), a growing neurite tip advances and

then retracts (Fig. 1(b)), or branches are eliminated entirely over

time (Fig. 1(c)). All of these processes will be discussed in detail in

the in silico numerical simulations that follows, with a focus on

evaluating how branching, advancement and retraction of neurite

tips, as well as branch elimination affect axonal pathfinding and

targeting strategies.

Stochastic Model For Neurite Evolution
The simulation used here is straightforward, and involves

elements that have been described elsewhere [30]. Intrinsically,

neurites (a) grow stochastically out until a maximum total length of

all branches in the arbor, Lmax, is achieved; (b) can bifurcate

periodically with defined probability, Pbranch; and (c) are subject to

pruning of available neurite tips with fixed probability, Pprune.

Each of these functions are described here.

(a) Neurite Growth. Growth begins at a fixed location,

defining a cell ‘body’, and each neurite tip grows according to an

integrated random walk [30], meaning that the neurite’s velocity

executes a random walk. Explicitly, the velocity of the i-th neurite

tip at time t, Vi(t) is assigned an interim value:

~nni(t)~~VVi(t-1)z~ggi(t), ð1Þ

where V
!

i t{1ð Þ is the velocity one computational timestep earlier,

and g!i tð Þ are vectors (one for each neurite tip) uniformly

distributed in the entire 4p solid angle surrounding the origin, and

with maximum amplitude go. In principle, this interim velocity

can grow without bound, whereas neurites have limited capacity

for growth. We define the final velocity of the i-th tip to be

bounded below a maximum value Smax as follows:

~VVi(t)~
~nni(t), if j~nni(t)jvSmax

Smax~nni(t)=j~nni(t)j, ifj~nni(t)jwSmax,

�
ð2Þ

In the simulations following, Smax = 1 for convenience, and go is

taken to be 40% of Smax.

(b) Branching. Branching of neurite tips occurs as follows.

Every 10 computational timesteps, each neurite tip is permitted to

split into two tips, with probability Pbranch – this is accomplished by

simply choosing a random number, ri, between 0 and 1 for each

neurite tip, and if ri,Pbranch, a new tip is spawned. When a tip is

spawned, this new tip is assigned a higher order than the prior tip,

Neuronal Target Search
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so the original neurite has order 1, its daughter has order 2, and so

forth. When branching occurs, both parent and daughter have

identical starting locations, but the newly-generated neurites

acquire separate additional random additions to their velocities,

of magnitudes amounting to 30%?Smax. This addition gives the

secondary branches a tendency to diverge, or in other words, to

have a non-zero branching angle, as is seen in in vitro experiments

(Figure 1). Each neurite tip, whether parent or daughter, continues

to travel with velocity given by eq. [1], and is eligible to branch

again after 10 further timesteps. We note here that in the real

system, the assumption that the branching probability is fixed, is a

simplification that permits us to employ analytical methods and to

establish a baseline for the expected behavior. Future

modifications to incorporate modulating factors in biological

systems such as gradients in growth factors, complex boundaries,

neuronal-glial interactions, etc. are desirable, but the first step of

analyzing the dynamics underpinning these more complicated

behaviors is the goal of the present study.

(c) Pruning. Every neurite tip is also subject to being pruned,

with a fixed pruning probability, Pprune. Pruning again occurs

every 10 timesteps, and it is again determined algorithmically by

assigning each tip a random number ri between 0 and 1, and those

tips with ri,Pprune are pruned. Explicitly, this means that the ith tip

is eliminated back to the nearest branch point, and is removed

from the list of growing or branching neurites. Die-back beyond

the nearest branch point does not occur in our model.

Importantly, when pruning occurs, the length from the nearest

branch point to the pruned tip is not counted against the total

length of the tree – i.e. we assume that the resources associated

with this tip are recovered by the neuron for further exploration.

Target Search As An Optimization Problem
Before we examine the simulation results, we consider the

theoretical constraints on neuronal targeting. We formulate the

optimization problem as follows: given a neural tree of total

constrained length Lmax, taken to be the sum of the lengths of all of

its branches, what is the fixed branching probability Pbranch that

would maximize the number of search sites out to a radius, D,

from the originating cell body? Here, the optimal neural tree is the

one that maximizes the number of hits at the set distance D, which

is equivalent to increasing the chance of success for finding a single

target located at distance D away from the origin. Correspond-

ingly, the optimal class of neurons is the set of neural trees

generated with the same set of parameters that on average achieve

maximal performances at distance D. To begin our investigation,

we consider a simplified example to illustrate how the main

parameters, especially branching and pruning probabilities,

determine an optimal tree structure. To allow for analytical

derivation of our results we will assume that: the neurites grow in a

straight line, bifurcate at fixed time intervals and branch at angles

are very close to zero, thus doubling the amount of search in the

same spatial location, after each successful branching event.

Results

Expected Length of Tree Branches: An Analysis Derived
from the Evolution of a Single Branch

We start by examining a neuron that does not prune any of its

branches, for example a tree of maximum cumulative length

Lmax = 10 that searches for a target at distance D = 6 units of

arbitrary length. We define the branching probability such that a

given growing tip has the probability Pbranch of bifurcating into two

tips in a unit time, Dt, and consequently for growth tips that

elongate at a constant rate, Vtip, this in turn defines a mean

distance traveled between two branching decision, L0, where

L0 = Vtip?Dt. Note that this distance is different from the average

neurite length, Laverage = Vtip?Dt/Pbranch, as shown below.

After 2 time steps, the length of the elongating branch, in units of

Vtip?Dt can be described by the probability table listed in

Table 1.The entries in this table are as follows: if the elongating

Figure 1. Time sequences showing branching and pruning of dissociated E11 chick dorsal root ganglion neurites. (a) Branching (red
arrow) and extension (blue arrowheads) of primary axons. (b) Extension and retraction (blue arrowheads) of neurite tip. (c) Tertiary branching and
pruning (encircled). Cultures are grown in the presence of glia in 5% CO2/ 37uC on Poly-L-lysine/laminin in N3 complete serum-free media. Phase-
contrast live imaging at 28 hrs post-plating. Time interval between acquisitions for each time series is as follows: (a) 30 mins, (b) 75 mins, (c) 75 mins.
Snapshots are contrast enhanced for visual clarity of the neurites.
doi:10.1371/journal.pone.0025135.g001
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tree branches at the first time step with probability p, the branch is

considered complete and has a length of 1 (where to simplify the

calculations shown here we assume without loss of generality that

Vtip ? Dt = 1). Thus, the completed distal branch (with length one) is

no longer active and is replaced by two new proximally extending

branches. The only way for the distal branch to increase its length is

to continue to extend instead of bifurcating. This process is

illustrated in Figure 2(a). If this event occurs, with probability

q = 12p, the branch will then have a length of 2. After the first 3

time steps after which two branching decisions have occurred, the

table will have three entries (Table 2). The first entry remains the

same, as the neurite under investigation is no longer extending, due

to the branching event. The first entry does not need to be re-

computed and is simply copied from previous table. The rest of the

other entries, however, correspond to outcomes from an evolving

branch, and as such they need to reflect the evolution of this branch.

The second and third entries in the table are as follows: if the tree

branches at step 2, then with compound probability q,?the tree will

have length 2. As noted above, this is a terminal event for the

extending branch. If the branch chooses to elongate rather than

branch, with compound probability q2, the tree will have length 3. It

is easy to check that the sum of all probabilities,

(p+p?q+q2) = (p+q?(p?+q)) = (p+q) = 1. By induction, we can obtain

the probability distribution at time step N listed in Table 3.

If we assume that the number N has a large value, it follows that

XN

i~0

:qi~
1{qNz1

1{q
&

1

1{q

Consequently, we can use the following result:

L
Lq

XN

i~0

qi

 !
~
XN

i~0

i: qi{1~
XN

i~1

i: qi{1~
L
Lq

1

1{q

� �
~

1

(1{q)2

The expected value for the branch length becomes:

Laverage~vtipDt
XN

i~1

i:p:qi{1~vtipDt:p
XN

i~1

i:qi{1

~vtipDt:
p

(1{q)2
~

vtipDt

p

Expected Length of Tree Branches: Statistics Derived
from Formed Neural Trees

At first glance, it would seem that the probability distribution of

these branches and the average branching length could be

obtained from performing statistics on neural trees grown from

simulations, but the overall picture is more complex. In fact, the

sample mean for the branch length of the trees is a biased

estimator, one which consistently underestimates Laverage.

In order to prove this point we will compare the expected

branch length for trees that were allowed to evolve for 4 time steps,

with the expected value for the sample mean of the tree branches.

The possible instantiation of the evolving trees are shown in

Figure 2(b). After the first branching decision, two types of trees

are possible. The first one, obtained with probability q, contains an

elongated branch of length 2; therefore, this tree cannot yet

produce an estimate for the average branching length. The other

one, obtained with probability p, contains one mature branch of

length 1, and two evolving branches each of length 1 (for

simplicity, we assume that Vtip?Dt = 1). The latter tree has a

sample mean for average branch length of 1. As a result, after the

second time step (first branching decision), the expected value for

the average branch length obtained from tree statistics is p*1 = p.

Note that this is in agreement with the analysis in the previous

section where we tracked the evolution of a single branch.

At the third time step, six types of trees are possible. These trees

possess morphologies ranging from completely unbranched

(probability q*q) to exuberantly branched (probability p*p)

geometries. Note that it is also possible to retain trees of similar

geometries using symmetry transformation. These ‘‘trees isomers’’

are contained within gray boxes in Figure 2(b) to indicate their

identical statistical properties. Computing the sample mean for all

trees results in the probability distribution described in Table 4,

where we have the same convention for probabilities as the one

used in Figure 2(b):

For purposes of computing the sample mean, we can

consolidate the geometrically-undistinguishable structures into a

single shaded entry. These tree isomers are therefore listed once,

but their probability is doubled (Table 5). Based on this table, the

expected value for the mean branch length is:

E(branch length)~
X

x:px~0:q2z2:p:qz1:p:q2

z2:(1:p2:q)z1:p3~2:p:qzp

Again, this is in agreement with the results from the single branch

analysis. After four time steps, however, the estimates are no longer

in agreement. Using the trees generated after four time steps, we can

create a table that contains the probability of generating each type

of tree, the list of its mature branches, as well as the average branch

length (Table 6). Since each tree can be obtained with a different

probability, the average branch in each tree is a random variable

described by the table above. Consequently, the expected value for

the average branch in a tree is given by:

Laverage tree~
X

p�xx
:�xx~0:q3z3:p:q2z2:p2:q2z2:p2:q2:3=2

zp3:q:4=3zp2:q3:1z2:p3:q2:3=2zp3:q2:5=3zp:q3:2

z2:p2q2:3=2zp3:q:4=3z2:p2:q4:1z2:p2q2:2:p:q:1

z2:p4:q2:1z2:p3:q3:4=3z2:p2:q2:2:p:q:5=4z2:p5:q:6=5

zp3:q4:1zp3:4:q4:1zp3:6:p2:q2:1zp3:4:q:p3:1zp7:1

This sum is no longer equal to the expected value for the single

tree branch: Laverage = E(branch length)=pz2:p:qz3:p:q2, as

shown numerically in the Table 7 for time step 4. This table

Table 1. Probability table for branches that are allowed to
evolve for two time steps.

Length 1 2

Probability p q

In the first possible scenario, the neurite branches at the end of first timestep
and cease to evolve. Its final length will be 1 and the probability of this
outcome is p. In the second scenario, the neurite grows to a total length of two
at the end of the second time step, and it has the potential to grow even
further at later times. The probability of the second scenario is q = 12p.
doi:10.1371/journal.pone.0025135.t001
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Figure 2. Statistics of branch dynamics observed in evolving neural trees. (a) Computing Probabilities through Single Branch Evolution
Technique. After extending for one time step, an evolving neurite can undergo a branching decision in which it either branches with probability p, or
extends without branching with probability q. Spawning of new daughter branches results in the termination of the parent branch. As such, at the
second time step, if the neurite terminates and remains at length 2, it does so with total probability p*q. If the neurite does not branch and continues
to grow, it does so with total probability q*q. As a rule, the only way that a neurite can achieve a length of n is to extend continuously for n21 time
steps and then branch. The entire sequence would therefore occur with total probability p* qn21 (b) Computing Probabilities through Population
Analysis of Evolved Trees. In contrast to computing probabilities of single branches as they evolve through time, a statistical analysis can be
performed on instantiated trees. That is, a population distribution can be generated based on examining all possible configurations that mature (non-
evolving) branches can adopt after each time step. The same probability assignments of branching with termination, and extension without
branching, apply here as in (a). Note that after a few time steps, the trees start adopting non-simplistic structures. For example at t = 3, the simplest
tree is a single evolving branch of length 3; which is obtained with a probability of q*q. At the opposite end of the spectrum, the most complex tree
contains 4 active branches of length 1, obtained with probability p*p. Note that trees with a combination of extending and branching arbors, can
occur as statistically identical configurations. Gray boxes demarcate these ‘‘isomeric’’ trees within all possible permutations of arbor geometries. 6
type of trees are obtained after three time steps, while 46 types of trees are obtained at the next time step. The associated probabilities can be
determined by computing the products of individual probabilities along the arrows. (c) A Comparison of the Computational Results obtained from (a)
and (b) at timestep t = 4. The expected value for a single branch Laverage = (p+2*p*q) shown in blue is compared against the average branch value
obtained from tree statistics (Laverage tree), shown in red, for different values of branching probability p. (d) At timestep t = 4, the relative difference
(Laverage tree2Laverage)/Laverage is plotted at different values of p. (e) Average branch values of trees obtained in numerical simulations at t = 200 (red
curve) are consistently smaller than the expected values obtained from single-branch evolution. As the branching probability increases to 1, the
difference between these two estimates becomes 0. (f) After t = 200 timesteps, the relative difference (Laverage tree2Laverage)/Laverage is plotted as a
function of branching probability.
doi:10.1371/journal.pone.0025135.g002
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contains a comparison between theoretical results and statistics

obtained from numerical simulations of stochastically generated

trees, when p = q = 1/2, for time steps ranging from 1 to 6. The

probabilities and sample branch averages needed to compute the

values listed above for time steps 5 and 6 have been obtained

numerically, instead of by computing the sums analytically which

would require a large number of terms.

Furthermore, it is expected that this divergence depends on the

branching probability. Indeed, in the extreme case of setting the

branch probability equal to one, all branches of the tree will have

the same value, hence both the theoretical prediction and statistics

from numerical simulations must agree. For the trees that are

allowed to evolve for 4 time steps, we can compute these values

exactly (Fig. 2(c)), as well as the relative error, defined as

(Laverage tree2Laverage)/Laverage (Fig. 2(d)). The summation of

resulting terms from the table of probabilities at time step 5,

denoted by Laverage tree, are compared to the L average =

(p+2?p?q+3?p?q2), derived in the previous section.

We further extend the comparison between the numerical

simulations and theoretical derivations of fully formed trees; that

is, for trees that were allowed to evolve for 200 time steps (Fig. 2(e)).

Since there is no discrepancy when p = 1 (all branches have length

1), it is not surprising that as the branching probability decreases

toward lower values, these differences will increase. The results

also suggest that the relative differences between these two

estimates, defined as (Laverage tree2Laverage)/Laverage , depends

linearly on the branching probability (Fig. 2(f)).

Results from Table 7 suggest that as the trees are allowed to

evolve, the discrepancy between the theoretical results and the

sample means obtained from simulations, increases. For example,

if the tree is allowed to evolve with branching probability p = K

for 200 timesteps, we can determine the distribution of tree

branches by computing the relative frequencies of the branches of

different lengths. These numerical simulations suggest that the

distribution of branch length obtained from tree statistics is still

described by the theoretical distribution derived in the previous

section (p?qj21, for length j), with larger values for the ‘effective’

branching probability, equal to approximately 2/3 here, instead of

the simulation value of K (Table 8).

Naı̈ve Prediction Without Pruning
For the stochastic system that we seek to investigate, each

branch evolves independently. Nevertheless, by considering

branches that branch regularly, we can derive expected targeting

behavior for the standard or uniform neural tree.. Axons that on

average branch often (depicted in Fig. 3(a) by using p = 1 and small

L0 = Vtip Dt) produce bushy arbors that explore the nearby space

thoroughly, but exhaust their resources rapidly and as a result

cannot travel far from the originating point. Here L0 plays the role

of the quantity Laverage derived in the previous two sections: we

assume a neurite travels exactly a length L0 then it branches with

probability 1. Using this convention, trees that branch often will

have a small L0, creating a dense tree, while branches that have

low branching probabilities will extend for a long distance before

bifurcating. As illustrated in the figure, targets located in a gray

band at a fixed distance from the origin will not be reached by

such an arbor. By contrast, a standard tree that branches less

frequently (Fig. 3(b) e. g using p = 1 and larger L0 = Vtip Dt) could

travel further from the starting point using the same resources as

before, but would explore intervening space more sparsely, passing

only at a couple of points through the grey target region shown. It

follows that given a target distance, an intermediate branching rate

(or equivalently an intermediate mean branch length, L0), could

maximize the number of branches that explore targets at a desired

distance (within the gray band in Fig. 3(c)). This example shows

how maximal performance is achieved by the uniform neural tree

Table 2. Probability table for branches that are allowed to
evolve for three time steps.

Length 1 2 3

Probability p p q q2

The first entry in this table is identical to first entry of Table 1, representing a
neurite that branched at the first time step and stopped evolving. The second
scenario involves a neurite that branches and stops evolving after extending for
two previous time steps. This event has an overall probability p?q. Finally, the
last entry again corresponds to a neurite that grows to the largest possible
extent, for a total length of three at the end of the third time step, and it has the
potential to grow even further at later times. The probability of the second
scenario is q2.
doi:10.1371/journal.pone.0025135.t002

Table 3. Probability table for branches that are allowed to
evolve for N time steps.

Length 1 2 3 4 … N

Probability P p q p?q2 p?q3 qN21

Each entry j = 1, 2, …, N in the table, with the exception of the last one,
corresponds to neurites that branched and stopped evolving after extending
for jth time. The probability for the jth scenario is p?qj21. The last entry
corresponds to a neurite that has extended for N time steps and has the
potential of growing even further.
doi:10.1371/journal.pone.0025135.t003

Table 5. Condensed probability tables for the average
branch length of trees that are allowed to evolve for three
time steps.

Probability q*q q*p p*q*q 2*p*q*p 1*p*p

Mature branches set { } {2} {1} {1, 1} {1, 1, 1}

Average branch length 0 2 1 1 1

This table is identical with the previous Table 4, except that the similar trees
listed in the entries 4 and 5 are now listed in the same entry (number 4), by
doubling the probability of this particular scenario.
doi:10.1371/journal.pone.0025135.t005

Table 4. Probability tables for the average branch length of
trees that are allowed to evolve for three time steps.

Probability q*q q*p p*q*q p*p*q p*q*p 1*p*p

Mature branches set { } {2} {1} {1, 1} {1, 1} {1, 1, 1}

Average branch length 0 2 1 1 1 1

The entries in this table correspond to the different tree structures obtained at
t = 3, as shown in Figure 2B. The first row lists the probability to obtain a certain
tree, the second enumerates the length of mature branches contained in this
tree and the last row displays the average branching length of these mature
branches. Note that the entries 4 and 5 correspond to trees that have identical
lists and averages. In particular, these trees contain an early mature branch that
has generated two sub-branches. One of these sub-branches has branched
again, while the other one is still evolving.
doi:10.1371/journal.pone.0025135.t004
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that hits the largest number of targets at a set distance (gray area in

Figure 3).

From this first order analysis, we conclude that one can choose

branching rates to maximize the number of targets reached – and

so the probability of reaching a particular target – at a specified

distance. We note here that the standard tree with maximal

targeting capabilities can still perform worse than trees with non-

constant branching probabilities. For example, in the case where

the target is situated far away from the starting point, a tree that

evolves using a single non-branching neurite until reaching the

targeting region only to branch maximally in that area, will

achieve better targeting performance. From this perspective, out

analysis does not select the parameters that allow an individual

tree to obtain the optimal performance, but the ones which allow a

class of trees to obtain on average, optimal performances.

Given a branching probability, we can use this averaged

approach to derive the number of targets reached as a function of

distance from the cell body in a straightforward manner. As shown

in Fig. 3(d), each time a branch is produced (on average at distance

L0 from the last branch) the number of targets hit per unit time

doubles, which continues until the daughter branches travel on

average L0 = vtip Dt, at which point the number of targets hit per

unit time doubles again, and so on until the cumulative branch

length reaches Lmax. At the moment of the first branching, the

cumulative branch length, Ltotal, is L0; at the second branching

Ltotal = L0+2L0; at the third, Ltotal = L0+2L0+4L0, etc. Thus, the

number of targets reached grows exponentially as a function of

distance from the origin as shown in Fig. 3(e) until Lmax is reached.

Ltotal itself grows according to (2N21) L0, where N denotes the

number of times the standard tree has split before it runs out of

resources, which ideally occurs when Lmax = (2Nmax21)L0, or

when Nmax = log2(1+Lmax/Lo). The condition (shown in Fig. 3(c))

that all neurite tips reach a target distance D translates to:

D~L0Nmax~L0log2(1zLmax=Lo): ð3Þ

Note that the implicit assumptions of equation [3] are that the

neurites travel outward away from the origin, the trajectories do

not curve, and the splitting angles are zero at all branching points.

While these conditions are obviously not met in simulations or in

vivo, we can use these approximations to establish an upper bound

for the maximal targeting performances that can be achieved by a

standard tree of fixed total length. More precisely, the upper

bound for the number of targets situated at distance D for a tree of

total length Lmax is 2Nmax21. Since Eq. [3] is transcendental, we

show an implicit solution in Fig. 3 for various values of Lmax. For

example, targeting at distance D = 6 (dashed line in Fig. 3(f)) can

be achieved in a variety of ways: for a cell that is limited below

Ltotal = 6 for its final total length, Eq. [3] tells us that the cell’s

neurite can reach the target (using a single, unbranched, axon)

with L0 = Lmax = 6. Alternatively (shown in Fig. 3(g)), using

Lmax = 8, the neurite can branch once and reach the target using

L0 of about 3.5. Finally, using Lmax = 10, the neurite can branch

twice and reach the target using L0 of about 2.7. Thus given the

resources available (defining Lmax), Eq. [3] allows us to determine

the optimal branching rate (which in turn determines L0) needed

to optimize the chance of striking a target at a given distance, D.

We reiterate that the solution shown here only presents a

simplification of the neurite targeting problem. For example,

actual neurite branches do not appear at constant distances and

neurites do not travel in straight lines separated by fixed angles.

Furthermore, when neurites do branch, their trajectories cease to

be centered at the origin and the value of number of branching

points N calculated above will in general not be an integer.

Table 6. Probability tables for the average branch length of
trees that are allowed to evolve for four time steps.

Probability Mature branches Average branch length

q*q*q { } 0

q*q*p {3} 3

q*p*q*q {2} 2

2*q*p*p*q {1, 2} 3/2

q*p*p*p {1, 1, 2} 4/3

p*q*p*q*q {1} 1

p*q*p*2*p*q {1, 2} 3/2

p*q*p*q*q {1, 2, 2} 5/3

q*p*q*q {2} 2

2*q*p*p*q {1, 2} 3/2

q*p*p*p {1, 1, 2} 4/3

2*p*p*q*q*q*q {1, 1} 1

2*p*p*q*q*2*p*q {1, 1, 1} 1

2*p*p*q*q*p*p {1, 1, 1, 1} 1

2*p*p*q*p*q*q {1, 2, 1} 4/3

2*p*p*q*p*2*p*q {1, 2, 1, 1} 5/4

2*p*p*q*p*p*p {1, 2, 1, 1, 1} 6/5

p*p*p*q*q*q*q {1, 1, 1} 1

p*p*p*4*q*q*q*p {1, 1, 1, 1} 1

p*p*p*6*q*q*p*p {1, 1, 1, 1, 1} 1

p*p*p*4*q*p*p*p {1, 1, 1, 1, 1, 1} 1

p*p*p*p*p*p*p {1, 1, 1, 1, 1, 1, 1} 1

The entries in this table correspond to the different tree structures shown in
Figure 2B for t = 4. The structure of this table is similar to Tables 5, where again
the trees with identical sets of mature branches are displayed only once, but
with a correspondingly larger probability (e. g. entries 4, 10, etc).
doi:10.1371/journal.pone.0025135.t006

Table 7. Comparison of average branch length resulting from
single-branch and tree evolution, with probability of
branching p = 1/2.

Time Step 1 2 3 4 5 6

La single branch 0 0.5 1 1.3750 1.6250 1.7813

La tree 0 0.5 1 1.3552 1.5612 1.6568

Error (percentage) 0 0 0 1.46% 4.09% 7.51%

Number of trees 1 2 6 42 1806 3263442

This comparison is done time steps ranging from 1 to 6, listed in the first row.
Comparison at larger times becomes computationally prohibitive. Second row
lists results obtained from theoretical considerations for the evolution of a
single branch (see Table 4). Third row lists expected values resulting from the
statistics of trees, (e. g. Tables 5 and 6, for t = 3 and t = 4, respectively).
Computation of the entries for t = 5 and 6 has been done numerically,
generating the tree trees and their corresponding probabilities automatically.
Fourth row displays the relative error between these two measures, that is,
(La single branch2La tree)/ La single branch. While these estimates are in agreement for
small timesteps, La tree consistently underestimates La single branch for timesteps
larger than 3. Last row displays the number of trees needed to carry out the
calculations for La tree, indicating a factorial explosive growth in the number of
trees required to perform the calculations for these estimates.
doi:10.1371/journal.pone.0025135.t007
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Table 8. Comparison of single-branch theoretical predictions and statistics of mature branches resulting from numerical
simulations, with p = K and t = 2000 time steps.

Length 1 2 3 4 5 6 7 8 9

Probability 0.5 0.25 0.125 0.0625 0.0313 0.0156 0.0078 0.0039 0.0020

Frequency 0.6608 0.2246 0.0769 0.0246 0.0090 0.0024 0.0012 0.0003 0.0000

The first 9 terms resulting from Table 4 are listed in the second row, illustrating the feature of this probability distribution (p?qj21). The largest probability here, equal to
0.5, is for a branch of length 1. Each increase in length reduces the probability of the next possible outcome by q = K. As shown in Table 7, for tree that evolve more
than three timesteps, statistics of the neural tree consistently underestimate the average branching length; this corresponds to a larger effective branching probability.
The probability distribution of mature branches of different length indeed seem to match a similar probability distribution of (p?qj21), but with a larger effective branch
probability of p<0.66. In other words, largest probability of the last row, corresponding to a branch of length 1, is 0.66. Each increase in length reduces the probability
of observing this outcome by q = 1/3.
doi:10.1371/journal.pone.0025135.t008

Figure 3. Comparison of equal length trees under different branching scenarios. (a) Undershoot, for Lo = 1 units and fixed cumulative
neurite length Lmax; branches fail to reach targets in gray band; (b) Overshoot, for Lo = 4; branches reach the gray band but hit sparsely due to
overextension past the target zone; (c) Optimal run, for Lo = 2; number of targets hit in the gray band is maximized; (d) Targets (yellow circles) that
can be reached by branching neurite – note that at example distance D1, one target is hit; at D2, two are hit, and at D3, four are hit; (e) Number of
targets hit by idealized arbor vs. distance from the origin. Once the total arbor length is Lmax, no further targets are reached. (f) Plot of the optimal
branch length, L0, vs. the distance to the target, D, defined by Eq. [3]. For example, one can reach targets near D = 6 indicated by the dashed line in
one of three ways: (1) using Lmax = 6, (2) Lmax = 8, or (3) Lmax = 10. (g) Arbors for each of these three alternatives, showing that case (1) corresponds to
no branches, with L0 = 6; (2) corresponds to a single branching event, with L0 = 3.5, and (3) corresponds to two branching events, with L0 = 2.7. Note
that the arbor extends only as far as resources (i.e. Lmax) permit, and so the terminal branches are often shorter than L0.
doi:10.1371/journal.pone.0025135.g003
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Additionally, the simplified calculation above ignores redundant

hits and finite target sizes. Nevertheless, these examples predict the

behavior expected under idealized conditions: namely that the

most effective standard trees should be the ones that finish the

search at the required distance, defined to lowest order by Eq. [3],

and not the ones that run out of resources too early or that extend

too far from the origin. On average, we expect the branching rate

to be such that the mean branch length, L0, obeys Eq. [3].

Expected Effects Of Pruning
Theoretical analysis becomes more complicated when branches

can be pruned. Qualitatively, pruning permits regions of space to

be explored transiently after which the resource expenditure is

recouped for subsequent exploration elsewhere. On the other

hand, pruned branches can no longer explore downstream regions

of space; and consequently, it is not at all obvious what the

ultimate effects of pruning may be. To develop some insight into

some of the functional effects of pruning, we provide in Fig. 4,

several simplified illustrations of pruning events that we have

encountered in our simulations.

In Figure 4(a), we show an unpruned tree of maximum length

Lmax = 20, with average branch length L0 = 0.9. The target zone is

divided into targets of fixed size. In this simple example, targets to

the right of the origin are uniformly struck, with 8 targets hit in

total. By comparison, in Figures 4(b) and 4(c), we show trees with

the same maximum length, but with higher branching probabil-

ities balanced by a 25% pruning rate. As described previously, this

means that at every 10 timesteps, 25% of free tips are selected at

random for pruning, and pruned tips die back to the nearest

branch point, after which no further growth is allowed.

These illustrations show that pruning permits additional space

to be explored – for example, widening the coverage of targets (cf.

dashed lines in Fig’s. 4). Pruning, however, also produces less

uniform coverage – for example, circumventing the hatched areas

in Figures 4(b)–(c). Additionally, pruning reduces redundant

coverage, which occurs naturally in rapidly branching trees. This

depends on the size of the target: if the target size is very small,

then the most important measure is the number of terminal

branches and redundancy is negligible. In contrast, as target size

increases, pruning can be increasingly beneficial in reducing the

overall redundancy.

Quantification of targeting efficiencies
The use of theoretical equations allows us to derive a continuous

formula for the number of targets visited by the neural tree at a

certain distance. For the numerical simulations, we can obtain a

similar quantitative measure by defining S(r) as the number of

cubes of Size 3 that are located at distance r away from origin and

are being visited by the expanding neural tree. Obviously, the

theoretical derivations, which constitute an upper bound for the

distance where the standard tree can target efficiently, should

outperform the trees obtained in numerical simulations the vast

majority of the time. They always peak at the right time, just as the

tree is about to run out of resources. To facilitate the comparison

between theoretical and simulation methods, we consider another

approach that is situated in between these models and is expected

to generate intermediate targeting results. More precisely, this

model allows the neural trees to branch stochastically at any

moment in time, while still maintaining linear trajectories. In the

upcoming sections, we use the variable S(r) to compare these three

types of neural trees: standard theoretical, stochastic, and

numerical.

Apparently, the effects of pruning are complex, since it is

possible to obtain neural trees that extend below or above neurons

generated with similar parameters but without pruning. To

analyze these effects systematically, we resort to simulations. First,

we examine the case of stochastic branching without pruning.

Then, we turn to studying the effects of pruning on targeting, both

in terms of overall targeting effectiveness and of the time required

to reach the target.

Visualization of the 3D neural structures obtained from
the computational model

As mentioned in the methods section, we use an arborization

model to examine complex structures of axons observed in sensory

neurons with the goal of exploring the implications of axonal

morphological variations on target-finding capabilities. In partic-

ular, we focus here on examining the effects of pruning – i.e.

elimination of some projections – on targeting. As an illustration,

we compare two typical simulated neuronal arbors in Figure 5. In

brief, neurite tips wander stochastically in 3D, and each free

neurite tip has one fixed probability, Pbranch, of branching into two

free tips in a unit time, and a second fixed probability, Pprune, of

being pruned and dying back to the nearest branch point in the

same unit time.

In a first scenario, shown in Figure 5(a), neurite tips branch with

probability Pbranch = 0.2, meaning that an average of 20% of free

tips, chosen at random, will branch at constant time intervals, but

Pprune = 0, meaning that branches never prune. By comparison, in

Figure 5(b), neurites branch and prune more often, with

Pbranch = 0.4, and Pprune = 0.2. After 130 computational time units,

the two simulated neural arbors are superficially similar, but as

Figure 4. Comparison of equal length trees under different branching and pruning scenarios. (a) Lo = 0.9, Pprune = 0; (b) Lo = 0.7,
Pprune = 0.25; (c) Lo = 0.7, Pprune = 0.25; L = 20, D = 2.75 in all cases. Gray branches are pruned. Note that pruned trees acheive a wider coverage of
targets, extending outside of the dashed lines in panels (b) and (c); by the same token, pruning creates less uniform coverage thus canceling searches
in the cross-hatched regions.
doi:10.1371/journal.pone.0025135.g004
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shown in Figure 5(c), exhibit significantly different rates of striking

targets with constant volume, S(r), at given distances from the

originating points.

In these simulations, we assume that resources available to cells

are limited, which we mimic by imposing the constraint that the

total length of the neuronal arbor cannot exceed a maximum. The

total arbor lengths are therefore are identical in Figures 5(a) and

5(b). Despite this constraint, it is apparent in this example that the

simulation without pruning reaches targets further from the origin

than does the simulation with pruning. We remark that although

this result is typical, it is not universal. Due to stochastic variations,

there exists a similarly large number of simulations in which a tree

that is pruned may nevertheless reach more distant targets than an

unpruned tree. We present statistics for multiple replicates in

subsequent sections. On the other hand, by integrating over the

total number of targets hit, we find that the simulation without

pruning reaches 15% fewer targets overall than the simulation with

pruning. This increase due to pruning constitutes a general trend for

all simulations. In the following sections, we use large-scale statistics

obtained from multiple simulations to quantify the targeting

efficiency as a function of distance away from the starting point.

Simulations without pruning
When branches prune stochastically, rather than at fixed uniform

intervals, the targeting distribution changes significantly. Rarely

does the majority of branches reach higher order arborization

simultaneously. Consequently, the dominant peak at long distances

is considerably diminished in favor of a single mode at a moderate

distance. We can estimate how stochastic variations in branching

should affect targeting simply by repeating the calculation made in

Figure 5. Comparison of equal length trees resulting from numerical simulations under different branching and pruning scenarios.
(a) Example of a neuronal arbor generated using a computational model set at low branching probability, Pbranch, and zero pruning probability, Pprune.
Growth starts from the cell body (sphere); primary branches are shown in red, secondary branches in green, and so on as indicated in the legend. (b)
A superficially similar tree with higher branching probability and a compensatory higher pruning probability. Pruned branches are plotted in gray:
some examples are highlighted by the enlarged inset. (c) Plots of the numbers of potential targets reached as a function of distance away from origin
quantifies the trends exhibited by the neural trees from the previous panels, showing that similar-looking trees can exhibit significantly different
targeting capabilities. In these examples, the pruned state predominantly reaches shorter distances, yet strikes 15% more targets overall than the
unpruned case.
doi:10.1371/journal.pone.0025135.g005
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Figure 3(e) numerous times, permitting each branch to form at a

different time, according to a Poisson probability distribution.

Doing so for 100 simulations each, we produce the plots shown red

in Figure 6 ((a) to (c)) for Pbranch = 0.3, 0.5, and 0.7, which as

discussed are unimodal, with a peak at moderate distance, rather

than at the maximum distance shown in green for the uniformly

branching case. Contributing to the spreading of the distribution

results is the existence of some rare events in which branching

seldom occurs, and the tree can reach far beyond the maximum

distance defined by Eq. [3]. The red and the green plots, shown for

three values of branching probability in Figure 6 ((a) to (c)), are to be

compared with full simulations, again for 100 trials, as described in

the Methods section. These results are shown in blue in these

figures. In the full simulations, we subdivide the entire computa-

tional domain into volume elements 3 distance units on a side, and

define the number of targets hit to be the number of voxels

penetrated by at least one neurite tip. Throughout our analysis, a hit

is recorded whether or not the relevant tip is subsequently pruned.

As we have mentioned previously, the theoretical (green) and

stochastic (red) results are approximations of the simulation

conditions, neglecting neurite curvature, angle variations at

branching, redundant branches, finite target size, etc. As a

consequence of these approximations, optimal targeting occurs at

lower distances in the simulations (blue line). Nevertheless, both

approximation cases reveal the essential mechanism at work in

targeting when branching is also manifest in the simulation

results. More explicitly, the region of optimal targeting shifts to

locations that are situated farther away as the branching

probability decreases. As demonstrated by the numerical

simulations, exponentially more targets are reached by higher

order than by lower order branches. The relative paucity of very

high order branches, however, as well as the existence of

occasional trees that reach long distances, combine to produce

smoother targeting curves with a single maximum performance

peak. In the presence of pruning, this result changes significantly,

as we describe next.

Figure 6. Estimates for the number of hits at a distance D for evolving neurons. Cases shown use the following branching rates in (a)
Pbranch = 0.3; (b) Pbranch = 0.5; (c) Pbranch = 0.7. All these three panels show results from (i) full-fledged numerical simulation (blue, averaged over 100
runs), (ii) simplified trees that have a stochastic branching time (red, where the time intervals between branching decision does not have a fixed
length), and (iii) from theoretical considerations (green). As expected, the use of lower branching probabilities reduces the number of hits at smaller
distances, but allows reaching targets that are further away. The position of the ‘optimal’ targeting distance for distinct branching probabilities is in
qualitative agreement over the range of probabilities considered here. Note that the stochastic (red) and theoretical (green) curves both have
discontinuous first derivatives, in contrast to the numerical (blue) curves. (d) Statistical results for neural trees with branching or pruning for
Lmax = 1000 units. Plots of targeting rates from numerical simulations indicate that neurites with low probabilities of branching reach further, but fill
less surrounding space. (e) A complementary result is that at low probabilities for branching, it takes longer for a neuron to exhaust its resources and
reach the maximum allowable arbor length, Lmax. (f) Neural trees that have been generated at higher pruning probabilities reach further from the
origin and (g) take more time to finalize the ultimate arbor. We note that Pbranch = 0.3 in panels c and d.
doi:10.1371/journal.pone.0025135.g006
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Simulated effects of pruning
The previous results demonstrate the intuitive result that

standard trees which branch more often can travel shorter

distances, but cover the intermediate range better than do

branches that bifurcate less frequently. A quantitative summary

of these results appears in Figure 6(d). A corollary is that the more

branches present, the more rapidly a neuron will exhaust its

resources and need to stop searching for targets. This is shown in

Figure 6(e), where we plot the time, averaged over 500 trials, to

reach a maximum total arbor length Lmax = 1000. Accordingly, we

expect that an increase in pruning probabilities should reduce the

effective rate of producing new branches, thus increasing the range

at which a standard tree can search for targets, as well as the

overall search time. Numerical simulations are in agreement with

this intuition, as indicated by results with Pbranch fixed at 30% and

varying Pprune, which are shown in Figures 6(f) and 6(g). The

results of Figures 6((d) to (g)) indicate that branching and pruning

can be tuned to maximize rates of striking targets as functions

either of time or of distance. We carry out more systematic

numerical simulations, presented in the next section, that confirm

this conclusion.

Branching and pruning – results from numerical
simulations

The theoretical considerations that we have described indicate

that optimal branching and pruning rates can be established to

construct standard trees that maximize probabilities of striking

particular targets. To confirm these results, we perform a factorial

design of simulations in which branching and pruning rates are

varied, and the number of fixed size targets is evaluated as a

function of distance to the target. Results are shown in Figure 7 for

distances D = 20, 30, 40 and 50. These results have been obtained

for 500 repetitions of simulations where Pbranch = 0, 0.1, 0.2, …, 1,

and Pprune = 0, 0.1, 0.2, …, 1. Note here that the number of

simulations have been increased from 100 to 500 to allow for more

statistical confidence in comparison of performances for adjacent

regions of the map. The target size is 3 units on each dimension. In

addition, simulations are performed only if Pbranch2Pprune.0, that

is, the targeting success is deemed to be zero if Pbranch2Pprune#0.

Figure 7 indicates the existence of two trends. First, maximal

targeting rates are produced in all cases along directions that start

parallel to the diagonal, where Pbranch2Pprune is constant.

Deviations from the expected parallel line can be observed in

numerical simulations for high values of Pbranch and Pprune, due to

the increased incidence of accidental imbalances in local

branching and pruning events. Second, for nearby targets (e.g.

Fig. 7(a)), Pbranch2Pprune is large, meaning that reaching such

targets requires a maximal branching rate and no pruning, while

for intermediate ranges (e. g. Fig. 7(b) and 7(c)) balanced

branching and pruning is needed for optimal targeting. Note that

for distant targets (e.g. Fig. 7(d)), Pbranch2Pprune is small, meaning

that in order to reach these targets, one must prune aggressively

even when the branching rates are not set at high values. In

principle, even for values of Pbranch2Pprune that are not too small,

it is possible to completely prune a tree by accident. In order to

prevent entirely denuding a tree in our simulations, we

implemented a rule that a tree with only one branch left would

not be pruned.

We note here that our findings directly show that optimal

targeting for a set distance can be achieved in the complete

absence of pruning. However, trees that prune in effect permit

additional target searches at intermediate distances, a feature that

would be useful to increase target efficiency for a range of distances

(as opposed to a single fixed distance). This represents an

advantage that trees which prune have over trees that only

branch, thus pointing to potential functional roles of pruning. We

Figure 7. Number of targets reached vs. branching and pruning rates. The following parameters have been used to generate these panels:
(a) D = 20; (b) D = 30; (c) D = 40; (d) D = 50. For potential targets close to the cell body (case (a)), the most effective strategy is to branch as much as
possible while pruning as little as possible, while for more distant targets, pruning rates must increase with branching rates to provide high targeting
probabilities – i.e. pruning is required to provide optimal targeting.
doi:10.1371/journal.pone.0025135.g007
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note, however, that by operating in a high branching/pruning

regime, a cost incurs due to an increased likelihood that putative

successful branches might be prematurely cut off or that the tree

may waste its resources on premature growth if the pruning is

deficient at early stages. In this sense, a moderate amount of

pruning would strike a balance between too little intermediate

exploration and too many premature pruning events. We also note

that by comparing trees which have similar total length for their

final structures, we implicitly assume that there is no penalty for

pruning of neurites. This simplification permits us to perform an

explicit analytical treatment. Different options for assessing cost

can be employed in higher order models, such as fixed terms,

factors that are proportional to the length of the neurite pruned or

factors that depend on the distance from the starting point.

Results from the numerical simulations support the notion that

branching and pruning may work as opposing agents to

collectively help a neural tree find its target. In other words, as

long as there is a set difference between probabilities of branching

and pruning (P_branch2P_prune), the expected targeting success

at a distance D away from the origin should be similar. To further

explore this, we recognized that the search for targets at a certain

distance from the initial starting point can be formulated as an

optimization problem, in which a neural tree attempts to

advantageously use the limited resources by generating a structure

that maximizes the number of active neurites in the region of

interest. We used theoretical methods to generate an upper bound

estimate for the target performances for neurons that have a fixed

probability of branching and a fixed total length, showing that the

tree optimally targets at a specific distance.

While the requirement that a fixed difference between branching

and pruning rates is indicative of the optimal targeting distances,

these trends may exhibit some variations. We can investigate this

directly by examining the effect of pruning on targeting as a function

of distance to the target by fixing Pbranch2Pprune and plotting the

number of targets hit versus Pprune and distance. As shown in

Figure 8(a), close examination of the overall performances as a

function of distance when the difference between branching and

pruning probabilities is relatively low (Pbranch2Pprune = 0.2) indi-

cates that trees generated under this parameter regime are most

effective at targeting at distances around D = 50. While in general,

the performances are similar for different parameters, trees that

have very high branching and pruning probabilities loose their

effectiveness at targeting at this distance. Hence, Figure 8(a) shows

that for Pprune.60% and Pbranch.80%, few targets are reached at

any distance. This appears to be associated with the fundamental

exponential nature of iterative branching. That is, at high branching

rates, the number of branches along with total arbor length grows

exponentially in time. A small stochastic reduction in pruning can

therefore cause a large growth in total arbor length and a premature

exhaustion of available resources. On the other end of the spectrum,

a tree that prunes overeagerly by a small amount produces slender

and sparse arbors that make inefficient use of the resources in the

intended target area. In contrast, as shown in Fig. 8(b), trees

generated with a larger difference between branching and pruning

probabilities are better at targeting at smaller distances and are

relatively more robust in the high branching/high pruning regime.

Discussion

Landscape profiling is useful in evaluating target-finding
strategies

In this paper we have constructed a computational model of a

growing neuron with stochastic capabilities to evolve individual

branches. The growth dynamics within the simulations were

adjusted according to observations of sensory neurons isolated

from the dorsal root ganglion (DRG) and grown on a featureless

growth-permissive substrate. Live cell imaging demonstrates that

neurons dramatically restructure their arbor architecture as they

grow in culture (Fig. 1). These processes, such as branch formation

and branch elimination, were therefore integrated into our in silico

model to reflect the complex arborization morphology of DRG

neurons observed in vitro. While individual branches were allowed

to evolve independently, a length-bound scenario was assumed to

realistically reflect the finite amount of cellular structures that can

Figure 8. Colorscaled plots of targeting performances as a function of distance. Here the difference between branching and pruning
probabilities is kept constant at (a) 0.2 and (b) 0.4. In both panels, the maximum value for Pbranch = 1. As anticipated from Fig. 2 and confirmed by
Fig. 6, smaller Pbranch2Pprune – i.e. more frequent pruning – is more effective at reaching distant targets.
doi:10.1371/journal.pone.0025135.g008
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be sustained by a neuron as it expands. In contrast to the

traditional method of estimating targeting success by employing a

single stationary target, we mapped the entire search space

covered by the neural trees. The resulting ‘‘landscape profiles’’

obtained for neurons with differing pruning and branching

capabilities allow for a more informative measure of how

arborization dynamics change the topography of the space

searched and consequently, the ability for a neuron to innervate

a potential target located within those coordinates.

Our work is different from the traditional search and the pursuit

problems in the sense that the target does not attempt to evade the

search. Instead, they are hidden at the beginning of the search.

Although there are similarities with complex search problems (e. g.

[3]), the timing of branching and pruning induces complications

by creating multiple search locations per trial. Some weak cues

may exist in the environment, but here we consider the behavior

emerging from a neural targeting model that has a small amount

of assumptions. This allows us to characterize the expected

targeting performances of the model using theoretical and

computational results, and provide the framework for incorporat-

ing additional refinements, such as the ones related to the chemical

cues, as they become available from future experiments.

At the initial stages of the computational modeling, the

parameters have been tuned to give rise to realistic-looking

neurons that resemble the morphometric studies of the in-vitro

neurons. Since similar-looking neurons can be obtained over a

range of parameters (see Figures 4 and 5 for examples of

branching and pruning parameters), the focus of our simulations is

to explore the behavior of classes of neurons and to examine if they

exhibit useful targeting behaviors. Examination of evolutionary

behavior rather than final shape, avoids the issue of over-fitting the

details of the final arborization structure, and instead focuses on

examining the dynamics of neural structures that emerge from

realistic growth rules.

Our work complements previous findings in optimal neural

wiring [25–29] that show how the topology of neural tissue in

more compact areas, such as the brain hippocampus or cortex, is

influenced by local branching rules. In contrast, the phenomena

described here are related to spinal cord injury regeneration

research, where phenomena not normally occurring in human

body, namely re-establishment of ascending and descending the

neural pathways, are the desired outcomes of research.

Pruning is an active contributor rather than passive
consequence of target finding

Of particular interest is the influence of branch elimination, or

pruning, on the landscape profile of arborization neurons. Branch

elimination is crucial in the refinement and resculpting of axons to

ensure proper formation of functional circuitry (reviewed in

[10,31]). Axonal pruning plays a key role in removing superfluous

or misguided branches in developing vertebrate nervous systems:

ectopic branches of retinal ganglion cell axons in retino-tectal map

development [32], redundant axonal inputs of terminal arbors at

synapses of developing neuromuscular junctions [33], exuberant

cerebrocerebellar collaterals in neonatal cat brains [34]. Process

elimination has been observed at different scales ranging from

fine-tuned pruning of dendritic spines in the neocotex [35–36] to

large-scale elimination of the axon collaterals of major cortical

projections, characterized by rapid pruning of many millimeters of

primary arbor including its distal higher-order branching

structures [9]. Axon elimination does not require commitant

synapse disassembly, as pruning can occur in the absence of

synapse formation [8,10]. Although the selective ablation of

excessive or aberrant neurite extensions are events critical to

developmental brain plasticity, the pruning process has been

incorporated in only a handful of computational modeling studies

of growing neurons in the context of formation of retinotopic maps

in the brain (e. g. [37–38]). Our present model implements this

pruning process, enabling us to generate realistically-looking

neurons and to evaluate alternative search strategies in target-

finding.

A combined Branching and Pruning strategy is more
efficient for targeting than a simple Branching strategy

Our results suggest that moderate amount pruning can be

beneficial for the search process. By abandoning the search in

certain areas after a certain terrain has been covered, the neural

tree can focus on other regions, thus increasing the chance of

success. As long as the neural tree does not operate in a high

branch/high prune regime, which may induce too many errors

due to fluctuations, pruning allows the tree to cover more ground,

especially at intermediary stages, thus rendering the search more

effective. Landscape profiling from the simulations shows that

pruning enables a neural tree to cover larger amounts of space, but

at the expense of detailed exploration of mid-range terrain.

Although small targets positioned at intermediate distances may be

overlooked, neurites are able to seek targets placed at long-range

distal fields. This particular approach would be useful as a

regeneration strategy following trauma to the adult peripheral

sensory nervous system where the target of innervation for the

PNS branch of the DRG sensory neuron is positioned at a far

distance from the spinal cord. Regardless of the particular

subpopulation of DRG neuron that conveys the distinct peripheral

stimuli associated with a particular somatosensory modality, most

axonal inputs from the periphery share the commonality of

traversing long distances. Proprioceptive projections carry signals

from muscle while mechanoreceptive and nociceptive projections

carry signals from skin. Because adult peripheral axons demon-

strate plasticity after injury [39], the capacity to prune may

constitute an intrinsic capability for a sensory neuron to optimize

its search for peripheral targets. The propensity of peripheral

nerve processes to restructure its arbors provides impetus for

identifying endogenous cell factors that promote pruning.

Semaphorin 3F, for example, has been implicated in pruning

during hippocampal development [40]. Furthermore, the growth-

permissive nature of the post-trauma PNS environment [41–42]

suggests that there may be extracellular factors which block or

activate cell signaling cascades associated with the pruning process.

Exciting studies reveal that glial cells themselves can actively

participate in the execution of the pruning process and the

engulfment of degenerating axon fragments termed ‘‘axosomes’’

[43–44].

In silico results predict the existence of in vivo pruning
factors and mechanisms which complement branching
factors in directed search strategies

To date, much progress has been made in uncovering the

intrinsic programs and extrinsic factors that control branch

formation. Results from the numerical simulations support the

notion that branching and pruning may work as opposing agents

to collectively help a neural tree find its target. The active

participation of pruning within positive in silico outcomes

underscores the importance of determining factors that govern

branch elimination in vitro. Several ‘‘branching factors’’ such as the

Slit/Robo signaling system [45–46] along with other strong

candidates involved in arbor formation such as Sema 3A,

Anosmin, B class ephins, and Wnts [32,47–48] have been closely
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examined; however, there is a paucity of research surrounding

‘‘pruning factors’’ and the mechanisms through which branch

elimination is regulated. An equivalent understanding of pruning

would provide insight into how pruning factors may work in

concert with branching factors to direct arborization and

establishing appropriate branched morphologies in developing

neurons. Identification of pruning factors and associated pathways

of regulation would also provide a valuable addition to the toolbox

of regenerative approach

Identification of pruning factors and associated pathways of

regulation would also provide a valuable addition to the toolbox of

regenerative approaches, with particular applicability to scenarios

where functional recovery relies on effective target re-inervation at

distant loci. Moreover, isolation of pruning factors would enable

their use as ‘‘correction agents’’ to edit mistakes that may occur

during directed regrowth. For instance, redundant or aberrant

extensions can be selectively ablated by manipulating the

microenvironment at either intermediate branch points or at

terminal arbors. This additional level of safety compensates for

situations where regrowth goes awry, enabling the coveted

property of fault-tolerance to be engineered into potential

strategies used in regeneration. For example, in retinotectal

targeting in mammals, it is well known that branching and

searching for targets does not initiate until advancing axons reach

an appropriate domain in the tectum, after which branching

proliferates [49]. Such an arbor in which branching is delayed, or

other arbors in which pruning depends on distance from the

origin, length or order of branches, have previously been

described, for example in [50]. The effect of these modifications

to the pruning rules is one of the future directions for our research.

Maintaining a fixed difference (Pbranch2Pprune) is more
important than the independent values of Pprune and
Pbranch

Although both branching and pruning influence the landscape

profiles, the most efficient search strategy is the one which

maintains a balance between branching and pruning probabilities.

These theoretical estimates constitute a reductionist’s approach in

representing the actual target-search problem; however, the

resulting predictions are in agreement with the landscape profiles

generated from the full-scale computer simulations. Maintaining a

constant difference between branch formation and elimination

gives rise to a class of neurons generated using the same set of

parameters that achieve optimal targeting at the same distance.

The significance of this numerical difference, has been demon-

strated both by theoretical treatment and by numerical simula-

tions, in which shifts in optimal target distances, that is, the

distances at which the number of active searching neurites are

maximal, are observed for neuron families of different branching

and prune rates.

These findings indicate that absolute pruning and branching

probabilities are less relevant to a neuron, than its capability to

sustain a tightly coupled relationship between its branching and

pruning probabilities (Pbranch2Pprune). For example, if a neuron is

stimulated by external factors to branch, it may recover the

optimality of search by increasing its internal propensity to prune.

The number of possible (branch, prune) combinations that exist

for successful targeting also suggests that branching and pruning

do not function as independent processes within an optimized

search strategy. For any branching rate, a pruning rate exists to

match and to create the appropriate balance to facilitate efficient

search. A reasonable way for a neuron to achieve balance is by

employing a coupling factor that operates on a higher level of

control, simultaneously regulating both pruning factors and

branching factors to maintain the critical difference, or constant

delta. As revealed by the numerical simulations in this study, the

importance of a balanced Pbranch2Pprune rate, which allows

families/classes of neurons generated using same set of parameters

to optimally target at a specific set distance away from the origin,

suggests that a regulatory hierarchy for control of arbor formation

may exist within the neuron.

Our current model evaluates landscape profiles generated for all

(branch, prune) pairs in which Pbranch2Pprune.0. For the

simulation to evolve it is imperative that Pprune not exceed Pbranch,

as larger Pprune values result in a null-growth neuron. A regulatory

factor would play a role not only in maintaining the optimal

difference between Pprune and Pbranch, but also in ensuring that

Pprune is kept smaller than Pbranch. These implications assume a

constant Pprune is maintained throughout the evolution of the

neural tree. It is possibility for Pprune to exceed Pbranch at certain

timepoints, while maintaining an average Pprune that is less than

Pbranch. How sporadic increases in Pprune beyond Pbranch influences

search potential, remains to be determined. A possible approach is

to decouple Pbranch from Pprune and investigate the effect of varying

Pprune values within the simulation of a single neural tree. Of

particular interest are search strategies associated with parametric-

dependent pruning. In addition to evaluating strategies which

employ dynamical pruning and branching rates, future work will

involve expanding the current neural growth model to include

neutrophic factors, chemo-repellent and attractive spot guidance

cues, as well as gradient cues. These elaborated models will

provide further insight into how neurons can be directed to regrow

and innervate targets within physiologically-relevant scenarios.
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